- Wang, Q. An intelligent maximum power extraction algorithm for inverter-based variable speed wind turbine systems [Text]/ Q. Wang, L.-C. Chang// IEEE Transactions on Power Electronics. – 2004. – Vol. 19. – P. 1242–1249.
- Koutroulis, E. Design of a maximum power tracking system for wind-energy-conversion applications [Text] / E. Koutroulis, K. Kalaitzakis// IEEE Transactions on Industrial Electronics. – 2006. – Vol. 53.
- Datta, R. A method of tracking the peak power points for a variable speed wind energy conversion system [Text]/ R. Datta, V.-T. Ranganathan// IEEE Transactions on Energy Conversion. – 2003. – Vol. 18. – P. 163–168.

Наведено розроблену принципову схему руху крапель рідини в факелі розпилювання відцентрової форсунки. В результаті теоретичного аналізу руху крапель рідини в факелі розпилювання відцентрової форсунки і використання експериментальних даних щодо середнього об'ємно-поверхневого діаметра крапель запропоновано методику визначення дійсної міжфазної поверхні процесів тепломасообміну в контактних газорідинних апаратах крапельного типу

Ключові слова: відцентрова форсунка, об'ємно-поверхневий діаметр крапель, контактний, теплоутилизатор, міжфазна поверхня, активна зона

Приведена разработанная принципиальная схема движения капель жидкости в факеле распыления центробежной форсунки. В результате теоретического анализа движения капель жидкости в факеле распыления центробежной форсунки и использования экспериментальных данных по средним объемно-поверхностным диаметрам капель предложена методика определения действительной межфазной поверхности процессов тепломассообмена в контактных газожидкостных аппаратах капельного типа

Ключевые слова: центробежная форсунка, объемно-поверхностный диаметр капель, контактный, теплоутилизатор, межфазная поверхность, активная зона

1. Вступ

В наш час через невпинне зростання вартості матеріальних та енергетичних ресурсів все актуальнішими стають проблеми ресурсо- і енергозбереження. Одним із шляхів вирішення цих проблем є використання високоінтенсивних контактних апаратів крапельного типу з реалізацією наступної двофазової системи: суцільна газова фаза – краплі рідини [1, 2]. Напрямки руху фаз в таких апаратах можуть бути різноманітними. Генераторами крапель рідини в таких системах виступають різного типу, найчастіше відцентрового, форсунки, що використовують потенційну енергію рідини на вході в ці розпилювачі і які мають, в порівнянні з іншими подібними пристроями, найпростішу конструктивну схему [3]. Прикладом такого контактного апарату може бути теплоутилізатор відхідних газів, наприклад, котельної установки [4]. Цей апарат дає змогу не тільки підвищувати к.к.д. котельного агреУДК 536.423.4

ДО ВИЗНАЧЕННЯ ПОВЕРХНІ ТЕПЛОМАСООБМІНУ В КОНТАКТНИХ ТЕПЛОУТИЛІЗАТОРАХ КРАПЕЛЬНОГО ТИПУ

М. К. Безродний

Доктор технічних наук, професор, завідувач кафедри* E-mail: m.bezrodny@kpi.ua **M. Н. Голіяд** Старший викладач*

E-mail: goliad.n@mail.ru А. Ю. Рачинський

Аспірант* E-mail: artur_rachinskii@mail.ru *Кафедра теоретичної та промислової теплотехніки Національний технічний університет України "Київський політехнічний інститут" пр. Перемоги, 37, м. Київ, Україна, 03056

гату, але й забезпечити глибоку утилізацію теплоти відхідних газів з подальшим використанням нагрітої в ньому води в якості нижнього джерела теплоти для теплонасосної установки теплопостачання житлових будівель [5].

Однак при створенні методики розрахунку таких апаратів постає одна суттєва проблема – це визначення величини міжфазової поверхні, на якій реалізуються процеси переносу. До цих пір в практиці розрахунків подібних апаратів використовувалася, в основному, умовна поверхня передачі теплоти та маси. В якості останньої, як правило, приймалися характерні геометричні параметри апаратів (наприклад, площа поперечного перерізу установки і т. інше) [6, 7]. Цілком зрозуміло, що методики розрахунку, побудовані на основі використання умовної поверхні передачі теплоти і маси, є досить грубими і не можуть забезпечити необхідну точність розрахунку параметрів таких апаратів. В зв'язку з цим в даній статті запропоновано і реалізовано метод розрахунку дійсної міжфазної поверхні тепломасообміну в контактних газорідинних апаратах крапельного типу [4]. На думку авторів запропонована в цій роботі процедура розрахунку вказаної поверхні актуальна для цілого класу контактних апаратів з реалізацією системи: суцільна газова фаза – краплі рідини, в яких генератором дисперсних часток виступають відцентрові форсунки.

