- 19. Федоров, А. В. Оптические свойства полупроводниковых квантовых точек [Текст] / А. В. Федоров, И. Д. Рухленко и др. СПб.: Наука, 2011. 188 с.
- 20. Klimov, V. I. Semiconductor and metal nanocrystals [Text] / V. I. Klimov. New York: Marcel Dekker Inc., 2004. 500 p.
- 21. Murray, C. B. Synthesis and characerization of nearly monodisperse CdE (E=S, Se, Te) semiconductor nanocrystallites [Text] / C. B. Murray, D. J. Norris, M. G. Bawendi // J. Am. Chem. Soc. 1993. Vol. 115. P. 8706–8715.
- 22. Sukhanova, A. Highly Stable Fluorescent Nanocrystals as a Novel Class of Labels for Immunohistochemical Analysis of Paraffin-Embedded Tissue Sections [Text] / A. Sukhanova, L. Venteo // Laboratory Investigation. 2002. Vol. 82(9). 1259 p.
- 23. Amelia, M. Redox properties of CdSe and CdSe–ZnSquantum dots in solution [Text] / M. Amelia, A. Tommaso et al. // Pure Appl. Chem. 2011. Vol. 83(1). P. 1–8.
- 24. Аминова, Р. М. Основы современной квантовой химии [Текст] / Р. М. Аминова. Казань: КГУ, 2004. 106 с.
- 25. Boatman, E. M. A Safer, Easier, Faster Synthesis for CdSe Quantum Dot Nanocrystals [Text] / E. M. Boatman, G. C. Lisensky, K. J. Nordell // J. Chem. Educ. 2005. Vol. 82. P. 1697–1699
- 26. Сушко, О. А. Нанофотонний метод визначення органічних канцерогенів у водних середовищах [Текст] / О. А. Сушко, М. М. Рожицький // Східно-Європейський журнал передових технологій. 2012. Т. 1, № 5 (55). С. 40–46.
- 27. Петерс, Д. Химическое разделение и измерение. Теория и практика аналитической химии [Текст] / Д. Петерс, Дж. Хайес, Г. Хифтье; Пер. с англ. М.: Химия, 1978. 816 с.
- 28. Сушко, О. А. Оптичний сенсор на основі напівпровідникових квантово-розмірних структур для визначення конденсованої ароматики у водних об'єктах довкілля [Текст] / О. А. Сушко, М. М. Рожицький // Системи обробки інформації. 2013. Т. 2 (109). С. 259—264

Запропоновано метод створення сумішей газів, що полягає в циклічній продувці камери змішувача одним газом і подальшої подачі газів до заданих парціальних тисків. Розроблено генератор газових сумішей, який реалізує метод для випадку трьох газів, що характеризується високою продуктивністю і точністю співвідношення компонентів в суміші (похибка не вище 0,1%)

Ключові слова: газові суміші, іонно-плазмова технологія, парціальний тиск газу, генератор газових сумішей

Предложен метод создания смесей газов, заключающийся в циклической продувке смесительной камеры одним газом и последующей подачи газов до заданных парциальных давлений. Разработан генератор газовых смесей, реализующий метод для случая трех газов, характеризующийся высокой производительностью и точностью соотношения компонентов в смеси (погрешность не выше 0,1%)

Ключевые слова: газовые смеси, ионно-плазменная технология, парциальное давление газа, генератор газовых смесей

1. Введение

Исследования и опыт эксплуатации покрытий, полученных ионно-плазменными методами, показывает, что наиболее высокими характеристиками обладают покрытия, имеющие сложный состав. Для получения покрытий сложного состава в рабочем объеме

УДК 621.793:533.27

СОЗДАНИЕ СМЕСЕЙ ГАЗОВ ДЛЯ ИОННО-ПЛАЗМЕННЫХ ТЕХНОЛОГИЙ

Ю. А. Сысоев

Кандидат технических наук, доцент Кафедра теоретической механики, машиноведения и роботомеханических систем Национальный аэрокосмический университет им. Н. Е. Жуковского «Харьковский авиационный институт»

«Харьковский авиационный институт» ул. Чкалова, 17, г. Харьков, Украина, 61070 E-mail: ju_as@mail.ru

В.П.Руденко Начальник группы* E-mail: vrudenko@kipt.kharkov.ua

А. В. Доломанов Инженер*

E-mail: aandreev@kipt.kharkov.ua *Национальный научный центр «Харьковский физико-технический институт» ул. Академическая, 1, г. Харьков, Украина, 61108

установки необходимо наличие как минимум двух реакционных газов (например, C_2H_2 и N) с заданным парциальным давлением каждого из них. Кроме того, на практике в реакционные газовые смеси часто добавляют аргон, улучшающий процесс осаждения покрытий, а также повышающий микротвердость покрытий [1].

