-

D.

УДК 62-585.2

## ЭКСПЕРИМЕНТАЛЬНОЕ ОПРЕДЕЛЕНИЕ ПАРАМЕТРОВ ГИДРОТРАНСФОР-МАТОРА В УСЛОВИЯХ НЕДОСТАТОЧНОЙ МОЩНОСТИ ПРИВОДНОГО ДВИГАТЕЛЯ

### В. М. Соловьев

Кандидат технических наук, инженер-конструктор 1 категории Государственное предприятие «Харьковское конструкторское бюро по машиностроению им. А.А. Морозова» ул. Плехановская, 126, г. Харьков, Украина, 61001 E-mail: morozov@morozov.com.ua

ным фиксированием показаний рабочего процесса на установившихся режимах работы. Однако практическое решение этого вопроса зачастую вызывает ряд затруднений, связанных с теми или иными особенностями стендового оборудования. Одним из таких затруднений может стать отсутствие необходимой величины мощности на валу насосного колеса.

Отсутствие необходимой мощности привода может привести к снижению значений чисел Рейнольдса и соответствующему переходу режима движения рабочей жидкости в область доквадратичного сопротивления. Также отсутствие необходимой мощности делает невозможным проведение комплексных испытаний гидротрансформатора на прочность.

Представленная работа посвящена решению задачи выбора оптимальных значений частоты вращения приводного двигателя  $n_1$  и величины передаточного отношения і в условиях недостаточной мощности приводного двигателя. Также рассмотрен вопрос проведения моделирования рабочего процесса гидротрансформатора в зоне доквадратичного течения рабочей жидкости с определением величин коэффициентов гидравлического трения  $\lambda=f(i)$ , предназначенных для уточнения полученных экспериментальных данных.

У статті розглянуто питання проведення експериментального дослідження робочого процесу одноступінчатого триколісного гідротрансформатора типу Allison у зоні доквадратичного опору графіка BTI. Також запропонована послідовність, котра дозволяє визначати значення коефіцієнтів гідравлічних втрат тертя  $\lambda = f(i)$  з метою проведення уточнення отриманих значень основних параметрів роботи гідротрансформатора

Ключові слова: гідротрансформатор, експериментальні дослідження, число Рейнольдса, коефіцієнт гідравлічних втрат тертя

┏-

В статье рассмотрен вопрос проведения экспериментального исследования рабочего процесса одноступенчатого трехколесного гидротрансформатора типа Allison в зоне доквадратичного сопротивления графика ВТИ. Также предложена последовательность, которая позволяет определять значения коэффициентов гидравлических потерь трения  $\lambda = f(i)$  для проведения уточнения полученных значений основных параметров работы гидротрансформатора

Ключевые слова: гидротрансформатор, экспериментальные исследования, число Рейнольдса, коэффициент гидравлических потерь трения

#### 1. Введение

Благодаря таким положительным качествам, как автоматическое бесступенчатое изменение величины коэффициента трансформации в зависимости от нагрузки на ведомом валу, отсутствие жесткой связи между ведущим и ведомым звеньями, увеличение срока службы двигателя и трансмиссии, гидродинамические трансформаторы получили широкое распространение в приводах и трансмиссиях машин широкого спектра назначения.

Одним из важнейших этапов в задаче разработки и внедрения отечественных гидротрансформаторов является практический эксперимент, заключающийся в проведении стендовых и натурных испытаний.

#### 2. Постановка проблемы, цель и задачи исследования

Методологически экспериментальное определение основных параметров внешней характеристики гидротрансформатора не представляет особой сложности и осуществляется путем постепенного увеличения/уменьшения величины крутящего момента на валу турбинного колеса при постоянной частоте вращения насосного колеса, с одновремен-

### 3. Расчет основных параметров, ввод ограничений и нахождение решения

Требования, предъявляемые к проведению стендовых испытаний гидротрансформаторов, регламентируются [1].

Двумя основными аспектами, которые имеют место при проведении экспериментального моделирования рабочего процесса гидротрансформатора в рассматриваемых условиях, являются:

- значение величины максимальной мощности, которая развивается приводным двигателем, N<sub>1</sub>;
- соответствие, по возможности, чисел Рейнольдса движущегося в межлопаточных каналах гидротрансформатора потока, зоне квадратичного сопротивления (зоне автомодельности) графика ВТИ (графика Никурадзе) [2, 3] для исключения влияния изменения коэффициента гидравлических потерь трения λ на фиксируемые параметры работы гидротрансформатора.