2. Теоретичний аналіз питання про визначення величини міжфазної поверхні

Ключовим моментом створення загальної методики розрахунку контактних апаратів вказаного типу є отримання узагальнюючих залежностей для процесів переносу, що реалізуються в них. В більшості робіт за останній час (наприклад, [8 - 12]), що присвячені дослідженню процесів тепло і масообміну в системі: суцільна газова фаза – краплі рідини, їх автори намагаються вирішити цю проблему шляхом математичного моделювання процесів, що реалізуються в конкретних апаратах, установках і їх елементах (трубах, вхідних пристроях газотурбінних установок, скруберах і т. д.). Вказані математичні моделі (до складу яких обов'язково входять відповідним чином сформульовані рівняння енергії, дифузії, руху для компонентів системи, а також залежності для визначення розмірів крапель, відповідні граничні умови та залежності, що замикають систему диференційних рівнянь, які, власне, і складають математичну модель, наприклад, формули для коефіцієнтів тепло і масовіддачі (найчастіше використовуються відомі формули Ranz W., Manning W. та Coy C.) для окремих крапель) базуються на деяких припущеннях (наприклад, стінки каналів адіабатні і втрати енергії на тертя і при змішуванні пари з масою, що додається відсутні, нагрівання і випаровування крапель рівномірне по їх поверхні, всі процеси розглядаються як квазістаціонарні і т. д. [10]). Далі ці модельні задачі, завдяки відповідним алгоритмам (наприклад, з використанням метода кінцевих об'ємів на рознесених сітках Патанкара [9] і т. д.) і при відповідних граничних умовах, чисельно вирішуються. Достовірність отриманих результатів розрахунків перевіряється тестуванням по відомим (якщо вони є) експериментальним даним. В результаті одержують, як правило, залежності параметрів фаз від режимних і геометричних характеристик апаратів. Відмітимо, що розгляд задачі стосовно контактних апаратів типу [4] в доступних літературних джерелах відсутній.

Залишаючи за дужками цієї роботи питання про позитивні і негативні аспекти тільки що відміченого підходу до вирішення вказаної проблеми, авторами було прийнято рішення про експериментальне дослідження задачі про інтенсивність процесів тепло і масопереносу в контактних двофазових апаратах крапельного типу. Тим більше, що досвід у вирішенні аналогічної задачі стосовно апаратів з реалізацією системи: суцільна рідинна фаза – бульбашки газу (тепло- і масовіддача при охолодженні парогазової суміші в проточному барботажному контактному апараті) в нас є [13].

З вищенаведеного випливає, що для отримання експериментальних значень середніх коефіцієнтів тепло і масообміну між компонентами вказаної системи (середні значення величин потоків теплоти і маси та рушійних сил цих процесів (відповідних перепадів температур і парціальних тисків водяної пари в парогазовій суміші) визначаються дослідним шляхом) конче необхідно знати величину міжфазної поверхні, до визначення котрої зараз і приступаємо.

Принципова схема задачі щодо руху крапель рідини в факелі розпилювання відцентрової форсунки та визначення їх сумарної поверхні представлена на рис. 1.

 Рис. 1. Схема руху крапель в факелі розпилювання: d_c- діаметр сопла форсунки; α - кореневий кут факелу розпилювання; l_п - довжина ділянки закінчення формування потоку крапель; δ - товщина плівки рідини;
 W₀ - початкова швидкість крапель; W_i - поточна швидкість крапель; W_g - швидкість газового потоку; l - поточна довжина шляху крапель; L - довжина шляху з неусталеним рухом крапель; W_{BИT} - швидкість витання крапель; H_п - висота ділянки неусталеного руху крапель;

