УДК 660.211+533.17

МОДЕЛИРОВАНИЕ ГИДРОДИНАМИЧЕСКИХ УСЛОВИЙ ДЛЯ ПРОЦЕССА КРЕКИНГА УГЛЕВОДОРОДНОГО СЫРЬЯ В РАСПЛАВАХ

М. А. Гликин Доктор технических наук, профессор* E-mail: maratglik@rambler.ru Е. Ю. Черноусов Аспирант* E-mail: eychernousov@gmail.com Е. И. Зубцов Кандидат технических наук, старший преподаватель** E-mail: mining_07@mail.ru *Кафедра технологий органических веществ, топлива и полимеров*** **Кафедра технологий неорганических веществ и экологии*** ***Технологический институт Восточноукраинского национального университета им. В. Даля (г. Северодонецк) пр. Советский, 59-а, г. Северодонецк, Украина, 93400

> на основе надежной информации о гидродинамической обстановке в зоне барботажа паров углеводородов через слой расплава. Успешное решение указанной задачи, в первую очередь, зависит от ответа на вопрос: каким образом рассчитать время протекания реакции, определяемое продолжительностью контакта фаз при барботаже сырья. Для исследования кинетики процесса необходимо иметь надежный способ определения межфазной поверхности. Однако эти вопросы в литературе представлены слабо и неоднозначно.

> Несмотря на широкое применение барботажа в различных процессах химической технологии (окисление, алкилирование, хлорирование, абсорбция газов, ректификация и др.) и достаточно большое внимание исследователей, уделяемое этому вопросу, до сих пор нет единой общепризнанной теории, охватывающей все его стороны и особенности промышленного производства. В литературе приводятся не только различные уравнения для расчета характеристик барботажных систем, но даже по-разному трактуется качественная картина возникающих при барботаже гидродинамических режимов [3]. Отсутствует единство взглядов, а зачастую высказываются противоречие точки зрения относительно влияния на рассматриваемый процесс некоторых характеристик жидкой фазы (вязкость, поверхностное натяжение) и типа реакционного аппарата (диаметр, размеры отверстий распределительной

На підставі експериментальних даних з моделювання гідродинамічних умов в реакторі з розплавом представлена методика визначення часу контакту і поверхні розділу фаз стосовно до процесу крекінгу вуглеводневої сировини в розплавлених середовищах. Досліджено гідродинамічні режими під час барботажа та виявлено основні взаємозв'язки між керуючими параметрами процесу

Ключові слова: гідродинаміка, газорідинна система, швидкість спливання, газовміст, міжфазна поверхня

D-

На основании экспериментальных данных по моделированию гидродинамических условий в реакторе с расплавом представлена методика определения времени контакта и поверхности раздела фаз применительно к процессу крекинга углеводородного сыръя в расплавленных средах. Исследованы гидродинамические режимы при барботаже и выявлены основные взаимосвязи между управляющими параметрами процесса

Ключевые слова: гидродинамика, газожидкостная система, скорость всплытия, газосодержание, межфазная поверхность

-0

1. Введение

Разработка принципиально новых методов осуществления технологических процессов является приоритетной задачей современной химической технологии. Одним из направлений является проведение крекинга углеводородного сырья в расплавленных средах, что позволяет интенсифицировать процессы массо- и теплообмена [1]. При комплексном изучении данного процесса представляется необходимым исследование его основных технологических параметров, в том числе гидродинамических характеристик газожидкостной системы в реакторе. Из-за сложности лабораторных экспериментов по крекингу углеводородов в расплаве и практической невозможностью получения прямых результатов по исследованию гидродинамики в реакторе требуется физическое моделирование процесса с последующей обработкой полученных данных применительно к разрабатываемому процессу, что является эффективным инструментом в решении подобных задач химической технологии [2].

2. Постановка проблемы

Научно-обоснованный расчет реакционной аппаратуры для разрабатываемого процесса возможен лишь решетки и др.) Таким образом, непосредственное использование имеющихся корреляций в случае расплавленных сред невозможно [3].

3. Литературный обзор

Имеющиеся в литературе данные [1 – 7] следует применить для математического описания разрабатываемого процесса и оценить их эффективность по полученным экспериментальным результатам.

