┏-

-0

УДК 629.7.054

НЕЛІНІЙНІ КОЛИВАННЯ ПОПЛАВКОВОГО ПІДВІСУ ПІД ДІЄЮ N-ХВИЛІ. ЦИКЛІЧНЕ НАВАНТАЖЕННЯ

В. Ю. Шибецький

Асистент кафедри біотехніки та інженерії Національний технічний університет України «Київський політехнічний інститут» пр. Перемоги, 37, м. Київ, Україна, 03056 E-mail: sjavva@mail.ru

Гіперзвуковий політ на швидкості у 20 М спроможний доставити БЧ за одну годину до будь-якої точки планети. Гіперзвукові засоби ударних бойових дій і зовнішньої розвідки здатні до того ж з'являтися в повітряному просторі неочікувано, що дає змогу без зайвих труднощів долати сучасні системи ППО [4, 5].

Разом з тим, розвиток глобальних систем не виключає подальше вдосконалення автономних навігаторів ЛА. В першу чергу для гіперзвукових ракет. При швидкості у 7 М, як відомо, вони стають практично неуразливими для сучасних засобів Протиповітряної Оборони. І, таким чином, держава, яка першою здійснить серійне виготовлення високоточних гіперзвукових ракет, отримає серйозну стратегічну перевагу [6, 7].

Слід звернути увагу на одну важливу ознаку льотної експлуатації. При швидкості 20 М літак з гіперзвуковим прямоточним повітряно-реактивним двигуном (ГППРД) нагрівається до температури вище за 2000 °С [8, 9]. В сукупності з іншими негативними проявами, цей чинник окреслює коло екстремальних умов, породжуючих позаштатні ситуації.

4. Кутовий рух літальних апаратів

Зв'яжемо з корпусом систему координат $Ox_1y_1z_1$, причому вісь Ox_1 направимо вздовж його поздовжньої осі, а осі Oy_1 і Oz_1 розташуємо в площині шпангоута (рис. 1) [10 – 11].

За опорну систему координат оберемо трійку осей, пов'язаних із Землею: вісь О ζ направимо вертикально до низу, вісь О ξ – розташуємо в горизонтальній площині, наприклад, сполучимо з лінією заданого курсу, третю вісь, вісь О η , направимо перпендикулярно до перших двох.

Побудовано систему координат, прив'язану до фюзеляжу гіперзвукового літального апарату, і наведено схему кутів Ейлера. Розглянуто координатні функції пружних переміщень циліндричної частини підвісу поплавкового гіроскопу для плоскої монохроматичної хвилі і дифузного поля. Визначено вплив проникаючого акустичного випромінювання для циклічної і осенесиметричної дії

Ключові слова: поплавковий гіроскоп, N-хвиля, пружні переміщення, гіперзвуковий літальний апарат

Построена система координат, привязанная к фюзеляжу гиперзвукового летательного аппарата, и приведена схема углов Эйлера. Рассмотрены координатные функции упругих перемещений цилиндрической части подвеса поплавкового гироскопа для плоской монохроматической волны и диффузного поля. Определено влияние проникающего акустического излучения для циклического и осенесиметрического действия

Ключевые слова: поплавковый гироскоп, N-волна, упругие перемещения, гиперзвуковой летательный аппарат

1. Вступ

-

Дослідження відносяться до області прикладної механіки і присвячені вивченню взаємодії чутливих датчиків гіростабілізованої платформи (ГСП) з потужною N-хвилею при льотній експлуатації гіперзвукових літальних апаратів (ЛА). Справжній інтерес представляє дослідження поведінки поверхні поплавкового гіроскопа, як основного елемента ГСП, під час подолання звукового бар'єру в різних умовах експлуатації.

2. Постановка проблеми

Серед «небезпечних» зовнішніх чинників, що впливають на гіроскопічні сенсори, найменш вивченими є акустичні поля, дія яких суттєво впливає на бортову апаратуру при льотній експлуатації.

Ціллю досліджень є встановлення зв'язку між рівнем проникаючого акустичного випромінювання і величиною пружних переміщень, що виникають в оболонковій частині підвісу поплавкового гіроскопу при льотній експлуатації гіперзвукових літальних апаратів.