Н_{ЗАГ} - висота активної зони теплоутилізатора

Вихідна залежність для визначення величини міжфазової поверхні *F* системи (суцільна газова фаза – краплі рідини) має наступний вигляд [3, 14]:

$$F = f_{K}n_{K} = f_{K}\frac{V_{P}}{V_{K}} = f_{K}\frac{V\tau_{3A\Gamma}}{V_{K}} = \pi d_{K}^{2}\frac{V\tau_{3A\Gamma}}{\frac{1}{6}\pi d_{K}^{3}} = \frac{6V}{d_{K}}\tau_{3A\Gamma}, \quad (1)$$

де f_K, v_K, d_K, n_K - відповідно площа поверхні, об'єм, середній діаметр краплі, число крапель; V_p - об'єм рідини в активній зоні апарату; V – об'ємна витрата рідини на вході в розпилювач; $\tau_{3A\Gamma}$ – загальний час перебування крапель води в активній зоні реалізації процесів переносу.

При застосуванні формули (1) для розрахунку процесів тепло і масообміну як середній діаметр краплі використовується середній об'ємно-поверхневий (по Заутеру [3]) діаметр крапель рідини d₃₋₂.

Для визначення величини d₃₋₂ в широкому діапазоні зміни вхідних параметрів води в форсунках з подібними геометричними характеристиками були проведені спеціальні експериментальні дослідження [15], результати яких разом з літературними даними роботи [16] дозволили отримати узагальнюючу залежність

$$\frac{d_{3-2}}{d_{C}} = 30,3 Eu^{0.39} (Re We)^{-0.51},$$
(2)

де Eu = $\frac{\Delta p}{\rho W_y^2}$; Re = $\frac{W_y d_c}{\nu}$;

 $We = W_y \sqrt{d_C \frac{\rho}{\sigma}}; \Delta p$ - перепад тиску води, що

спрацьовується в форсунці; р - густина води;

 $W_{\rm Y} = \frac{4V}{\pi d_{\rm C}{}^2} = \frac{4G}{\pi d_{\rm C}{}^2 \rho};$ v - коефіцієнт кінематичної в'яз-

кості води; σ- коефіцієнт поверхневого натягу води. Формула (2) справедлива в діапазоні надлишкового тиску води перед розпилювачем (0,2 – 2,45) МПа і її температури (9 - 51) °С.

Загальний час перебування крапель води в активній зоні контактного апарата може бути представлений у вигляді суми $\tau_{3A\Gamma} = \tau_1 + \tau_2$, де $\tau_1 - час$ неусталеного руху крапель рідини, $\tau_2 - час$ руху крапель з усталеною швидкістю, яка дорівнює алгебраїчній сумі швидкості витання крапель W_{BMT} (див. нижче) і проекції швидкості газового потоку на твірну конуса розпилювання.

Для форсунки, що була вибрана для використання в контактному теплоутилізаторі, масову витрату води *G* через розпилювач можна визначати за наступною емпіричною залежністю [15]:

$$G = 32,4p + 10, (3)$$

де витрата *G* – в кг/год.; тиск *p* – в МПа. Залежність (3) справедлива при значенні надлишкового тиску *p* в діапазоні (0,2 – 0,6) МПа.

Центральним місцем аналізу для визначення величини поверхні розділу фаз є визначення часу перебування крапель в активній зоні апарату. Для вирішення питання про час перебування крапель на першій ділянці їх руху в активній зоні переносу τ_1 необхідно визначитися зі швидкостями їх руху і шляхом, який вони повинні подолати, рухаючись в цій зоні. З цією метою запишемо в наближенні сферичної форми крапель і відсутності помітної зміни їх маси (m ~ const) рівняння руху для них [1]:

$$m\frac{dW_{\tau}}{d\tau} = mg + \xi\Omega\frac{\rho_{g}k^{2}W_{\tau}^{2}}{2}, \qquad (4)$$

де $m\!=\!\frac{\pi d_{\scriptscriptstyle 3-2}^{\quad 3}}{6}\rho_{\scriptscriptstyle B}$ - маса краплі рідини; $W_{_{\!\tau}}$ - швидкість

руху краплі в момент τ ; g - прискорення поля гравітації (рух газового середовища і рух крапель направлені вниз); ξ - коефіцієнт опору газового середовища;

 $\Omega = \frac{\pi d_{3-2}^{2}}{4}$ - міделевий переріз краплі; $ρ_{g}$ - густина газового середовища; $k = \frac{W_{\tau} + W_{g}}{W_{\tau}}$; W_{g} - швидкість газо-

вого потоку в апараті.

