5. Выводы

Таким образом, разработанная методика позволяет полностью определить характеристики поля, создаваемого системой круговых токов. Это дает возможность проведения анализа возникающих эффектов и выбора наиболее подходящих параметров задачи для достижения необходимых эффектов.

Литература

- 1. Ландау, Л. Д. Электродинамика сплошных сред: Теоретическая физика, т.8. [Текст] / Л.Д. Ландау, Е.М. Лифшиц. М.: Наука, 1982. – 624с.
- Ахиезер, А. И. Общая физика. Электрические и магнитные явления [Текст] / А.И. Ахиезер. Киев: Наук. Думка, 1981. – 468 с.
- Гетьман, А. В. Аналитическое представление магнитного поля соленоида с помощью цилиндрических гармоник [Текст] / А. В. Гетьман, А. В. Константинов // Электротехника и Электромеханика. – 2010. – №5. – С. 43–45.
- Гетьман, А. В. Цилиндрические гармоники скалярного потенциала магнитного поля токовой обмотки электромагнита [Текст] / А. В. Гетьман, А. В. Константинов // Вісник Національного технічного університету. – 2012. – XIII, №49. – С. 66–72.
- 5. Калантаров, П. Л., Цейтлин Л.А. Расчёт индуктивностей. [Текст] / П.Л. Калантаров, Л.А. Цейтлин. М.: Энергия, 1970. 180с.
- 6. Черкашин, Ю. С. Влияние паразитных параметров линий связи на выбор режимов электрической цепи. [Текст] / Ю.С. Черкашин. – М.: Электричество, 2005. – №5.
- 7. Электротехнический справочник [Текст] / Под ред. М.Г. Чиликина. М.: Госэнергиздат, 1952, стр.: 143, 599, 609.
- 8. Основы электротехники. Под ред. К.А. Круга и др. [Текст] / М.: Госэнергиздат, 1952, стр. 258.
- Вергун, Л. Ю. Нанокомпозиты медико-биологического назначения на основе ультрадисперсного магнетита вычислений [Текст] / Л.Ю. Вергун, П.П. Горбик, Л. Г. Гречко и др. / В кн.: Физикохимия наноматериалов и субмолекулярных структур, 2007. – Т. 1. – С. 45–89.
- Форсайт, Дж. Машинные методы математических вычислений [Текст] / Дж. Форсайт, М. Малькольм, К. Моулер. М.: Мир, 1980. – 280 с.

У статті показано, що гравітація чорної діри не коло, а площина. Також показано, що при вибуху зірки з утворенням чорної діри вибух від сферичного вибуху буде переходити в конусний. У роботі описано рівняння гравітації, яке можна записати як:

D-

-0

F_{гравітація} (ρ_{щільності ефіру}) =[GMm]×[1/(ρ_{щільності ефіру})2]×P(α, β) Ключові слова: гравітація, ефір, чорна діра, вир, крептон, щільність ефіру

В статье показано, что гравитация чёрной дыры не круг, а плоскость. Также показано, что при взрыве звезды с образованием чёрной дыры взрыв от сферического взрыва будет переходить в конусный. В работе описано уравнение гравитации, которое можно записать как: $F_{гравитация}(\rho_{плотности эфира}) = = [GMm] \times [1/(\rho_{плотности эфира})2] \times P(\alpha, \beta)$

Ключевые слова: гравитация, эфир, черная дыра, водоворот, крептон, плотность эфира

1. Введение

Плоский конусный взрыв при образовании чёрной дыры. Гравитация, как изменяющаяся плотность эфира

В предыдущих главах были получены расширенные формулы для гравитации [1 – 5]: УДК 530.18 (УДК 530.10(075.4))