3. Літературний огляд

Аналітики і спеціалісти одностайно дотримуються думки щодо перспективності розробки гіперзвукових систем озброєння, незаперечної спроможності гіперзвукових технологій у формуванні військового домінування держави в сфері вирішення загальнонаціональних задач безпеки [1 – 3]. Припустимо, що в момент старту гіперзвуковий літальний апарат (ЛА) займає довільне положення. Проведемо через її центр мас площину, перпендикулярну поздовжній осі (площина шпангоута) до перетину з горизонтальною площиною Оξ η . По лінії перетину цих площин, позначимо її ОN, направимо ось О η_1 і побудуємо в горизонтальній площині ось О ξ_1 , перпендикулярну до О η_1 .

Рис. 1. Схема кутів Ейлера

В якості кутів Ейлера (Euler) оберемо кут повороту навколо вертикалі горизонтальної координатної площини О $\xi\eta$ до співпадіння її з осями О $\xi_1\eta_1$. Цей кут назвемо кутом рискання ϕ .

Кут повороту навколо лінії вузлів координатної площини $\xi_1 O \zeta$ до співпадання осі $O \xi_1$ з поздовжньою віссю гіперзвукового ЛА Ох назвемо кутом тангажа і позначимо літерою ψ . У цьому випадку вісь $O \zeta$ займе положення $O \zeta_1$ в площині шпангоута.

Нарешті, кут повороту площини $\eta_l O \zeta_1$ навколо поздовжньої осі ЛА Ох назвемо кутом крену і позначимо літерою $\theta.$

Відповідно до прийнятої послідовності поворотів, кутові швидкості будуть напрямлені по вертикалі $(\vec{\phi})$, по лінії вузлів $(\vec{\psi})$ і вздовж осі ЛА $(\vec{\theta})$ (рис. 1).

В тому випадку, коли апарат стартує з нерухомої основи, тобто осі О $\xi\eta\zeta$ нерухомі, проекції кутової швидкості на осі О $x_1y_1z_1$, що пов'язані з корпусом гіперзвукового ЛА, складають:

$$\begin{split} \omega_{x_1} &= \dot{\theta} - \dot{\phi} \sin \psi; \\ \omega_{y_1} &= \dot{\phi} \sin \theta \cos \psi + \dot{\psi} \cos \theta; \\ \omega_{z_2} &= \dot{\phi} \cos \theta \cos \psi - \dot{\psi} \sin \theta. \end{split}$$
(1)

Проекції кутової швидкості на осі Охуг, пов'язані з поплавковим підвісом гіроскопів мають вигляд (рис. 2):

- для першого:

$$\begin{split} \omega_{x} &= \omega_{x_{1}} \cos \theta + \omega_{y_{1}} \sin \theta; \\ \omega_{y} &= -\omega_{x_{1}} \sin \theta + \omega_{y_{1}} \cos \theta; \\ \omega_{z} &= \omega_{z_{1}} - \dot{\theta}; \end{split} \tag{2}$$

$$\begin{split} \omega_{x} &= \omega_{x_{1}} \cos \psi + \omega_{y_{1}} \sin \psi; \\ \omega_{y} &= -\omega_{x_{1}} \sin \psi + \omega_{y_{1}} \cos \psi; \\ \omega_{z} &= \omega_{z_{1}} + \dot{\psi}; \end{split} \tag{3}$$

- для третього:

$$\begin{split} \omega_{x} &= \omega_{x_{1}} + \dot{\phi}; \\ \omega_{y} &= \omega_{y_{1}} \cos \phi + \omega_{z_{1}} \sin \phi; \\ \omega_{z} &= -\omega_{y_{1}} \sin \phi + \omega_{z_{1}} \cos \phi, \end{split}$$
(4)

причому $\theta = \theta(t)$, $\psi = \psi(t)$, $\phi = \phi(t)$.

Якщо ж старт здійснюється з орбітальної ступені, або з платформи мобільного базування, слід його кутову швидкість спершу розкласти по осям Οξηζ. В рівній мірі це відноситься до кутової швидкості добового обертання Землі.