В качестве примера проведения расчета выберем одноступенчатый трехколесный гидротрансформатор с центростремительным турбинным колесом (тип Allison) с активным диаметром  $D_a=0,38$  м.

#### 3.1 Расчет и ввод ограничения величиной максимальной потребляемой мощности

Воспользовавшись методикой [4], с учетом [5 – 10], на основе использования усовершенствованного уравнения баланса гидравлической энергии в безразмерном виде [8], путем задания геометрических параметров лопаточных систем гидротрансформатора, определим численные значения внутренних и внешних параметров в зависимости от режима работы.

На основании полученных значений величин гидравлического крутящего момента насосного  $M_{1r}$  и турбинного  $M_{2r}$  колес, выполним расчет мощностей насосного  $N_1$  и турбинного  $N_2$  колес:

$$N_1 = M_1 \cdot \omega_1 = \frac{M_{1\Gamma} \cdot \omega_1}{\eta_{\text{mex} \ 1}}, \qquad (1)$$

$$N_2 = M_2 \cdot \omega_2 = \frac{M_{2\Gamma} \cdot \omega_2}{\eta_{_{\rm M}}} = \frac{M_{2\Gamma} \cdot \omega_1 \cdot i}{\eta_{_{\rm MEX}\_2}}, \qquad (2)$$

где  $M_1$  и  $M_2$  – механические моменты соответственно насосного и турбинного колес, H·м;

η<sub>мех\_1</sub> и η<sub>мех\_2</sub> – коэффициент полезного действия, учитывающий механические потери энергии соответственно для насосного и турбинного колес;

*ω*<sub>1</sub> – угловая скорость вращения насосного колеса:

$$\omega_1 = \frac{\pi \cdot n_1}{30} \,, \tag{3}$$

где n<sub>1</sub> – частота вращения насосного колеса, мин<sup>-1</sup>.

В результате расчета по уравнениям (1 - 3) для фиксированного значения частоты вращения насосного колеса n<sub>1</sub>=const, построим график изменения N<sub>n</sub>=f(i) (рис. 1). Анализ рис. 1 показывает, что мощность насосного колеса гидротрансформатора N<sub>1</sub>, в рассматриваемом диапазоне изменения передаточного отношения, больше мощности турбинного колеса  $N_2$ . Таким образом, поскольку при изменении частоты вращения  $n_1$  данное соотношение мощностей будет сохраняться, для дальнейшего рассмотрения как функцию наибольшего значения выберем мощность насосного колеса  $N_1$ .



Рис. 1. Изменение величин мощности насосного  $N_1$  и турбинного  $N_2$  колес в зависимости от передаточного отношения і, полученные при частоте вращения насосного колеса  $n_1 = 1700$  мин<sup>-1</sup>

Для проведения расчета значений  $N_1 = f(i,n_1)$  удобно использовать коэффициенты крутящего момента  $\lambda_1 \cdot \gamma = f(i)$ , полученные из уравнения:

$$M_4 = \lambda_1 \cdot \gamma \cdot n_1^2 \cdot D^5$$
, откуда (4)

$$\lambda_1 \cdot \gamma = \frac{M_1}{n_a^2 \cdot D^5}, \qquad (5)$$

где ү – удельная плотность рабочей жидкости:

 $\gamma = \rho \cdot g$ ,

где *ρ* – плотность рабочей жидкости, кг/м<sup>3</sup>;

g – ускорение свободного падения, g=9,81 м/c<sup>2</sup>;

 $D_a$  – активный диаметр гидротрансформатора,  $D_a{=}0{,}38\,{\rm M}{.}$ 

Подставив значения  $(\lambda_1 \cdot \gamma) = f(i)$  в уравнение (4), задав диапазоны изменения частоты вращения насосного колеса n<sub>1</sub>=1100...1900 мин<sup>-1</sup> и передаточного отношения i=0...0.9, получим распределение  $M_1 = f(i,n_1)$ . В дальнейшем, подставив значения моментов насосного колеса  $M_1$  в уравнение (1), получим распределение величин мощности насосного колеса N<sub>1</sub> в зависимости от частоты вращения n<sub>1</sub> и передаточного отношения i (рис. 2).