Согласно [4], любой гидродинамический режим изотермических газожидкостных систем может быть определен следующими физическими величинами: объемным расходом газовой (w_z) и жидкой (w_{∞}) фаз через единицу площади поперечного сечения потока смеси; плотностями жидкой (ρ_{∞}) и газовой (ρ_z) фаз; их динамическими коэффициентами вязкости (μ_{∞} и μ_z); коэффициентом поверхностного натяжения на границе раздела фаз (σ); ускорением свободного падения (g) и линейными размерами системы (l) (при заданной ее конфигурации).

При различной скорости истечения газа в жидкость наблюдается разные гидродинамические режимы: пузырьковый, пенный, струйный [5]. Пузырьковый (барботажный) режим наблюдается при небольших скоростях и объемах газа, при этом газ движется через слой жидкости в виде отдельных пузырьков. Пенный режим (режим ячеистой пены [6]) возникает, когда скорость газа превышает скорость свободного всплытия пузырьков. При этом газ истекает в жидкость в виде струи, которая вследствие сопротивления барботажного слоя разрушается с образованием большого числа мелких пузырьков различного диаметра. Струйный режим (инжекционный, режим пробоя [6] или динамической пены [7]) характеризует такое состояние газожидкостной системы, когда газ проходит через жидкость в виде крупных скоплений пузырей и брызг, разделенных прослойками жидкости с включенными в них мелкими пузырями.

$$\tau = \frac{H}{w}, c, \qquad (1)$$

где *H* – высота газожидкостной смеси, м;

$$S = \frac{6\varphi}{d_{\pi}}, \ \frac{M^2}{M^3}.$$
 (2)

При крекинге углеводородного сырья в среде расплавленных металлов, их солей или оксидов происходит непрерывное увеличение объема газовой фазы и ее скорости за счет теплового и гидростатического расширения, а также протекания реакций распада углеводородов [3].

Крупные пузыри ($d_n \ge 1$ мм) при подъеме деформируются, приобретая эллипсоидальную форму ($d_n=1-5$ мм) и полусферическую ($d_n > 5$ мм) [5], причем движение пузырей становится спиральным (рис. 1).

Газосодержание барботажного слоя меняется как по высоте аппарата, так и по его сечению [7].

Газовые пузыри при всплытии легко деформируются [4], что приводит к пульсациям площади их поперечного сечения и, как следствие, скорости их всплытия.

Значения собственных чисел Рейнольдса всплывающих пузырей (Re > 1) делают невозможным применение закона Стокса (вязкое обтекание) для оценки скорости их всплытия [4]. Поэтому при расчете применяются формулы, автомодельные относительно вязкости жидкой фазы.

Следует отметить, что на поверхность раздела фаз при барботаже существенное влияние оказывает присутствие поверхностно-активных веществ (ПАВ) и растворенных электролитов в газожидкостной системе [6].

В табл. 1 представлены формулы разных авторов, каждая из которых в большей или меньшей степени учитывает все вышеперечисленные особенности.

Таблица 1

Простейшим,

и наиболее изученным режимом барботажа является пузырьковый [7], поэтому для исследования гидродинамики крекинга углеводородов в расплаве были выбраны формулы для расчета характеристик в этом режиме.

Для разрабатываемого процесса важнейФормулы расчета гидродинамических параметров газожидкостной системы

Расчетная	Формулы согласно работ:					
величина	[4]	[6, 7]	[1, 3]			
Диаметр пузырька	$d_{\pi} = \sqrt[3]{\frac{3\varphi_0 d_0 \sigma}{4g\Delta\rho}} (3)$	$d_{\pi} = 1.5 \sqrt{\frac{d_0 \sigma}{g \Delta \rho}} $ (4)	_			
Газосодер- жание	$\varphi = \frac{C\sqrt{Fr}}{1 + C\sqrt{Fr}} (5)$	$\boldsymbol{\varphi} = 1 - k_1 k_2 \boldsymbol{\Psi} \left(\boldsymbol{6} \right)$	$\varphi = \frac{P_1 w_{\rm F}}{agh \rho_{\rm K}} ln \gamma (7)$			
Скорость всплытия	$w = \sqrt{\frac{2\sigma}{d_{\pi}\Delta\rho} + \frac{gd_{\pi}}{2} \left(1 - \frac{\rho_{\Gamma}}{\rho_{\pi}}\right)} (8)$	w = 1,5 $\left(\frac{\sigma g \Delta \rho}{\rho_{\rm sc}^2}\right)^{0,25}$ (9)	$w = \frac{a(ahg\rho_{\mathcal{K}} + P_{1}w_{r}ln\gamma)}{ahg\rho_{\mathcal{K}} - (b-1)P_{1}w_{r}ln\gamma} (10)$			