Надалі будемо вважати кут $\theta(t)$, а також похідні у часі $\dot{\theta}(t)$ і $\dot{\phi}(t)$ малими величинами. Кутову швидкість $\dot{\psi}$ наведемо у вигляді –

$$\dot{\Psi} = \omega_0 + \omega_v, \tag{5}$$

де ω_0 – постійна величина, яка вимірюється дифференційючим гіроскопом, наприклад, при виконанні ЛА передбаченого Польотним завданням маневрування у вертикальній площині, тобто за кутом тангажа $\psi(t)$, а $\omega_y \ll \omega_0$ – мале збурення цієї кутової швидкості. Такий режим має місце, зокрема, при русі апарату за програмною траєкторією в режимі пошуку цілі.

5. Проникаюче акустичне випромінювання в момент подолання звукового бар'єру

Схему дії звукових хвиль наведемо у вигляді, зображеному на рис. 2.

Звуковий тиск у падаючій хвилі приймемо рівним

$$P_{1} = P_{10} \exp i \left[\omega t - \vec{k}_{0} \vec{R}_{0} \left(z, \varphi \right) \right], \tag{6}$$

де P_{10} - тиск в падаючій хвилі; $\vec{k}_0 = \vec{n} \frac{\omega}{c}$ - хвильовий вектор; с - швидкість звуку; \vec{n} - одиничний вектор напрямку поширення хвилі; \vec{R}_0 - радіус-вектор точки поверхні поплавка.

Рис. 2. Механізм впливу проникаючої акустичної хвилі на поплавок

З урахуванням прийнятих на схемі позначень, приймаючи також для простоти рівними за величиною кути падіння, відбиття і проходження хвиль, звукові тиски можна записати у вигляді:

$$P_{1} = P_{10} \exp \left[\omega t - k_{0} (R \cos \varphi \cos \varepsilon_{1} - R \sin \varphi \sin \varepsilon_{1} \cos \varepsilon_{2} - z \sin \varepsilon_{1} \sin \varepsilon_{2}) \right];$$
(7)

 $P_2 = P_{20} \exp i \int \omega t - k_0 (-R \cos \varphi \cos \varepsilon_1 -$ (8) $-R\cos\varphi\sin\varepsilon_{1}\cos\varepsilon_{2}-z\sin\varepsilon_{1}\sin\varepsilon_{2}$];

$$P_{3} = P_{30} \exp i \left[\omega t - k_{0} \left(R \cos \varphi \cos \varepsilon_{1} - R \cos \varphi \sin \varepsilon_{1} \cos \varepsilon_{2} - z \sin \varepsilon_{1} \sin \varepsilon_{2} \right) \right].$$
(9)

6. Збурюючий вплив на поверхні підвісу

Оскільки поплавок є замкнутою оболонкою обертання, тому в коловому напрямку і в напрямку паралелі, слід очікувати періодичності кінематичних полів. Іншими словами, вони повинні певним чином залежати від періодичних функцій coskφ або sinkφ(2≤k при циклічному навантаженні; k=1 - при вісенесиметричному навантаженні). Тоді і зовнішня динамічна дія, тобто проникаюче акустичне випромінювання, може бути наведена, в усякому разі формально, у вигляді рядів Фур'є по координаті ф.

Таким чином, вважаємо, що при циклічному навантаженні

$$q_{i} = q_{i}(t, z, \phi) = \sum_{k=2}^{\infty} \left[q_{ik}^{(1)}(t, z) \cos k\phi + q_{ik}^{(2)}(t, z) \sin k\phi \right], i = \overline{1, 3}. (10)$$

Залишається з'ясувати значення величин q_{ik}, i = 1,3. Коефіцієнт прохо, биття звуку В, як від

$$P_{20} = BP_{10};$$
 $P_{30} = AP_{10};$ $B = 1 + A.$ (11)

7. Координатні функції поплавкового підвісу

7.1. Плоска хвиля

 $+b_{k}^{(2)}(t)z^{2}(1-z)^{2}\cos k\varphi \sin z$;