Проведя наложение ограничения величиной максимальной развиваемой приводным двигателем мощности №<sub>1max</sub>≤175 кВт, получим (рис. 3):

На рис. З граничное значение мощности показано в виде штриховой изолинии, заштрихованная область является полем существования  $N_1 \leq N_{1_max}$  соотношений  $n_1$  и i, незаштрихованное поле – область, не отвечающая заданному условию ограничения.



Рис. 2. Изолинии поверхности значений мощности на насосном колесе N<sub>1</sub> в зависимости от значений передаточного отношения і и частоты вращения насосного колеса n<sub>1</sub>



Рис. 3. Изолинии поверхности значений мощности на насосном колесе № в зависимости от значений передаточного отношения і и частоты вращения насосного колеса п<sub>1</sub> после наложения ограничения №1≤175 кВт

3.2. Расчет и ввод ограничения величиной минимального числа Рейнольдса

Из треугольников скоростей определим значения относительных скоростей:

$$W_{11} = \sqrt{Cm_{11}^2 + (U_{11} - Cu_{11})^2}, \qquad (6)$$

$$W_{21} = \sqrt{Cm_{21}^2 + (Cu_{21} - U_{21})^2}, \qquad (7)$$

для лопаток насосного колеса, загнутых вперед

$$W_{12} = \sqrt{Cm_{12}^2 + (Cu_{12} - U_{12})^2} , \qquad (8)$$

$$W_{22} = \sqrt{Cm_{22}^2 + (U_{22} - Cu_{22})^2}, \qquad (9)$$

$$W_{13} = \sqrt{Cm_{13}^2 + Cu_{13}^2} , \qquad (10)$$

$$W_{23} = \sqrt{Cm_{23}^2 + Cu_{23}^2} , \qquad (11)$$

где Сm<sub>mn</sub> – меридиональная проекция вектора абсолютной скорости, м/с;

 $Cu_{mn}$  – окружная проекция вектора абсолютной скорости, м/с;

 $U_{mn}$  – окружная скорость, м/с;

m – индекс, обозначающий: 1 – вход в лопаточную систему, 2 – выход из лопаточной системы;

п – индекс, обозначающий лопаточное колесо:
1 – насосное колесо, 2 – турбинное колесо, 3 – колесо реактора.

Гидравлические радиусы межлопаточных каналов гидротрансформатора на входе и выходе из лопаточных колес [3]:

$$d_{r_{mn}} = \frac{4 \cdot F_{mn}}{\chi_{mn}}, \qquad (12)$$

где F – площадь сечения потока, м<sup>2</sup>;

Зная величины относительных скоростей  $W_{mn}$  и гидравлических радиусов dr<sub>mn</sub>, выполним расчет чисел Рейнольдса [3]:

$$\operatorname{Re}_{\mathrm{mn}} = \frac{W_{\underline{\mathrm{mnm}}}d}{v}, \qquad (13)$$

где v — кинематическая вязкость,  $M^2/c$ ; для мася ла АРИАН ЕМТ-8 при температуре t=100 °C,  $v=(8...9)\cdot 10^{-6} \text{ } m^2/c$ .

С соответствии с графиком ВТИ [2, 3] уменьшение чисел Рейнольдса может вызвать переход параметров потока в гидротрансформаторе из зоны квадратичного сопротивления (зоны автомодельности) в зону доквадратичного сопротивления и соответствующему росту коэффициента гидравлических потерь трения  $\lambda$ , что в свою очередь вызовет снижение общего КПД и приведет к искажению экспериментально определяемых параметров работы гидротрансформатора.

Выполним расчет величин числа  $Re_{mn}$  при фиксированном значении частоты вращения насосного колеса  $n_1$ . Результат расчета функции  $Re_{mn}=f(i)$  представлен на рис. 4.



Рис. 4. Изменение чисел Рейнольдса в зависимости от передаточного отношения і при частоте вращения насосного колеса n<sub>1</sub>=1700 мин<sup>-1</sup>

Анализ представленных на рис. 4 результатов показывает, что наименьшие значения чисел Рейнольдса наблюдаются на входе и выходе из насосного колеса  $Re_{11}$  и  $Re_{21}$ , что характеризует эти области как наиболее вероятные места увеличения коэффициента потерь трения  $\lambda$ . Поскольку при изменении частоты вращения  $n_1$  соотношение чисел Рейнольдса будет сохраняться, для последующих расчетов в качестве наименьшего значения числа Re потока движущейся в гидротрансформаторе рабочей жидкости примем значение Re<sub>21</sub>.