шими характеристиками, необходимыми для расчета времени контакта (τ) и удельной поверхности раздела фаз (S), являются диаметр пузырьков газовой фазы (d_n), газосодержание слоя (φ) и скорость всплытия пузырьков (w). Расчет ведется по следующим формулам [6]: В приведенных уравнениях

$$k_{1} = 1 - \exp\left[-1.1 \left(\frac{\sqrt{gD}}{w_{r}}\right)^{0.75} \left(\frac{w_{r}}{w}\right)^{0.5}\right], \quad (11)$$

6/6 (66) 2013

- коэффициент в уравнении (6), учитывающий влияние диаметра аппарата;

$$k_2 = 1 - \exp\left[-0.405 \left(\frac{\sqrt{gh}}{w_r}\right)^{0.75} \left(\frac{w_r}{w}\right)^{0.7}\right],$$
 (12)

- коэффициент в уравнении (6), учитывающий влияние высоты слоя жидкости;

$$\Psi = \exp\left[-\frac{0.2 \frac{W_{r}}{W} \left(\frac{\rho_{m}}{\rho_{r}}\right)^{0.2}}{1+0.00875 \left(\frac{W_{r}}{W}\right)^{0.95} \left(\frac{\rho_{m}}{\rho_{r}}\right)^{0.75}}\right], \quad (13)$$

$$\gamma = \frac{aP_1 + (b-1)P_1 w_{\Gamma}}{aP_0 + (b-1)P_1 w_{\Gamma}},$$
(14)

где $\phi_0 = 2/3$ – коэффициент сужения шейки пузыря при отрыве;

 d_{θ} – диаметр отверстия, в котором образуется пузырь, м;

C – константа, для системы вода-воздух C=2, для других систем C=1;

 $Fr = \frac{w_r^2}{gh}$ – критерий Фруда;

h – высота светлого слоя жидкости, м;

D – диаметр аппарата, м;

 P_0 –давление над поверхностью расплава, Па;

а – коэффициент, для солевых систем численно равный 0,38;

b – коэффициент, численно равный при D≥53 мм
 2,70, при D<53 мм 1,25;

*P*₁ – давление в точке ввода газового потока, Па.

Рис. 1. Движение свободно всплывающего пузыря — флуктуации около вертикального направления

4. Цель и задачи исследования

Целью данной работы является разработка методики определения времени контакта и поверхности раздела фаз применительно к процессу разложения углеводородного сырья в расплавленных средах путем

физического моделирования на аналогичных по физико-химическим свойствам объектах. Задачами исследования для разрабатываемого процесса являются: проверить экспериментальным путем возможность применения имеющихся в литературе расчетных формул и выбрать наиболее подходящие применительно к исследуемому процессу; определить четкую гидродинамическую обстановку и основные закономерности в зоне барботажа.

5. Методика проведения экспериментов

Для физического моделирования процесса в качестве аналогов лабораторного реактора применялись стеклянные трубки различного диаметра. В качестве модельных жидкостейдля расплавов солей использовались бензин, вода и четыреххлористый углерод, имеющие различные физико-химические свойства (табл. 2). Свойства применяемых жидкостей аналогичны и в большинстве случаев эквивалентны свойствам расплавленных солей [8, 9]. В качестве аналога паров углеводородов применялся воздух.

Таблица 2 Свойства модельных жидкостей и расплавленных солей

Свойство вещества	Бензин 20 °С	Вода 20 °С	Четырех- хлористый углерод 20 °С	КСІ 800 °С	LiCl 700 °C	CuCl 500 °C	AlCl ₃ 300 °C
Плотность, кг/м ³	740	998	1595	1512	1464	3633	992
Вязкость, мПа·с	0,53	1,00	0,97	1,10	1,25	2,61	0,12
Поверх- ностное натяжение, мН/м	21,6	72,3	25,7	98,8	117,9	76,1	2,08

В разрабатываемом процессе крекинга расход газовой фазы определяется расходом углеводородного сырья. Для пересчета расхода сырья в процессе крекинга (на примере нефти) в расход воздуха при физическом моделировании воспользуемся формулой Крэга и уравнением Клапейрона [10] для определения соответственно средней молекулярной массы и объема паров нефти при температуре процесса 500 °С. Плотность нефти равна 0,878 г/см³, а массовая доля испаряющейся нефти – 71,2 % [10]. Получаем значение средней молекулярной массы паров нефти 181 г/моль. Результаты расчетов показали, что с 1 мл сырой нефти получается 199 мл неконденсирующихся при 500 °С паров. В лабораторных экспериментах подача нефти составляет 0,3-3,5 мл/мин, что эквивалентно расходу газовой фазы в 3,6-41,8 л/ч. При диаметре лабораторного реактора 32 мм приведенная скорость газа (w_i) составит 0,0012-0,0144 м/с.