При циклічному навантаженні (2≤k), координатні функції будуються у вигляді:

$$U_{z} = \sum_{k=2}^{\infty} \left[a_{k}^{(1)}(t) z^{2} (1-z)^{2} \cos k\varphi \cos z + a_{k}^{(2)}(t) z^{2} (1-z)^{2} \sin k\varphi \sin z \right];$$

$$U_{\varphi} = \sum_{k=2}^{\infty} \left[b_{k}^{(1)}(t) z^{2} (1-z)^{2} \sin k\varphi \cos z + a_{k}^{(12)}(1-z)^{2} \sin k\varphi \cos z + a_{k}^{(12)}(1-z)^{2$$

$$W = \sum_{k=2} \left[c_{k}^{(1)}(t) z^{4} (1-z)^{4} \cos k\varphi \cos z + c_{k}^{(2)}(t) z^{4} (1-z)^{4} \sin k\varphi \sin z \right].$$
(14)

Довільні постійні $a_k^{(1)}, a_k^{(2)}, b_k^{(1)}, b_k^{(2)}, c_k^{(1)}, c_k^{(2)}$ наведені в [3]:

7.2. Дифузне поле

У випадку циклічного (2≤k) навантаження, координатні функції будуть мати вигляд:

$$U_{z}(t,z,\phi) = 4 \int_{\epsilon_{1}=0}^{\frac{\pi}{2}} \int_{\epsilon_{2}=0}^{\frac{\pi}{2}} \left\{ \sum_{k=2}^{\infty} \left[a_{k}^{(1)}(t) z^{2} (1-z)^{2} \cos k\phi \cos z + \right] \right.$$
(15)

$$+a_{k}^{(2)}(t)z^{2}(1-z)^{2}\sin k\varphi \sin z\Big]\Big\}\cos \varepsilon_{1}\sin \varepsilon_{1}\cos \varepsilon_{2}\sin \varepsilon_{2}\partial \varepsilon_{1}\partial \varepsilon_{2};$$

$$U_{\varphi}(t,z,\varphi) = 4 \int_{\varepsilon_{1}=0}^{\frac{1}{2}} \int_{\varepsilon_{2}=0}^{\frac{1}{2}} \left\{ \sum_{k=2}^{\infty} \left[b_{k}^{(1)}(t) z^{2} (1-z)^{2} \sin k\varphi \cos z + \frac{1}{2} b_{k}^{(2)}(z) z^{2} (1-z)^{2} \sin k\varphi \cos z + \frac{1}{2} b_{k}^{(2)}(z) z^{2} (1-z)^{2} \sin k\varphi \cos z + \frac{1}{2} b_{k}^{(2)}(z) z^{2} (1-z)^{2} \sin k\varphi \cos z + \frac{1}{2} b_{k}^{(2)}(z) z^{2} (1-z)^{2} \sin k\varphi \cos z + \frac{1}{2} b_{k}^{(2)}(z) z^{2} (1-z)^{2} \sin k\varphi \cos z + \frac{1}{2} b_{k}^{(2)}(z) z^{2} (1-z)^{2} \sin k\varphi \cos z + \frac{1}{2} b_{k}^{(2)}(z) z^{2} (1-z)^{2} \sin k\varphi \cos z + \frac{1}{2} b_{k}^{(2)}(z) z^{2} (1-z)^{2} \sin k\varphi \cos z + \frac{1}{2} b_{k}^{(2)}(z) z^{2} (1-z)^{2} \sin k\varphi \cos z + \frac{1}{2} b_{k}^{(2)}(z) z^{2} (1-z)^{2} \sin k\varphi \cos z + \frac{1}{2} b_{k}^{(2)}(z) z^{2} (1-z)^{2} \sin k\varphi \cos z + \frac{1}{2} b_{k}^{(2)}(z) z^{2} (1-z)^{2} \sin k\varphi \cos z + \frac{1}{2} b_{k}^{(2)}(z) z^{2} (1-z)^{2} \sin k\varphi \cos z + \frac{1}{2} b_{k}^{(2)}(z) z^{2} (1-z)^{2} \sin k\varphi \cos z + \frac{1}{2} b_{k}^{(2)}(z) z^{2} (1-z)^{2} \sin k\varphi \cos z + \frac{1}{2} b_{k}^{(2)}(z) z^{2} (1-z)^{2} (1-z$$