В дальнейшем, приняв диапазоны изменений n<sub>1</sub>=1100...1900 мин<sup>-1</sup> и i=0...0,9 (аналогично взятым ранее), и используя уравнение (7) проведем расчет поверхности значений  $W_{21} = f(i,n_1)$ . Затем, используя уравнения (12, 13), выполним расчет и получим распределение чисел Рейнольдса в зависимости от передаточного отношения и частоты вращения насосного колеса (рис. 5).



Рис. 5. Изолинии поверхности значений числа Рейнольдса Re21 в зависимости от значений передаточного отношения і и частоты вращения насосного колеса n<sub>1</sub>

Расчет значений величин относительной гладкости

проведем по соотношению  $\frac{d_{r_{-}mn}}{\Delta}$ , где  $\Delta$  – высота ше-

роховатости (для литых алюминиевых поверхностей примем ∆=0,0001м). Результат расчета представлен в табл. 1.

Таблица 1

Расчет величин относительной гладкости

| Сечение, mn | $\frac{\mathrm{d}_{\mathrm{r_mn}}}{\Delta}$ |
|-------------|---------------------------------------------|
| 11          | 248,7                                       |
| 21          | 265,3                                       |
| 12          | 275,5                                       |
| 22          | 281,2                                       |
| 13          | 359,1                                       |
| 23          | 353,1                                       |

В соответствии с полученными результатами (табл. 1), нанесем на график ВТИ в виде затемненной области диапазон минимального и максимального значений коэффициентов относительной гладкости d<sub>r</sub>

(рис. 6).

 $\overline{\Delta}$  (рис. b). Сопоставив данные, представленные на рис. 5, 6, можно увидеть, что для заданных параметров относительной гладкости наибольшие показатели величины Re21, имеющие значения порядка 45 000, лежат вне области Re≥160 000 зоны автомодельности графика ВТИ. Таким образом, в условиях заданного ограничения мощности N₁max≤175 кВт проведение экспериментального моделирования рабочего процесса рассматриваемого гидротрансформатора с обеспечением условия работы в зоне автомодельности для всех сечений потока в диапазоне передаточного отношения i=0...0,9 не представляется возможным.



Рис. 6. График ВТИ с нанесенным в виде затемненной области диапазоном значений коэффициентов относительной гладкости  $\frac{d_r}{\Lambda}$  для рассматриваемого случая

Рассмотрим вариант проведения экспериментального моделирования рабочего процесса гидротрансформатора в зоне доквадратичного сопротивления, с последующим нахождением соответствующих значений коэффициентов гидравлических потерь трения λ, с целью их дальнейшего использования при пересчете экспериментально полученных данных.

Исключим из результатов расчета те режимы работы, при которых отмечаются малые значения чисел Re, введя ограничение Re<sub>21</sub>≥25000 (рис. 7). Граничное значение числа Рейнольдса показано в виде штриховой изолинии, штриховкой отмечена область решения Re<sub>21</sub>≥25000 соотношений n<sub>1</sub> и i, незаштрихованное поле – область, не отвечающая заданному условию.



Рис. 7. Изолинии поверхности значений числа Рейнольдса Re21 в зависимости от значений передаточного отношения і и частоты вращения насосного колеса n<sub>1</sub>, после наложения ограничения Re<sub>21</sub>≥25000

#### 3.3. Ввод ограничения по резонансной частоте врашения

При проведении стендовых экспериментальных исследований гидротрансформатора возможна ситуация, при которой происходит совпадение частотных характеристик работающего гидротрансформатора и стендового оборудования, их взаимное вхождение в частотный резонанс с последующей нестабильной работой. Поэтому в качестве дополнительного ограничения введем диапазон частоты вращения насосного колеса, при котором происходит вхождение в резонанс:  $n_{1p}=1500\pm50$  мин<sup>-1</sup> (рис. 8).