Результати інтегрування (4) для випадку руху всередині каналу газового потоку і твердих часток з постійною їх масою наведені в роботі [1]. Але отримана в цій роботі аналітична залежність для довжини ділянки неусталеного руху *L*, що має вигляд:

$$L = W_g \sqrt{\frac{2\rho_q d_q}{3g\rho_g \xi}} \left[\operatorname{arctg}(W_g - W_0) \sqrt{\frac{3\rho_g \xi}{2\rho_q g d_q}} - \operatorname{arctg}(W_g - W_\tau) \sqrt{\frac{3\rho_g \xi}{2\rho_q g d_q}} - \frac{\rho_q d_q}{3\rho_g \xi} \ln(\dots) \right],$$

непридатна для використання при вирішенні нашої задачі через наступні обставини.

По-перше, через прийняте при інтегруванні в [1] припущення про незалежність коефіцієнта опору газо-

вого середовища
$$\xi$$
 від числа $\operatorname{Re} = \frac{(W_{\tau} + W_g)d_{3-2}}{v_g}$. В на-

шому випадку коефіцієнт ξ доволі суттєво залежить від числа Re [17, 18]:

$$\xi = 24 / \operatorname{Re} + 4.4 / \operatorname{Re}^{0.5} + 0.32 \text{ ado } \xi = 11.7 / \operatorname{Re}^{0.5}, \qquad (5)$$

(формули (5) дають практично однакові результати) і тому ігнорувати цю обставину не можна. Незалежність ξ від числа Re ($\xi = 0,4$) актуальна при Re > 1000 [18]. Для теплоутилізатора, що розглядається, число Re <200.

Другою причиною непридатності цієї залежності є наявність в ній прямопропорційної залежності довжини ділянки неусталеного руху крапель від швидкості газового потоку. Тобто виходить, що при W_g = 0 ділянка неусталеного руху відсутня, що суперечить здоровому глузду.

Швидкість крапель змінюється від початкової W_0 (при $\tau = 0$, тобто на виході з сопла форсунки) до W_{τ_1} (в момент часу τ_1 в кінці першої ділянки активної зони). Позначаючи довжину шляху, який проходять краплі в активній зоні апарата (повздовж бокової поверхні конуса розпилювання форсунки) через l, можна за-

писати, що $W_{\tau} = \frac{dl}{d\tau}$ [1], а рівняння (4) представити у вигляді:

$$\frac{4\rho_{\rm B}d_{3-2}}{3\xi\rho_{\rm g}k^2} \cdot \frac{W_{\tau}dW_{\tau}}{\left(\frac{4\rho_{\rm B}d_{3-2}g}{3\xi\rho_{\rm g}k^2} + W_{\tau}^2\right)} = dl.$$
(6)

Врахувати залежність $\xi = f(Re)$ в нашому випадку можна наступним чином. Замінимо рівняння (6) на наближене, використовуючи в ньому замість поточного значення ξ деяке його середнє значення $\overline{\xi}$, яке при інтегруванні в межах від W_i до W_{i+1} , що отримуються шляхом розбивання загальних границь інтегрування (6) по швидкості (від W_{τ_1} до W_0) на такі ділянки, в яких будемо вважати, що в них середнє значення коефіцієнта $\overline{\xi}$ практично не залежить від Re. Це можливо, якщо значення $\overline{\xi}$ відрізняється від ξ_i і від ξ_{i+1} (відповідно при нових границях інтегрування) не більше, наприклад, ніж на (10 – 15) %. Так само можна повестися і з коефіцієнтом k, замінивши його на \overline{k} , який при інтегруванні в нових межах буде вважатися таким, що не залежить від величини ($W_{\tau} + W_g$) (при інтегруванні приймається, що W_g = *const*). В результаті замість (6) можна записати наближене до нього рівняння виду:

$$\frac{4\rho_{\rm B}d_{\rm 3-2}}{3\overline{\xi}_{\rm i}\rho_{\rm g}\overline{k}^2} \cdot \frac{W_{\tau}dW_{\tau}}{\left(\frac{4\rho_{\rm B}d_{\rm 3-2}g}{3\overline{\xi}_{\rm i}\rho_{\rm g}\overline{k}^2} + W_{\tau}^2\right)} = dl_{\rm i} \,. \tag{7}$$