ЧЕРНЫЙ ПРЕДЕЛ. ЧАСТЬ 11

С. Н. Яловенко Кандидат технических наук Кафедра радиоприемников Харьковский национальный университет радиоэлектроники пр. Ленина, 14, г. Харьков, Украина, 61166

$$\mathbf{E}_{r p a B u \tau a u \mu u}(\mathbf{r}) \approx \mathbf{G} \mathbf{M} \times \frac{1}{\mathbf{r}^2} \times \mathbf{P}(\boldsymbol{\theta}, \boldsymbol{\varphi}), \qquad (1)$$

$$E_{rpaBHTallHH}(r) \approx GM \times \frac{1}{(\Delta r)^{2} + r^{2}} \times P(\theta, \phi), \qquad (2)$$

$$E_{rpaBHTallHH}(r) \cong G \times M \times \frac{1}{\left(\Delta r\right)^2 + \left(r + f_{BpalleHHe}(r)\right)^2} \times P(\theta, \phi). (3)$$

n-

Для облегчения понимания расширенного уравнения для гравитации (1-3), где формула 1/г² изменена на формулу 1/(r+f_{вращение}(r))², гравитацию можно представить как стрельбу во все стороны с неподвижной и вращающейся платформы (рис. 1). В первом случае, когда платформа неподвижна, плотность силы действия пуль пропорциональна 1/r², но когда платформа вращается, траектория движения пули изменяется изза вращения, т.е. длина пробега пули увеличивается на f_{вращение}(r) и коэффициент 1/r² переписывается с учетом увеличения длины пробега как 1/(r+f_{вращение}(r))². В зоне совпадения 1, (рис. 1) f_{вращение}(r)≈0 из-за большой скорости пули и им можно пренебречь, соответственно формула 1/(r+f_{вращение}(r))² переходит в формулу 1/r².

Рис. 1. Изменение гравитационного поля от расстояния

В зоне не совпадения 2 различия становятся существенными, и пренебрегать ими нельзя. Напомним, что в водоворотной криптоновой теории все частички представлены плоскими водоворотами (рис. 2, а) и (рис. 2, б), а гравитация рассматривается как суммарное изменение плотности крептона (эфира) в пространстве и описывается формулой (4):

$$\vec{F}(\mathbf{r}) = \sum_{i} F_{\text{водоворотов}}(\rho) = \frac{\partial \rho}{\partial \vec{r}} =$$

$$= \frac{\partial \rho_{E}}{\partial \vec{r}} + \frac{\partial \rho_{H}}{\partial \vec{r}} = , \qquad (4)$$

$$= \vec{F}_{E}(\mathbf{r}) + \vec{F}_{H}(\mathbf{r})$$

$$\vec{F}_{E}(\mathbf{r}) = \frac{\partial \rho_{E}}{\partial \vec{r}} \approx \mathbf{G} \times \mathbf{Mm} \times \frac{1}{\left(\Delta \mathbf{r}\right)^{2}} e^{-\mathbf{G}_{1} \times \mathbf{r}^{2}} \times (5)$$
$$\times \left(1/\sigma \sqrt{2\pi}\right) e^{(-\theta^{2}/2\sigma^{2})} \times \vec{r}_{E}$$

$$\vec{F}_{H}(\mathbf{r}) = \frac{\partial \rho_{H}}{\partial \vec{r}} \approx \mathbf{G} \times \mathbf{Mm} \times \left[\frac{1}{\left(\Delta \mathbf{r}\right)^{2} + \mathbf{r}^{2}} + \frac{\mathrm{Sin}\left(\left(\mathbf{K} \times \mathbf{r}\right)^{2} - \pi / 2\right)}{\left(\Delta \mathbf{r}\right)^{2} + \mathbf{r}^{2}} \right] \times \vec{r}_{H}^{,}$$
(6)

где F_E и F_H записаны приближённо и зависят от коэффициента сжатия, ρ –плотность эфира, r – расстояние.

Рис. 2. Графики изменения напряженность электрического заряда элементарной частицы: а - срез изменения напряженности элементарной частицы; б - трехмерное представление напряженности электрического заряда элементарной частицы

Для облегчения понимания второй части формулы (1 – 3) гравитации Р (θ , φ) вероятностной функции распределения, которая изменяет форму вида гравитации от сферической (форма круга) к нормально распределённой форме (приближенно эллипсоидной на ранних этапах сжатия) по плоскостной составляющей $F_E=\partial \rho_E/\partial r$ (для Е составляющей), можно предложить эксперимент со сферой представленный на рисунках (рис. 3, а, б) и (рис. 4).