Рис. 8. Результат ограничения по резонансной частоте вращения п<sub>1p</sub>=1500±50 мин<sup>-1</sup> на поверхность значений переменных - передаточного отношения і и частоты вращения насосного колеса n<sub>1</sub>

#### **3.4. Определение рабочих диапазонов і и п**<sub>1</sub> и проведение экспериментального исследования

Сопоставив границы трех ограничений, представленных на рис. 3, 7, 8, и нанеся области положительного решения на поверхность соотношений  $n_1$  и i, вы, берем участки решений (рис. 9).



Рис. 9. Наложение ограничений и выбор участков передаточного отношения і и частоты вращения насосного колеса n1

На рис. 9 области существования положительного решения (отмечены штриховкой), в виде отрезков отметим три участка, охватывающих область значений передаточного отношений от i=0 до i=0,9:

a) n<sub>1</sub>=1400 мин<sup>-1</sup> соответствует диапазону i=0...0,5;

б) п<sub>1</sub>=1700 мин<sup>-1</sup> соответствует диапазону i=0,5...0,75;

в)  $n_1{=}1900\,$  мин $^{-1}\,$  соответствует диапазону  $i{=}0{,}75{...}0{,}9{.}$ 

Для выбранных участков проведем экспериментальное определений основных параметров внешней характеристики гидротрансформатора – моментов насосного М<sub>1</sub> и турбинного М<sub>2</sub> колес в зависимости от передаточного отношения і и частоты вращения насосного колеса п<sub>1</sub>. В результате аппроксимации экспериментальных данных полиномами шестой степени с величиной достоверности R<sup>2</sup>=0,995 для значений момента насосного колеса  $M_1$  и  $R^2$ =0,999 для значений момента турбинного колеса  $M_2$  были получены данные, представленные на рис. 10.



Рис. 10. Результат экспериментального определения моментов насосного M<sub>1</sub> и турбинного M<sub>2</sub> колес в зависимости от передаточного отношения і и частоты вращения насосного колеса n<sub>1</sub>, полученный на стенде в ГП «ХКБМ»

#### 3.5. Определение значений коэффициентов гидравлических потерь трения λ=f(i)

Проведем расчет чисел Рейнольдса в соответствующих сечениях потока для выбранных участков решения с последующим наложением результата на график ВТИ для определения величин коэффициентов гидравлических потерь трения λ (табл. 2).

Проведя наложение чисел Рейнольдса на соответствующие кривые относительной гладкости графика ВТИ (рис. 11), где заштрихованная область отмечает диапазон значений коэффициентов относительной

гладкости  $\frac{d_r}{\Delta}$ , можно заметить сравнительно высо-

кие значения коэффициентов гидравлических потерь трения  $\lambda$  на участках i=0,7...0,9 при сопоставлении с участками i=0...0,7 во всех сечениях потока.



Рис. 11. Наложение рассчитанных чисел Remn на график ВТИ

| п <sub>1</sub> ,<br>мин <sup>-1</sup> | i    | Re11     | Re21     | Re12     | Re22     | Re13     | Re23     |
|---------------------------------------|------|----------|----------|----------|----------|----------|----------|
| 1400                                  | 0    | 37236,44 | 36515,02 | 50661,89 | 73795,37 | 51091,77 | 89612,16 |
|                                       | 0,1  | 36297,80 | 35561,46 | 49384,82 | 71495,23 | 49803,86 | 87353,25 |
|                                       | 0,2  | 35105,63 | 34355,00 | 47762,81 | 68693,84 | 48168,09 | 84484,20 |
|                                       | 0,3  | 33641,33 | 32881,07 | 45770,57 | 65354,54 | 46158,95 | 80960,26 |
|                                       | 0,4  | 31874,57 | 31115,95 | 43366,81 | 61417,53 | 43734,79 | 76708,43 |
|                                       | 0,5  | 29756,91 | 29022,90 | 40485,64 | 56787,35 | 40829,17 | 71612,13 |
| 4500                                  | 0,6  | 33038,84 | 32232,78 | 44950,85 | 62300,94 | 45332,27 | 79510,33 |
| 1700                                  | 0,7  | 29247,00 | 28642,27 | 39791,88 | 54270,30 | 40129,52 | 70384,98 |
| 1900                                  | 0,75 | 30164,65 | 29697,87 | 41040,39 | 55370,86 | 41388,63 | 72593,38 |
|                                       | 0,8  | 27257,23 | 27123,74 | 37084,71 | 49330,52 | 37399,38 | 65596,47 |
|                                       | 0,9  | 19337,75 | 20894,16 | 26309,90 | 33121,71 | 26533,15 | 46537,69 |