Газосодержание воздушножидкостной смеси определялось визуальным методом путем замера увеличения уровня жидкости при барботаже с точностью до 1%. Скорость всплытия и диаметр пузырьков определялись с помощью метода фотографирования. Диаметр пузырьков рассчитывался при сравнении на снимке видимого диаметра пузырька с эквивалентным отрезком на миллиметровой бумаге с точностью 0,2-0,3 мм. Видеосъемка с частотой 50 кадров в секунду дает возможность определять время всплытия пузырька на фиксированную высоту с точностью 0,02 с.

6. Экспериментальные данные и их обработка

На начальном этапе основной задачей было установление границ между режимами барботажа и выяснение механизма отрыва пузыря от трубки при истечении его в жидкость. На рис. 2 отчетливо видны различия в гидродинамике при различных значениях w_{z} ($d_{0} = 3$ мм, D = 15 мм, система воздух-вода). При $w_{\rm z} \leq 0, 2-0, 3 \, {\rm m/c}$ наблюдается пузырьковый режим, при 0,3 < w₂ < 0,5 – пенный, при w₂ > 0,5 м/с – струйный. Таким образом, при проведении экспериментов на лабораторном реакторе наблюдается исключительно пузырьковый режим барботажа. При таком режиме получены фотографии пузырька в момент его отрыва от отверстия трубки (рис. 3). По достижению отрывного диаметра пузырь мгновенно переходит в свободное движение. По данным [4] время нестационарного движения пузыря в зависимости от его диаметра составляет 10⁻³-10⁻⁵ с.

Рис. 2. Режимы барботажа: а — пузырьковый, б — пенный, в — струйный

Рис. 3. Механизм образования и отрыва пузыря: а — образование; б — рост; в — отрыв; г — свободное движение

В табл. З представлены экспериментальные и расчетные значения гидродинамических характеристик системы воздух-жидкость при $d_0 = 4$ мм, D = 32 мм и $w_z = 0,15$ м/с, h = 300 мм.

Сравнение экспериментальных и расчетных значений гидродинамических характеристик газожидкостной

Таблица 3

системы					
Гидродинамиче- ская характери- стика	Формула для рас- чета	Бензин	Вода	Четырех- хлористый углерод	
	(3)	1,81	2,46	1,49	
Диаметр пузырька	(4)	0,16	0,26	0,12	
d _п , мм	эксп. зна- чение	1,7	2,5	1,5	
	(5)	0,08	0,15	0,08	
Газосодержание ф,	(6)	0,21	0,18	0,20	
	(7)	0,36	0,36	0,37	
доли	эксп. зна- чение	0,09	0,10	0,09	
	(8)	0,20	0,27	0,17	
C	(9)	0,20	0,25	0,17	
скорость всплы-	(10)	0,57	0,56	0,56	
· · · · · · · · · · · · · · · · · · ·	эксп. зна- чение	0,20	0,25	0,18	

Формулы для расчета выбираются по сходимости с результатами экспериментов (табл. 3). Так, диаметр пузырьков лучше рассчитывать по формуле (3), газосодержание по формуле (5), но с поправкой на то, что значение константы *С* следует принять во всех случаях равной 1. Скорость всплытия пузырьков, рассчитанная по формулам (8) и (9) практически с одинаковой точностью совпадает с экспериментальными данными. Однако рекомендуется пользоваться формулой (8), так как в ней учитывается влияние диаметра пузырька на скорость всплытия.

В табл. 4 представлены результаты экспериментов, представляющие практический интерес и отражающие взаимосвязь основных параметров. Эксперименты проводились при постоянных значениях h = 50 мм и D = 58 мм.

По экспериментальным данным построена зависимость $\varphi = f(w_e)$ (рис. 4).