Известны публикации [2–5], в которых для получения покрытий и обработке поверхности используют газовые смеси. Их применение позволяет получать покрытия с уникальными свойствами, причем наиболее высокие характеристики покрытий обеспечиваются при определенных пропорциях газов в смеси. Для широкого внедрения процессов получения таких покрытий необходимо наличие устройств — генераторов газовых смесей (ГГС), работающих в составе ионно-плазменных установок. Разработка достаточно простых, промышленно применимых ГГС, является актуальной задачей.

2. Анализ состояние вопроса и постановка проблемы

Первые разработки оборудования для создания смесей газов с целью их применения в ионно-плазменных процессах относятся к началу 90-х годов прошлого века [6, 7]. Уже тогда наметился различный подход к принципам получения газовых смесей заданного состава. Первый основывался на способе создания смеси путем поддержания закритического перепада давления на калиброванных соплах [6], второй — на создании смеси в предварительно откачанной смесительной камере путем последовательной подачи в нее порций газов [7]. Обоим методам присущи как достоинства, так и недостатки.

Устройства, работающие на принципе поддержания закритического перепада давлений на калиброванных соплах, когда в узком сечении сопла устанавливается критическая скорость, равная местной скорости звука, не лишены ряда существенных недостатков. К основным их недостаткам относятся сравнительно низкая точность обеспечения заданного процентного соотношения компонент в смеси (погрешность на уровне и выше 1 %) и использование калиброванных сопел, массовый расход газа через которые зависит от его коэффициента Пуансона. Основным достоинством таких газосмесителей является получение смесей заданного состава в любой момент времени без затрат времени на ее предварительную подготовку.

В основу смешивания газов путем последовательной подачи их порций в предварительно откачанную смесительную камеру был положен принцип, применяющийся при выращивании эпитаксиальных пленок [8, 9]. Разработанный в [10] метод характеризуется высокой точностью соотношения газов в смеси. Для обеспечения такой точности необходимо равенство давлений исходных газов и равенство объемов подаваемых в смесительную камеру доз. Кроме того, высокая точность газосмешения обеспечивается только при определенной временной последовательности подачи доз составляющих газов. Эти требования были выполнены при разработке ГГС, обеспечивающего точность соотношения газов в смеси с погрешностью менее 0,1 % по каждому компоненту. Основными недостатками, сдерживающими промышленное применение такого ГГС, являются его достаточно высокие сложность изготовления и затраты времени на приготовление смеси

Метод создания газовых смесей подачей порций газов получил дальнейшее развитие. В модифицированном способе создание парциальных давлений

компонентов осуществляется подачей порций газов в смесительную камеру с проверкой перед каждой подаваемой порцией условия достижения требуемого парциального давления данного газа с заданным допуском. Способ обеспечивает создание смесей с высокой задаваемой точностью соотношения газов в смеси (погрешность 0,1 % и менее), однако его реализация на практике достаточно сложна. Так, в состав устройства, работающем на данном принципе, должны входить блок стабилизации входного давления и узел дозирования по каждому газу.

На практике часто применяют способ получения смеси газов, заключающийся в последовательном напуске в рабочий баллон нескольких газов из отдельных баллонов с высоким давлением [11]. Процентное содержание компонента (m_A либо $m_{\bar{b}}$) в смеси при приготовлении ее данным методом определяют из выражения

$$m_{A} = \frac{p_{A}}{p_{A} + p_{B}} 100 \%, \qquad (1)$$

где $\, p_A \, - \,$ парциальное давление газа $\, A \,$ в баллоне со смесью; $\, p_B \, - \,$ парциальное давление газа $\, B \,$ в баллоне со смесью газов.