Інтеграл рівняння (7) в межах від W_{i+1} до W_i і від l_{i+1} до l_i буде мати вигляд [19]:

$$\frac{2\rho_{\rm B}d_{3-2}}{3\bar{\xi}_{\rm i}\rho_{\rm g}\bar{k}^{2}}\ln\left(\frac{\frac{4\rho_{\rm B}d_{3-2}g}{3\bar{\xi}_{\rm i}\rho_{\rm g}\bar{k}^{2}} + W_{\rm i}^{2}}{\frac{4\rho_{\rm B}d_{3-2}g}{3\bar{\xi}_{\rm i}\rho_{\rm g}\bar{k}^{2}} + W_{\rm i+1}^{2}}\right) = \left|\Delta l_{\rm i}\right|,\tag{8}$$

а інтеграл рівняння (6) буде наближено дорівнювати наступній сумі (чим більше число ділянок *n* тим ближче буде ця рівність):

$$\sum_{i=0}^{i=n} \frac{2\rho_{\rm B}d_{3-2}}{3\overline{\xi}_{i}\rho_{\rm g}\overline{k}_{i}^{\ 2}} \ln \left(\frac{\frac{4\rho_{\rm B}d_{3-2}g}{3\overline{\xi}_{i}\rho_{\rm g}\overline{k}_{i}^{\ 2}} + W_{i}^{\ 2}}{\frac{4\rho_{\rm B}d_{3-2}g}{3\overline{\xi}_{i}\rho_{\rm g}\overline{k}_{i}^{\ 2}} + W_{i+1}^{\ 2}} \right) = \sum_{1}^{n} \Delta l_{i} = L .$$
(9)

Для визначення величини часу знаходження крапель в активній зоні апарата τ_1 необхідно проінтегрувати рівняння руху (4), яке можна представити у вигляді:

$$d\tau = \frac{4\rho_{\rm B}d_{3-2}}{3\xi\rho_{\rm g}k^2} \cdot \frac{dW_{\tau}}{\left(\frac{4\rho_{\rm B}d_{3-2}g}{3\xi\rho_{\rm g}k^2} + W_{\tau}^2\right)}.$$
 (10)

При тих самих припущеннях, що і у випадку інтегрування рівняння (6), інтеграл виразу (10) в межах від τ_1 до 0 і від W_{τ_1} до W_0 можна наближено представити у вигляді такої суми:

$$\tau_{1} = \sum_{i=1}^{n} \Delta \tau_{i} = \sum_{i=1}^{i=n} \sqrt{\frac{4\rho_{B}d_{3-2}}{3\overline{\xi}_{i}\rho_{g}\overline{k}_{i}^{2}g}} \times \left[\operatorname{arctg}\left(\frac{W_{i}}{\sqrt{\frac{4\rho_{B}d_{3-2}g}{3\overline{\xi}_{i}\rho_{g}\overline{k}_{i}^{2}}}}\right) - \operatorname{arctg}\left(\frac{W_{i+1}}{\sqrt{\frac{4\rho_{B}d_{3-2}g}{3\overline{\xi}_{i}\rho_{g}\overline{k}_{i}^{2}}}}\right) \right].$$
(11)

Швидкість витання W_{вит} (падіння) крапель можна отримати з умови рівноваги сил тяжіння і опору газового середовища, яка з урахуванням формули (5) дасть наступний вираз для цієї швидкості:

$$W_{BHT} = 0,235d_{3-2} \left(\frac{g^2}{v_g} \left(\frac{\rho_B}{\rho_g}\right)^2\right)^{1/3}.$$
 (12)

Швидкість при усталеному русі крапель буде, очевидно, дорівнювати такій сумі [1]:

$$W_{\tau_1} = W_{BHT} + \frac{W_g}{\cos(\alpha/2)}, \qquad (13)$$

де другий доданок в правій частині (13) – проекція вектора швидкості газу на лінію, що утворює бокову поверхню конуса розпилювання.

Час руху крапель з усталеною швидкістю τ_2 можна визначити за очевидним співвідношенням:

$$\tau_2 = \frac{\mathrm{H}_{3\mathrm{A}\mathrm{\Gamma}} - \mathrm{H}_{\mathrm{I}\mathrm{I}}}{\mathrm{W}_{\tau_1} \cos(\alpha/2)},\tag{14}$$

де величина $H_{_{3\Lambda\Gamma}}$ відома з геометричних характеристик апарата, а величина $H_{_{\Pi}}$ визначається з геометричних міркувань після визначення значення L : $H_{_{\Pi}}$ = Lcos($\alpha/2)$.