Результат расчета чисел Рейнольдса для выбранных участков решения

Это объясняется тем, что, несмотря на высокую скорость вращения насосного колеса –  $n_1$ =1900 мин<sup>-1</sup>, происходит увеличение воздействия на поток рабочей жидкости центробежных сил, которые стремятся оттеснить поток к периферии и остановить его (принцип перехода гидротрансформатора на режим гидромуфты). Таким образом, на участке передаточного отношения i=0,7...0.9 происходит замедление относительной скорости Wmn, что в соответствии с уравнением (13) приводит к уменьшению значений чисел Рейнольдса Remn с переходом режима движения рабочей жидкости в область с более высокими значения  $\lambda$ .

В соответствии с полученными данными, представленными на рис. 11, определим значения коэффициентов гидравлических потерь трения  $\lambda_{mn}$  для сечений потока в зависимости от величины передаточного отношения і (рис. 12). Для расчета разности между значениями параметров потока в зоне доквадратичного сопротивления и зоне автомодельности, на рис. 12 дополнительно нанесены значения коэффициентов гидравлических потерь трения  $\lambda_{mn_aBT}$ , взятые для чисел Рейнольдса в зоне автомодельности:  $\text{Re}_{mn} \ge 1,75\cdot10^5$ .



Рис. 12. Результат определения коэффициентов гидравлических потерь трения  $\lambda_{mn}$  в зависимости от передаточного отношения і

Расчет значений величин гидравлических потерь трения h<sub>mn</sub> для зон доквадратичного сопротивления и автомодельности осуществляется на основе формулы Дарси-Вейсбаха для гидротрансформаторов [3]:

$$\mathbf{h}_{\mathrm{mn}} = \boldsymbol{\lambda}_{\mathrm{mn}} \cdot \frac{\mathbf{l}_{\mathrm{n}}}{\mathbf{d}_{\mathrm{\Gamma mn}}} \cdot \frac{\mathbf{W}_{\mathrm{mn}}^2}{2 \cdot g}, \qquad (14)$$

где *l* – хорда лопатки, м.

Таблица 2

Полученные данные в дальнейшем используются для уточнения экспериментальных данных.

#### 4. Выводы

1. На основе предложенного оптимизационного алгоритма проведения экспериментальных исследований гидротрансформаторов в условиях недостаточной

мощности приводного двигателя, для гидротрансформатора с активным диаметром  $D_a=0,38$  м при ограничениях по величинам: максимальной мощности приводного двигателя  $N_1 \le 175$  кВт; минимального числа Рейнольдса  $Re_{21} \ge 25000$ ; резонансной частоты вращения насосного колеса  $n_{1p} = 1500 \pm 50$  мин<sup>-1</sup>, определены три оптимальных участка по частоте вращения насосного колеса  $n_1$  и передаточному отношению і, проведен эксперимент.

2. Для уточнения экспериментальных данных, полученных при работе гидротрансформатора в зоне доквадратичного сопротивления графика ВТИ, предложена последовательность по определению величин гидравлических потерь трения  $\lambda_{mn} = f(i)$ .

#### Литература

- ГОСТ 17069-71 Передачи гидродинамические. Методы стендовых испытаний. – М.: Издательство стандартов, 1971. – 12 с.
- Емцев, Б. Т. Техническая гидромеханика [Текст] / Б. Т. Емцев // М.: Машиностроение, 1987. – 440 с.
- Стесин, С. П. Гидродинамические передачи [Текст] / С. П. Стесин, Е. А. Яковенко // М.: Машиностроение, 1973. – 352 с.
- Алексапольский, Д. Я. Гидродинамические передачи [Текст] / Д. Я. Алексапольский // – Л.: МашГиз, 1963. – 272 с.
- Соловьев, В. М. Введение дополнительных ограничений при оптимизации реактора гидротрансформатора [Текст] / В. М. Соловьев // Східно-Європейський журнал передових технологій. – 2007. – Т. 3, №3 (27). – С. 18–22.
- Химмельблау, Д. Прикладное нелинейное программирование [Текст] / Д. Химмельблау // – М.: Мир, 1975. – 536 с.
- Соловьев, В. М. Экспериментальное исследование внешних характеристик комплексного гидротрансформатора с модифицированным колесом реактора [Текст] /

В. М. Соловьев, П. С. Завьялов, В. А. Толстолуцкий та ін. // Східно-Європейський журнал передових технологій. – 2011. – Т.5, № 8(53). – С. 51-55.