Эксперимент заключается в том, что в сферу с наклеенными на её поверхность индикационными лентами помещаются плоские вентиляторы (рис. 3, а, б) или вращающиеся диски с выемкой, или пластиной на своей поверхности (рис. 4). Эти вращающиеся диски вызывают эффект аналогичный плоским вентиляторам, и создают модель изменения плотности (крептона, эфира) аналогичную изменению плотности элементарной частицы представленной в крептоновой теории плоскими водоворотами (рис. 3, а, б).

Рис. 3. Сфера для моделирования и измерения гравитации: а - сфера для моделирования гравитации для одной частицы; б - сфера для моделирования действия гравитат ции для многих частиц

Рис. 4. Модель изменения гравитации чёрной дыры для разных степеней сжатия

При вращении плоскостных вентиляторов, когда расстояние между ними велико и они не мешают друг другу, вероятностная функция распределения вектора плоскости (XOY) ρ(θ, φ) равна Р(θ, φ)=1, и индикационные ленты показывают сферическое распределение силы (Ньютоновское, классическое). По мере сжатия сферы, расстояния между вентиляторами уменьшаются и когда оно становятся сопоставимыми с их размерами, то начинают мешать друг другу, что приводит к изменению вероятностной функции распределения вектора плоскости (XOY) $\rho(\theta, \phi)$ и $P(\theta, \phi) \neq 1$. С учетом теплового движения (и других факторов) функции распределения вектора плоскости (ХОҮ), $\rho(\theta, \phi), P(\theta, \phi)$ от равномерного распределения будет переходить к нормальному и индикационные ленты покажут изменение распределение силы (рис. 4, 5, в). Во втором случае $P(\theta, \phi)=1$ переходит в P(θ , φ)=($1/\sigma\sqrt{2\pi}$)exp($-\theta^2/2\sigma^2$) и распределение действия не будет соответствовать Ньютоновскому сферическому распределению силы, что приведет к существенному суммарному отличию силы (рис. 4, рис. 5, в, б). В данном эксперименте не учитывается изменение плотности перпендикулярной плоскости (XOY) создающейся вектором H, представленной функцией F_H= $\partial \rho_H / \partial r$, которая показана на (рис. 5, а, б) жирной линией.

Более точную модель гравитации (с учетом F_H составляющей) можно получить, если заменить трубчатый вентилятор изображенный на (рис. 3, а) на трубчатый вентилятор с неравное мерными прорезями создающими перпендикулярные потоки воздуха (модели функции $F_H=\partial\rho_H/\partial r$) относительно основного потока воздуха (модели функции $F_E=\partial\rho_E/\partial r$). График силы, который при этом получится, показан на (рис. 5, в) жирной линией [6 – 10].

Компьютерное моделирование изменения гравитационной силы при приближении массы тела к массе черной дыры (при М→М _{чёрной дыры}) без учета статистического размытия по Н составляющей (рис. 6) дает изз менение гравитации показанной на (рис. 7) и является аналогом графиков изображенных на (рис. 4).

Рис. 5. Графики суммарной плоской гравитации чёрной дыры: а - модель гравитации одной частицы; б - трех мерный график гравитации чёрной дыры; в - срез трехмерного графика гравитации чёрной дыры

Рис. 6. Гравитация, которую создает Н составляющая: а - трехмерный график гравитации F_H; б - график гравиғ тации F_H на плоскости ZOX; в - график гравитации F_H на плоскости ZOX с учета статистического размытия по Н составляющей

В полярных координатах эти графики будут выглядеть, как показано на рис. 8.

Поэтому при схлопывании (взрыве) звезды, взрыв будет идти по - пути наименьшего сопротивления гравитации как показано на (рис. 9) и будет иметь вид конусных юбочек (рис. 10). По виду взрыва можно судить о степени сжатия чёрной дыры образовавшейся в результате схлопывания звезды, то есть взрыв будет отличаться от привычного сферического взрыва из-за того, что гравитация чёрной дыры плоская.