3. Приклад розрахунку величини міжфазової поверхні

Авторами до складу експериментальної установки була вибрана одна з найпоширеніших і простіших по конструктивному виконанню в техніці розпилювання відцентрових форсунок - № 26 у відповідності з таблицею 6 [16]. Її основні геометричні розміри наступні: діаметр і довжина сопла - відповідно $d_c = 0,94$ мм і $L_c = 0,4$ мм, діаметр і кількість вхідних каналів - відповідно $d_{вx} = 0,94$ мм і n = 2, діаметр і довжина камери закручування – відповідно $D_{\kappa} = 6$ мм і $L_{\kappa} = 4$ мм.

Початкову швидкість краплі W₀ будемо визначати наступним чином. З рівняння суцільності на зрізі сопла форсунки [16] спочатку визначимо середню витратну швидкість плівки води (вектор цієї швидкості співпадає з направленням бокової поверхні конуса розпилювання):

$$W_{0_{\Pi\Pi}} = V / \left(\pi d_C \delta \right), \tag{15}$$

де δ - товщина плівки, що визначається за формулою [16]:

$$\delta = 0,25\mu_{\rm Ai}d_{\rm C}\,,\tag{16}$$

де $\mu_{\text{Дi}} = \mu_{\text{Д0,6}} \left(\frac{\text{Re}_{0.6}}{\text{Re}_{i}} \right)^{0.33}$ [20]; _{д0,6} = 0,318 - коефіцієнт ви-

трат для вибраної форсунки при надлишковому тиску p = 0,6 МПа [16] (числа Re визначаються у відповідності з коментарем до формули (2)). Враховуючи, що формування потоку крапель завершується на відстані $l_{\Pi} = 0,79d_{C} / \sin(\alpha/2)$ [2, 3] (в нашому випадку при p = 0,6 МПа $l_{\Pi} = 1,1$ мм), приймаємо, що $W_0 \approx W_{0_{\Pi\pi}}$. Результати розрахунків W f(p) апроксимуються з достовірністю $R^2 = 0,99$ залежністю виду:

$$W_0 = 50, 3p + 6, 75$$
. (17)

Розмірність величин, що входять в формулу (17): W_0 - в м/с, р - в МПа.

У відповідності з [15] кореневий кут розпилювання α форсунки, що розглядається, дорівнює:

$$\alpha = 13,3 + 283,84p - 286,1p^2, \qquad (18)$$

де розмірність р в МПа, α - в градусах. Залежність (18) справедлива в діапазоні надлишкового тиску води перед розпилювачем (0,2 – 0,6) МПа і її температури (9 - 51) °С.

Наведемо результати розрахунку величин W_0 , W_τ , L, τ та F для надлишкового тиску води на вході в форсунку p = (0, 2 - 0, 6) МПа і її температурі 9 °С (такі параметри характерні для контактних апаратів крапельного типу [4], що тут розглядаються).

Вихідні дані для розрахунку: температура повітря в об'ємі апарата - 20 °С ($\rho_g = 1,2 \, {\rm кг/m^3}$, $\nu_g = 15 \cdot 10^{-6} \, {\rm m^2/c}$); розпилювання води здійснюється при відключеному повітряному вентиляторі ($W_g = 0 \, {\rm m/c}$); масові витрати води G визначаються за формулою (3); середній об'ємно-поверхневий діаметр крапель d₃₋₂ - за рівнянням (2); швидкість на виході з сопла форсунки W_0 - за рівнянням (17); кореневий кут факелу розпилювання α - за рівнянням (18).

Результати розрахунків величин W_i , W_{i+1} , $\overline{\xi}_i$, L та τ_i для режиму з p = 0.6 МПа наведені в табл. 1.