$$+b_{k}^{(2)}(t)z^{2}(1-z)^{2}\cos k\varphi \sin z \bigg] \bigg\} \cos \varepsilon_{1} \sin \varepsilon_{1} \cos \varepsilon_{2} \sin \varepsilon_{2} \partial \varepsilon_{1} \partial \varepsilon_{2};$$

$$W(t,z,\phi) = 4 \int_{\epsilon_1=0}^{\frac{\pi}{2}} \int_{\epsilon_2=0}^{\frac{\pi}{2}} \left\{ \sum_{k=2}^{\infty} \left[c_k^{(1)}(t) z^4 (1-z)^4 \cos k\phi \cos z + c_k^{(2)}(t) z^4 (1-z)^4 \sin k\phi \sin z \right] \right\} \cos \epsilon_1 \sin \epsilon_1 \cos \epsilon_2 \sin \epsilon_2 \partial \epsilon_1 \partial \epsilon_2.$$

$$(17)$$

Відповідно до розглянутої структури акустичного впливу, чисельний аналіз пружно-напруженого стану поплавкового підвісу будемо проводити для плоскої монохроматичної хвилі і для дифузної структури поля. Обмежимося вивченням стаціонарної задачі.

8. Чисельний аналіз стану поверхні поплавкового гіроскопа

я чисельного аналізу скористаємося розрахунмоделлю, аналогом якої слугує датчик кутових швидкостей класу ДУСУ з рідинностатичним підвісом, що виготовляється серійно авіаційною промисловістю.

Для конкретності приймемо: $\ell = 0.06 \,\mathrm{m}$; R = 0.015 м; $\begin{array}{l} \nu = 0,32; \quad h = 1 \cdot 10^{-4} \text{ m}; \quad E = 7 \cdot 10^{10} \text{ H} / \text{m}^2; \quad \rho = 2,7 \cdot 10^3 \text{ H} / \text{m}^3; \\ \epsilon_1 = \epsilon_2 = \frac{\pi}{6} \text{ pag}; \quad k_{01} = \frac{\omega}{c} = \frac{\omega}{330} \text{ m}^{-1}; \quad A = 0,7; \quad B = 0,3; \quad \pi \approx 3; \end{array}$ $P_{10} = 4 \cdot 10^2 \text{ H} / \text{m}^2.$

Варіативні складові: $\omega \rightarrow var$: від 600 до 6 $\cdot 10^3 c^{-1}$ з кроком 600; $\phi \rightarrow var$: від 0 до 2π рад з кроком 0,05; $z \rightarrow var$ від 0 до 1 зкроком 0,05.

Для обчислень пружних переміщень було розроблено програму в середовищі MathCad. Максимальні значення переміщень наведені в табл. 1.

Як випливає з обчислень, для плоскої хвилі максимальні пружні переміщення складають 1,89·10⁻⁸м вздовж протяжності, 6,16·10⁻⁸м – вздовж паралелі і 5,36·10⁻⁸м – в площині шпангоута. Для дифузного поля обчислення показали, що максимальні пружні переміщення в напрямку протяжності підвісу складають 0,98·10⁻⁸м, 5,75·10⁻⁸м – вздовж паралелі і $12 \cdot 10^{-8}$ м – в радіальному напрямку.

Таблиця 1

Максимальні пружні переміщення поверхні поплавкового підвісу

					r	
ω , c^{-1}	${ m U}_{ m z}\cdot 10^8$, м		$\mathrm{U}_{\omega}\!\cdot\!10^{8}$, м		$W\!\cdot\!10^8$,м	
	Плоска хвиля	Плос- ка хвиля	Дифуз- не поле	Дифуз- не поле	Плоска хвиля	Дифуз- не поле
600	1,892	6,156	5,536	0,946	5,364	12
1200	1,7376	6,156	5,62	0,8688	5,351	11,944
1800	1,4936	6,156	5,7	0,7468	5,331	11,844
2400	1,18	6,156	5,744	0,59	5,304	11,832
3000	0,8208	6,156	5,752	0,4104	5,272	11,792
3600	0,4424	6,156	5,748	0,2212	5,236	11,764
4200	-0,10004	6,152	5,748	-0,05002	5,198	11,732
4800	-0,26428	6,148	5,744	-0,13214	5,158	11,696
5400	-0,548	6,144	5,736	-0,274	5,119	11,66
6000	-0,764	6,14	5,728	-0,382	5,081	11,616

З розрахунків видно, що у випадку дифузного поля максимальні значення пружних переміщень вздовж протяжності зменшилися на $0,9\cdot10^{-8}$ м, а в коловому напрямку – на $0,4\cdot10^{-8}$ м, то в поперечної площині збільшилися на $6,7\cdot10^{-8}$ м.