Рис. 4. Зависимость газосодержания φ от приведенной скорости газа w₂ (d₀ = 4 мм, D = 32 мм, h = 300мм, система четыреххлористый углерод-воздух)

Жид- кость	Диаметр отвер- стия трубки, d ₀ , мм	Ско- рость воздуха, w _г , м/с	Диаметр пузырь- ка, d _п , мм	Газосо- держа- ние, ф, доли	Площадь меж- фазной поверх- ности, S, м ² /м ³	Скорость всплы- тия пузырька w, м/с	Время всплы- тия, т, с
	3	0,1	1,6	0,13	468		0,24
		0,2		0,22	833	0,21	
		0,3		0,30	1125		
Б		0,1	2,2	0,13	340		0,26
рен- зин	7	0,2		0,22	605	0,19	
		0,3		0,30	817		
		0,1		0,13	300	0,19	0,27
	11	0,2	2,5	0,22	533		
		0,3		0,30	720		
	3	0,1	2,2	0,13	340	0,28	0,18
		0,2		0,22	605		
		0,3		0,30	817		
	7	0,1	3,0	0,13	249	0,25	0,20
Вода		0,2		0,22	444		
		0,3		0,30	600		
	11	0,1	3,4	0,13	220	0,24	0,21
		0,2		0,22	392		
		0,3		0,30	529		
	3	0,1	1,4	0,13	535		0,29
Четы- рех- хлори- стый угле-		0,2		0,22	952	0,18	
		0,3		0,30	1285		
	7	0,1	1,8	0,13	416	0,16	0,30
		0,2		0,22	740		
		0,3		0,30	1000		
род	11	0,1		0,13	374		0,31
		0,2	2,0	0,22	667	0,16	
		0.3		0.30	899	1	

Результаты экспериментов

Полученная нелинейная зависимость газосодержания от расхода газа, вероятно, связана с изменением объема всплывающих пузырьков по высоте барботажного слоя главным образом вследствие снижения гидростатического давления столба жидкости. Используя эту зависимость можно легко установить связь между объемным расходом газовой фазы и площадью межфазной поверхности.

Таблица 4

7. Обсуждения и рекомендации

Для проведения процесса крекинга углеводородного сырья в расплавленных средах в промышленных масштабах рекомендуется поддерживать пенный режим ($w_z = 0, 3 - 0, 5$ м/с) работы реактора, что максимально увеличивает поверхность раздела фаз [11]. При расчете межфазной поверхности в разрабатываемом процессе учитывать наличие в нефти (или других углеводородах) ПАВ не всегда возможно, а из-за их малой поверхностной активности [10] в этом нет явной необходимости. Очевидно, большее влияние будет оказывать природа расплава, который в случае использования солей металлов является ионной жидкостью. Учитывая сложность физико-химических свойств систем газ-жидкость в реальных технологических процессах следует, вероятно, согласиться с практической нецелесообразностью попыток поиска обобщающих уравнений, пригодных для расчета удельной межфазной поверхности в промышленных барботажных реакторах.

При пузырьковом и частично пенном режиме время контакта газовой фазы со слоем жидкости практически не зависит от объемного расхода газа. Исходя из этого, время пребывания углеводородного сырья в расплаве главным образом можно регулировать, изменяя высоту слоя.

В лабораторных экспериментах время контакта может изменяться от 0,1 до 0,5 с, а удельная поверхность раздела фаз от 50 до 1800 ${\rm m^2/m^3}.$

8. Выводы

В результате проведенной экспериментальной работы определены основные положения в методике расчета времени контакта и поверхности раздела фаз для процесса крекинга углеводородного сырья в расплавленных средах. Определены границы гидродинамических режимов при барботаже. Полученные экспериментальные данные согласуются с имеющимися в литературе сведениями.

Литература

- Зубцов, Е. И. Технология синтез-газа из угля в расплаве : дисс. ... канд. техн. наук : 05.17.01 / Зубцов Евгений Иванович. Харьков, 2011. – 155 с.
- Дильман, В. В. Методы модельных уравнений и аналогий в химической технологии [Текст] / В. В. Дильман, А. Д. Полянин. М. : Химия, 1988. – 304 с.
- Печуро, Н. С. Технология органических веществ [Текст] / Н. С. Печуро, О. Ю. Песин, В. Н. Конохов // Итоги науки и техники. – 1984. – Т. 9. – С. 3 - 59.
- 4. Кутателадзе, С. С. Гидродинамика газожидкостных систем [Текст] / С. С. Кутателадзе, М. А. Стырикович. М. : Энергия, 1976. 296 с.
- Дытнерский, Ю. И. Процессы и аппараты химической технологии. Часть 1 [Текст] / Ю. И. Дытнерский. М.: Химия, 1995. 405с.
- 6. Рамм, В. М. Абсорбция газов [Текст] / В. М. Рамм. М. : Химия, 1976. 656с.
- Соколов, В. Н. Газожидкостные реакторы [Текст] / В. Н. Соколов, И. В. Доманский. Л.: Машиностроение (Ленингр. отдние), 1976. – 216 с.
- Краткий справочник физико-химических величин. Издание девятое [Текст] / Под ред. А. А. Равделя и А. М. Пономаревой. СПб. : Специальная литература, 1998. – 232 с.