Результати розрахунків величин W_i , W_{i+1} , L та τ_1 для режиму з р = 0,6 МПа

Таблиця 1

№ ділянки	W _i , м/с	$W_{i+1}, M/c$ $\overline{\xi}_i$ L, M		τ _{1, c}	
1	37	10	1,28	0,083	0,0046
2	10	5	2,03	0,028	0,0048
3	5	3	2,72	0,015	0,0039
4	3	1,7	3,57	0,012	0,0055
5	1,7	1	4,69	0,008	0,0064
6	1	0,7	5,82	0,004	0,0027
7	0,7	0,5	6,92	0,003	0,005
8	0,5	0,4 7,94 0,0		0,002	0,008
9	0,4	0,3	9,03	0,002	0,004
	0,157	0,0449			

Із табл. 1 видно, що краплі розміром для цього режиму $d_{3\text{-}2}=73\cdot10^{-6}$ м з початковою швидкістю 37 м/с через 0,045 с набули швидкість, що дорівнює 0,3 м/с (вибиралася при розрахунках близькою до $W_{\rm BUT}=0,282$ м/с; $W_{\rm g}=0$ м/с), подолавши при цьому шлях в 0,157 м.

[°]Наведені результати розрахунків доволі задовільно корелюються з результатами графічного інтегрування рівняння (4), виконаного І. М. Федоровим і які були наведені в [1]. Цим автором було отримано, що частинки розчину розміром 50 мкм з початковою швидкістю 100 м/с через 0,038 с досягають усталеної швидкості, що дорівнює W_{вит} і при цьому долають шлях в 0,25 м. В подальшому, після подолання ділянки неусталеного руху, швидкість крапель сповна описується залежністю для W_{BUT} ($W_g = 0$ м/с).

Результати розрахунків величин W_0 , W_{BMT} , L, τ_1 , τ_2 , $\tau_{3A\Gamma}$, F_1 , $F_{3A\Gamma}$ ($H_{3A\Gamma} = 0.22$ м – прийнята конструктивна висота активної зони утилізатора) при p = (0, 2 - 0.6) МПа наведені в табл. 2.

Результати розрахунків сумарної поверхні крапель на ділянці неусталеного їх руху $F_1 = f(p)$ за рівнянням (1) для даного розпилювача апроксимуються з достовірністю $R^2 = 0,99$ залежністю

 $F_1 = 0.042 p + 0.005$.

Таблиця 2

Результати розрахунків величин W_0 , $W_{\rm BHT}, L, \tau_1, \tau_2, \tau_{3A\Gamma}, F_1, F_{3A\Gamma}$ при ρ = (0,2 - 0,6) МПа

Р, МПа	₩ ₀ , м/с	W _{ВИТ} , м/с	L, м	τ_1, c	$ au_2$, c	$\mathfrak{t}_{3A\Gamma}$, c	F ₁ , м ²	$F_{3A\Gamma} , M^2$
0,6	37,0	0,282	0,157	0,045	0,491	0,536	0,030	0,362
0,4	26,7	0,407	0,222	0,059	0,161	0,220	0,022	0,080
0,3	21,9	0,454	0,230	0,064	0,106	0,170	0,018	0,048
0,2	16,9	0,541	0,249	0,066	0,01	0,076	0,013	0,015

5. Висновки

1. В результаті теоретичного аналізу руху крапель рідини в факелі розпилювання відцентрової форсунки і використання експериментальних даних щодо середнього об'ємно-поверхневого діаметра крапель [15] запропоновано методику визначення дійсної міжфазної поверхні тепломасообміну в контактних газорідинних апаратах крапельного типу.

2. Процедура розрахунку величини дійсної міжфазної поверхні виглядає наступним чином. По залежності (2) визначається середній об'ємно-поверхне-вий діаметр крапель $d_{3\cdot 2}$, по (9) і (11) – відповідно довжина ділянки неусталеного руху крапель L і час їх там перебування τ_1 (для цього по (13) і (17) визначаються швидкості крапель відповідно в кінці і на початку цієї ділянки). Величина кута розпилювання α форсунки і час перебування крапель на ділянці їх усталеного руху τ_2 визначаються відповідно по формулам (18) і (14). Величина дійсної міжфазної поверхні визначається по залежності (1), в якій $\tau_{3A\Gamma} = \tau_1 + \tau_2$, а $d_K = d_{3\cdot 2}$.

3. Отримані результати будуть використані в подальшому при дослідженні процесів тепло і масообміну і створенні загальної методики розрахунку подібних установок.

Література

- 1. Лыков, М. В. Распылительные сушилки [Текст] / М. В. Лыков, Б. И. Леончик. М.: Машиностроение, 1966. 331 с.
- 2. Галустов, В.С. Прямоточные распылительные аппараты в теплоэнергетике [Текст] / В. С. Галустов. М.: Энергоатомиздат, 1989. 240 с.