Наявність кількісних показників обчислень генеруємих нелінійних коливань дозволить обрати таку геометрію підвісу сенсорів, яка б дозволила суттєво зменшити їх величини, а по можливості і структуру.

Логічним продовженням є аналіз пружного стану підвісу у разі ненульової гаусової кривизни з метою встановлення локальних особливостей її поверхні і побудови рекомендацій для оптимізації лінії меридіану.

9. Висновки

Побудована аналітична структура явища дозволяє не тільки прояснити природу виникаючих пружних нелінійних коливань поверхні при подоланні звукового бар'єру, їх особливості, встановити значення раrtialis частот і ступеню впливу координатних функцій одна на одну, але обрати засоби боротьби з негативним впливом на чутливі елементи ГСП. Це можуть бути пасивні, активні та компенсаційні методи. Ефективність кожного з них і доцільність використання будуть визначатися для кожного класу ЛА та режимів експлуатаційного використання.

Література

- 1. Heckl, M. A. Dil schalldammung von homogenen einfachwanden endicher Flache [Teκcτ] / M. Heckl // Acustika. 1960. Vol. 10, № 2. – P 207-211.
- 2. Winter, E. H. 100 years of flight: a chronicle of aerospace history [Текст]: моногр./ F. Winter, F.Van der Binder; Reston, Virginia, American Institute of Aeronautics and Astronautics, 2003. 524 р.
- Karachun, V. V. Influence of Diffraction Effects of the Inertial Sensors of a Gyroscopically Stadilized Platform: Three Dimensional Problem [Tekct]/ V. V. Karachun, V. N. Mel'nick // Int. Appl. Mech. – 2012. – Vol. 48, -№4. – P. 458-464.
- Mel'nick, V. N. Some aspects of the gyroscopic stabilization in acoustic fields [Teκcr] / V. N. Mel'nick, V. V. Karachun // Int. Appl. Mech. -2002. –Vol.38, №1 P. 74-80.
- 5. Dyer, I. Noise environments of flight vehicles [Teκcr]/ I. Dyer // NOISE Control. 1960. Vol.6, №1. -P. 31-40.
- 6. Heckl, M. A. Vibrations of point-driven cylindrical shells [Текст]/ M. A. Heckl // J. Acoustic Soc. Am. 1962. Vol. 34, №10. -P. 1553-1557.
- Maidanik, Ct. Response of ribbed panels to reverberant acoustic fields [Teκcτ]/ Ct. Maidanik //J. Acoustic Soc. Am. 1962. -Vol. 34, №6. -P. 809-826.
- Smith, P. W. Response and radiation of structural modes excited by sound [Tekct]/ P. W. Smith //J. Acoustic Soc. Am. -1962. -Vol. 34, №5. -P. 640-647.
- 9. Шибецкий, В. Ю. Влияние гауссовой кривизны подвеса поплавкового гироскопа на упругую податливость в акустическом поле [Текст] / В. Ю. Шибецкий// Молодой ученый. Ежемесячный журнал: г. Чита, Россия. 2012. №12. С. 116-120.
- Ковалец, О. Я. Влияние диффракционных эффектов на погрешность гироскопа в акустических полях [Текст] / О. Я. Ковалец // Materialy V Miedzinarodowej naukowe-praktycznej konferencji "Dynamika naukowych badan - 2009", 07-15 lipca 2009 roku. Volume 11. Techniczne nauki: Przemysl. "Nauka i studia", 2009.- Str. 39-43.
- Карачун, В. В. Погрешности гироскопа, обусловленные развивающейся качкой фюзеляжа при летной эксплуатации [Текст]
 / В. В. Карачун, В. Н. Мельник, В. Ю. Шибецкий // «Восточно-Европейский журнал передовых технологий». 2013. №5/7 (65). С. 45-47.