- 9. George, J. Janz Molten Salts Handbook [Tekct] / Janz George J. New York : Academic Press Inc., 1967. 602 c.
- Технология переработки нефти. В 2-х частях. Часть 1. Первичная переработки нефти [Текст] / Под ред. О. Ф. Глагольевой и В. М. Капустина. – М. : Химия, КолосС, 2007. – 400 с.
- 11. Пенный режим и пенные аппараты [Текст] / Под ред. И. П. Мухленова и Э. Я. Тарата. Л. : Химия, 1977. 304 с.

УДК 678.8; 678:66.08/09

ЛЮМІНЕСЦЕНТНІ НАНО-РОЗ-МІРНІ МАРКЕРИ КЛІТИН НА ОСНОВІ ФОСФАТІВ ЛАНТАНУ

О. В. Шаповал

Кандидат хімічних наук, науковий співробітник Кафедра радіоелектронних пристроїв та систем* E-mail: shapovalav86@gmail.com

О.С.Мягкота

Аспірант Кафедра органічної хімії* E-mail: miahkota@gmail.com

Р. Р. Панчук Кандидат біологічних наук, науковий співробітник** E-mail: rpanchuk@ukr.net

В. В. Вістовський

Кандидат фізико-математичних наук, доцент*** E-mail: vistvv@gmail.com

Н. Є. Мітіна

Кандидат хімічних наук, ст. науковий співробітник Кафедра технології органічних продуктів* E-mail: nem@polynet.lviv.ua

А.С.Волошиновський Доктор фізико-математичних наук, професор***

> E-mail: avolosh@ukr.net **Р. С. Стойка** Доктор біологічних наук, професор**

E-mail: stoika@cellbiol.lviv.ua

О.С.Заіченко

Кандидат хімічних наук, провідний науковий співробітник Кафедра органічної хімії* E-mail: zaichenk@polynet.lviv.ua *Національний університет «Львівська політехніка» вул. Степана Бандери, 12, м. Львів, Україна, 79013 **Відділ регуляції проліферації клітин та апоптозу Інститут біології клітини НАН України вул. Драгоманова, 14/16, м. Львів, Україна, 79005 ***Кафедра експериментальної фізики Львівський національний університет ім. Івана Франка вул. Кирила і Мефодія, 8, м. Львів, Україна, 79005

стовують органічні люмінофори. Проте ряд недоліків, таких як низька фотостабільність, малий час зрушення люмінесценції і токсичність, обмежують їх придатність.

Люмінесцентні матеріали на основі фосфатів лантану, лютецію та інших солей, активовані іонами

Досліджено люмінесцентні властивості наночастинок фосфатів лантану, допованих катіонами європію, 3 функціональною олігопероксидною оболонкою. вивчено кінетичні закономірності прищепленої полімеризації ініційованої з поверхні наночастинок. Функціоналізація поверхні прищепленою полімеризацією надає наночастинкам сумісності та/або можливості зв'язування з субстратами різної природи для використання при створенні люмінесцентних біосенсорів та маркерів клітин

-0

D-

Ключові слова: люмінесцентні наночастинки, прищеплена полімеризація, маркери клітин, функціональні олігопероксиди

-0

Исследованы люминесцентные свойства наночастиц фосфатов лантана, допированных катионами европия, с функциональной олигопероксидной оболочкой, изучены кинетические закономерности привитой полимеризации инициированной с поверхности наночастии. Функционализация поверхности привитой полимеризацией обеспечивает совместимость наночастиц и/или возможность связывания с субстратами различной природы для использования при создании люминесцентных биосенсоров и маркеров клеток

Ключевые слова: люминесцентные наночастицы, привитая полимеризация, маркеры клеток, функциональные олигопероксиды

-0

D-----

1. Вступ

Використання люмінесцентних маркерів дозволило значно розширити діапазон зон та підвищити чутливість методів аналізу в біомедичних дослідженнях [1, 2]. Традиційно для цієї мети викори-