Рис. 7. Графики суммарной плоской гравитации чёрной дыры при М->М _{чёрной дыры}

Рис. 8. Гравитация чёрной дыры в полярных координатах при М M чёрной дыры

Рис. 9. Гравитация чёрной дыры в полярных координатах при М→М _{чёрной дыры} с выделением конусных направлений минимальной силы F(β)

Рис. 10. Изображения взрывов звезд с формированием чёрной дыры: а - обычный сферический взрыв звезды без формирования чёрной дыры внутри; б - график конусного взрыва при формировании чёрной дыры; в - взрыв звезды, где сформировалась чёрная дыра

Напомним, что гравитация и заряд рассматривается как сумма плоских водоворотов (рис. 11), которые из-за статистически случайного вращения воспринимаются как сферы. Из-за этого суммарная гравитация изменяется пропорционально коэффициенту 1/r², что приводит к орбитальной скорости планет как показано на рис. 12, а. При сжатии в чёрную дыру гравитация от сферической формы переходит в плоскую форму (рис. 4 – 9), что приводит к распределению орбитальных скоростей в галактике как показано на рис 12, б. Внутри галактики может быть не одна, а несколько чёрных дыр на разных стадиях сжатия, вращающихся вокруг общего гравитационного центра, что приводит к разнообразию форм графиков (галактик). Нестабильность (вращение) гравитационного центра может приводить к размытию (сглаживанию) форм графиков (рис. 7).

В плоскостной гравитации продольная составляющая в основном формируется F_E гравитацией, а поперечная (колебания) формируется F_H составляющей. Гравитация рассматривается как изменяющаяся плотность эфира (крептона) и базируется на схожести процессов (рис. 13) и (рис. 14, а, б, в). Волна в эфирной среде движется по пути наименьшего сопротивления, наименьшей плотности эфира (рис. 14, в).

Рис. 11. Водоворотная модель частицы, создающая сферический заряд и гравитацию

Рис. 12. Распределение орбитальных скоростей при сферическом и плоскостном распределении гравитации: а - сферическое распределение гравитации; б - обобщённая разница между сферической и плоскостной гравитацией.

В следствии, выше изложенного, уравнение гравитации: 1

$$F_{rpaButrauuu}(r) \approx GMm \times \frac{1}{r^2}$$
, (5)

можно переписать как:

$$F_{\rm гравитации}(\rho) = G_1 Mm \times \frac{1}{\rho_{\rm плотность-эфира}^2} . \tag{6}$$

Гравитация тела оказывает воздействия на другие объекты настолько, насколько изменяет плотность эфира возле них (г($\rho_{плотности}$)). С изменением плотности эфира меняется, как было показано в предыдущих главах, не только гравитация, но и время (t($\rho_{плотности}$)), скорость света (С_{света}($\rho_{плотности}$)), коэффициент преломления света (п_{света}($\rho_{плотности}$)), на постоянную радиоактивного распада (λ ($\rho_{плотности}$)). Другие характеристики пространства также связаны и зависят от плотности эфира [9 – 12].

Рис. 13. Изменение расположения звезды вследствие изменения плотности эфира

Рис. 14. Эксперимент измерения угла преломления от р плотности среды: а, б, в - изменяющаяся плотность эфира (крептона)