- 3. Пажи, Д. Г. Основы техники распыливания жидкостей [Текст] / Д. Г. Пажи, В. С. Галустов. М.: Химия, 1984. 255с.
- Контактний теплоутилізатор [Текст]: пат. на корисну модель № 78507 Україна, МПК F28D 15/00. / Безродний, М. К., Барабаш П. О., Голіяд М. Н., Голубєв О. Б., Рачинський А. Ю.; заявник та володар патенту на корисну модель НТУУ "КПІ". u201209369 ; заявл. 31.07.2012 ; опубл. 25.03.2013, Бюл. №6.
- Жовмір, М. М. Утилізація низькотемпературної теплоти продуктів згорання палив за допомогою теплових насосів [Текст] / М. М. Жовмір // Промышленная Теплотехніка. – 2008. – Т.30, №2. – С. 90 – 98.
- Тарабанов, М. Г. Тепло- и массоперенос в камерах орошения кондиционеров с форсунками распыления [Текст]: учебное пособие / М. Г. Тарабанов, Ю. В. Видин, Г. П. Бойков. – Красноярск.: Кр.ПИ, 1974. – 211 с.
- Зусманович, Л. М. Оросительные камеры установок искусственного климата [Текст] / Л. М. Зусманович. М.: Машиностроение, 1967. – 120 с.
- Терехов, В. И. Численное исследование гидродинамики, тепло- и массообмена двухфазного газопарокапельного потока в трубе [Текст] / В. И. Терехов, М. А. Пахомов // Прикладная механика и техническая физика. – 2003. – Т. 44, № 1. – С. 108-122.
- Пахомов, М. А. Численное исследование гидродинамики и тепломассообмена в пристенных и струйных газокапельных потоках [Текст]: автореф. докт. дисс. Новосибирск, ИТФ СО РАН, 2009. — 39 с.
- 10. Мустафин, Р. Р. Математическое моделирование процессов тепломассообмена двухфазных потоков в двигателях летательных аппаратов [Текст]: автореф. канд. дисс. Уфа, ГОУ ВПО «Уфимский ГАТУ», 2010. — 15 с.
- Тумашова, А. В. Моделирование процессов тепло- и массообмена в форсуночных оросительных камерах [Текст]: автореф. канд. дисс. Томск, ГОУ ВПО «ТГАСУ», 2011. — 19 с.
- 12. Pakhomov, M. A. Second moment closure modeling of flow, turbulence and heat transfer in droplet-laden mist flow in a vertical pipe with sudden expansion [Text] / M. A. Pakhomov, V. I. Terekhov // Int. J. of Heat and Mass Transfer. –№ 66. 2013. P. 210-222.
- Безродный, М. К. Гидродинамика и контактный тепломассообмен в некоторых газожидкостных системах [Текст]: моногр. / М. К. Безродный, П. А. Барабаш, Н. Н. Голияд. – К.: НТУУ «КПИ», 2011. – 408 с.
- 14. Ладыженский, Р. М. Кондиционирование воздуха [Текст] / Р. М. Ладыженский. М.: Госторгиздат, 1962. 352 с.
- Безродный, М. К. Некоторые характеристики распыла центробежных форсунок контактных утилизаторов отходящих газов капельного типа [Текст] / М. К. Безродный, Н. Н. Голияд, П. А. Барабаш, А. Ю. Рачинский, А. Б. Голубев // Промышленная Теплотехника. – 2013. – Т. 35, № 6. – С. 31 – 38.
- 16. Хавкин, Ю. И. Центробежные форсунки [Текст] / Ю. И. Хавкин. Л.: Машиностроение, 1976. 168 с.
- 17. Соин, И. В. Интенсификация тепло- и массообмена в камерах орошения центральных кондиционеров применительно к политропным процессам тепловлажностной обработки воздуха [Текст]: автореф. канд. дисс. Харьков, ХИСИ, 1984.– 23 с.
- 18. Кутаталадзе, С. С. Основы теории теплообмена [Текст] / С. С Кутаталадзе. М.: Атомиздат, 1979. 416 с.
- 19. Бронштейн, И. Н. Справочник по математике [Текст] / И. Н. Бронштейн, К. А Семендяев. М.: Наука, 1986. 544 с.
- 20. Блох, А. Г. О коэффициентах расхода и углах конусности факела [Текст] / А. Г. Блох, Е. С. Кичкина // Теплоэнергетика. 1957. № 10. С. 35 41.