- Соловьев, В. М. Математическая модель рабочего процесса гидротрансформатора [Текст] / А. И. Веретенников, В. М. Соловьев, С. В. Стримовский та ін. // Інтегровані технології та енергозбереження. – Харків. – 2010. – №3. – С. 50-56.
- Сухарев, А. Г. Курсметодовоптимизации. Учебное пособие [Текст] / Сухарев А. Г., Тимохов А. В., Федоров В. В. [2-еизд.] // М.: Физматлит, 2005. – 368 с.
- 10. Банди, Б. Методы оптимизации. Вводный курс [Текст] / Б. Банди // М.: Радио и связь, 1988. 128с.

Розглянуто питання моделювання тягових електродвигунів в пакеті Simulink. Виконано аналіз методів моделювання системи електродвигун – пристрій керування. Розглянуто моделювання на основі: рівнянь Максвелла, розв'язання задачі Коші, аналізу процесів з використанням векторних діаграм та методів матричного представлення. Запропоновані моделі двигунів постійного струму, особливістю яких є врахування реальних кривих намагнічування

-0

EP-

Ключові слова: модель, Simulink, електродвигун, потокозчеплення, момент, електропривод, електротранспорт

-

Рассмотрены вопросы моделирования тяговых электродвигателей в пакете Simulink. Выполнен анализ методов моделирования системы электродвигатель устройство управления. Рассмотрено моделирование на основе: уравнений Максвелла, решения задачи Коши, анализа процессов с использованием векторных диаграмм и методов матричного представления. Предложены модели двигателей постоянного тока, особенностью которых является учет реальных кривых намагничивания

Ключевые слова: модель, Simulink, электродвигатель, потокосцепление, момент, электропривод, электротранспорт

-0

#### 1. Вступ

**D-**

Одна з основних проблем електричного транспорту є зменшення енергозатратності. В електроприводах транспортних засобів переважно використовуються двигуни постійного струму. Регулювання їх швидкості здійснюється, як правило, за допомогою реостатів, що призводять до значних втрат електроенергії. Тому зменшення втрат електроенергії в системі електродвигун - пристрій регулювання є актуальним науковим завданням. Моделювання процесів в електричних машинах і електроприводах суттєво скорочує терміни наукових досліджень. Тому важливо мати математичні моделі електродвигунів для дослідження систем електроприводу транспортних засобів. УДК 629.421 :629.405

# ДО ПИТАННЯ РОЗРОБКИ МОДЕЛЕЙ ЕЛЕКТРОДВИГУНІВ ТЯГОВОГО ЕЛЕКТРОПРИВОДУ ТРАНСПОРТНИХ ЗАСОБІВ

М.В.Хворост Доктор технічних наук, професор, професор кафедри\* E-mail: dekanatzn@ksame.kharkov.ua К.О.Сорока

Кандидат технічних наук, старший науковий співробітник, доцент кафедри\* E-mail: sorokahome@rambler.ru

А.І.Бесараб Інженер, старший викладач \*Кафедра електричного транспорту Харківський національний університет міського господарства ім. О.М. Бекетова вул. Революції, 12, м. Харків, 61002

#### 2. Аналіз літературних даних та постановка проблеми

Відомі методи моделювання електричної машини на основі опису рівняннями теорії електромагнітного поля з використанням рівнянь Максвела. Двигун представляється як узагальнений перетворювач енергії, як правило шестиполюсник, з електричною, механічною та тепловою сторонами і розглядаються процеси перетворення енергії в повітряному зазорі [1, 2].

Іншим напрямком моделювання є використання векторних діаграм. Робота двигуна представляється векторною діаграмою, аналогічно трансформатору, з тією різницею, що є рухомий ротор [3].

Найбільш поширеним є представлення моделі двигуна у вигляді електричного кола, а робочий механізм механічної системи, з описом електромеханічних