Литература

- 1. Эйнштейн, А. Теория относительности [Текст] / А. Эйнштейн. Научно-издательский центр «Регулярная и хаотическая динамика», 2000.
- 2. Фейнман, Р. Фейнмановские лекции по физике [Текст] / Р. Фейнман, Р. Лейтон, М. Сэндс.
- Яловенко, С.Н. Чёрный предел. Теория относительности: новый взгляд [Текст]: материалы Международной научно-практической конференции «Актуальные проблемы современных наук-2009» / С.Н. Яловенко. – Nauka I studia. – 2009. – № 21. – С. 85.
- 4. Яловенко, С.Н. Теория относительности. Новый взгляд. [Текст] / С.Н. Яловенко // Уральский научный вестник. Научнотеоретический и практический журнал. – №5(20). – ЖШС «Уралнаучкнига», 2009. – С. 33.
- Яловенко, С.Н. Чёрный предел [Текст] / С.Н. Яловенко // Вестник национального технического университета «ХПИ». Харьков, 2009. – №8. – С. 81.
- 6. Яловенко, С.Н. Чёрный предел часть 1. [Текст] / С.Н. Яловенко // Вестник национального технического университета «ХПИ». Харьков, 2008. №43. С. 144.
- Яловенко, С.Н. Чёрный предел. Теория относительности: новый взгляд [Текст] / С.Н. Яловенко. ТОВ издательство «Форт», 2009.
- Яловенко, С.Н. Чёрный предел. Теория относительности: новый взгляд. Часть 5. Мировоззрение [Текст]: материалы 6 Международной научно-практической конференции «Наука и инновации - 2010» / С.Н. Яловенко // Techniczne nauki Fizyka. – Nauka I studia, 2010. – №.13. – С. 105.
- 9. Яловенко, С.Н. Чёрный предел. Теория относительности: новый взгляд [Текст]: материалы 6 Международной научно-практической конференции «Наука: Теория и практика - 2010» / С.Н. Яловенко. – Nauka I studia, 2010. – № 7. – С. 78
- 10. Yalovenko, S.N. Black limit. Theory of relativity. New view. [Text] / S.N. Yalovenko // Научно-теоретический и практический журнал. «Современный научный вестник. №21 (77). ФИЗИКА, 2009. С. 67.
- Yalovenko, S.N. раздел. Fizyka. Teoretyczna fizyka. Black limit. Theory of relativity. New view [Text] : материалы 6 Международной научно-практической конференции «Наука: Теория и практика» / S.N. Yalovenko. – Nauka I studia, 2009. – № 6. – С. 17.
- 12. Yalovenko, S.N. Continuation of the theory of a relativity [Text] : материалы 6 Международной научно-практической конференции «Научный прогресс на рубеже тысячелетий 2010», 27.05-05.06.2010. / S.N. Yalovenko. Прага: «Education and Science». С. 10.

У статті надана математична модель процесу недзеркального відбиття електронів від потенційного бар'єру на межі плазми з поверхнею або оточуючим вакуумом. У формі, аналогічній інтегралу зіткнень Ландау, записано вираз для розподілу електронів у відбитому потоці. Записано граничні умови для рівнянь динаміки електронів, які мають бути використані при моделюванні процесів в електроракетних двигунах

D-

Ключові слова: електроракетні двигуни, потенційний бар'єр, інтеграл Ландау, граничні умови

В статье представлена математическая модель процесса незеркального отражения электронов от потенциального барьера на границе плазмы с поверхностью или окружающим вакуумом. В форме, аналогичной интегралу столкновений Ландау, записано выражение для распределения электронов в отраженном потоке. Записаны граничные условия для уравнений динамики электронов, которые должны быть использованы при моделировании процессов в электроракетных двигателях

Ключевые слова: электроракетные двигатели, потенциальный барьер, интеграл Ландау, граничные условия

1. Introduction

Electric propulsion thrusters [1] are widely used in modern astronautics for realization of different space missions such as interplanetary missions to Venus, Mars, Jupiter Troyan asteroids, main belt

УДК 533.9.07

ELECTRON GAS PARAMETERS CHANGE INSIDE LANGMUIR LAYER IN ELECTRIC PROPUL-SION DEVICES

Sh. Roshanpur Post graduate student Department of rocket and space engines and power systems of flying vehicles Zhukovskiy National Aerospace University "Kharkiv Aviation Institute" Chkalova str., 17, Kharkiv, Ukraine, 61070 E-mail: sh.roshan2002@gmail.com

asteroids [2], near Earth inter-orbit operations with satellites delivery from basic orbit to geosynchronous earth orbit [3, 4]. Traditional plasma-ion thrusters [5] and Hall effect thrusters [6] are used here as well as comparatively new conceptions of magneto-plasma dynamics thrusters [7].

D-