Рассмотренный метод получения газовых смесей широко применяется в лабораторной практике, при этом состав полученной смеси часто контролируется с помощью газовых хроматографов [11]. В производстве данный метод малоприменим вследствие низкой оперативности приготовления смеси газов и невысокой точности соотношения компонент в смеси.

К сожалению, в большинстве известных работ не приводится описание оборудования для получения смесей газов, не для всех технологических процессов даются парциальные давления компонент в смеси и не говорится о точности их процентного соотношения. Вместе с тем, для широкого применения газовых смесей в ионно-плазменных технологиях получения покрытий сложного состава, необходимо наличие ГГС, работающих в составе установок. Такие ГГС должны обеспечивать создание многокомпонентных смесей газов с заданным соотношением компонентов, с необходимой производительностью и с возможностью достаточно оперативного изменения состава смеси

3. Цель и задачи исследования

Целью настоящей работы является разработка метода создания многокомпонентных смесей газов, сочетающего высокие производительность и точность соотношения компонент в смеси. Метод должен обеспечивать создание на его основе достаточно простого, промышленно применимого ГГС.

4. Метод получения газовой смеси

Для достижения поставленной цели и упрощения процесса создания газовой смеси был разработан новый метод получения многокомпонентных смесей газов. Предложенный метод реализуется в два этапа.

На первом осуществляется предварительная циклическая продувка смесительной камеры одним из газов, входящим в состав смеси. На втором этапе происходит непосредственное создание смеси путем последовательно подачи газов в смесительную камеру до парциальных давлений, соответствующих заданному процентному содержанию их в смеси. Основными преимуществами данного метода являются отсутствие необходимости обеспечения равенства входного давления газов и их дозирования порциями равного объема.

Предварительная циклическая продувка смесительной камеры одним из газов, входящих в смесь, создает в ней атмосферу, состоящую из этого газа. Продувка заключается в подаче до определенного давления в смесительную камеру газа, а затем сбросе содержимого камеры в окружающую атмосферу. Количество циклов продувки и создаваемое при этом давление в камере определяет остаточное процентное содержание газа в ней. Для примера, в табл. 1 показано содержание азота, в табл. 2 показано содержание в смесительной камере газа, не входящего в состав атмосферы, после каждого цикла продувки. Как видно из представленных данных, даже отсутствие газа в исходной атмосфере уже после 5-го цикла продувки обеспечивает его содержание в смесительной камере на уровне 99,97 %

Таблица 1 Содержание азота в СК после очередной ее продувки

Цикл продувки (подача N_2 до 5 атм — сброс давления)	Состав атмосферы в смеси- тельной камере, %			
	N_2	O_2	Остальные газы	
Исходная атмосфера	78,08	20,95	0,97	
1-й	95,62	4,19	0,19	
2-й	99,12	0,84	0,04	
3-й	99,82	0,17	0,01	
4-й	99,965	0,035	0	

Таблица 2 Содержание газа X, не входящего в состав атмосферы, в СК после очередной ее продувки

Цикл продувки (подача газа X до 5 атм – сброс давления)	Состав атмосферы в смесительной камере, %			
	N ₂	O_2	Осталь- ные	X
Исходное	78,08	20,95	0,97	0
1-й	15,62	4,19	0,19	80,00
2-й	3,12	0,84	0,04	96,00
3-й	0,62	0,17	0,01	99,20
4-й	0,124	0,034	0	99,842
5-й	0,03	0	0	99,97

Для процесса продувки следует выбирать газ, исходя из процентного содержания его в создаваемой смеси, поскольку его начальное содержание в смесительной камере имеет атмосферное давление. Следует отметить, что колебания атмосферного давления в данном случае не влияют на точность содержания этого газа в смеси, поскольку в дальнейшем его парциальное давление устанавливается на заданном уровне. Выбор газа для продувки следует делать исходя также из его стоимости, поскольку при четырех циклах продувки происходит потеря ~ 2,67 %, а при пяти ~ 3,33 % начального содержимого стандартного 40-литрового газового баллона высокого давления (рнач = 150 атм).

Непроизводительные потери газа являются недостатком данного метода. Однако его преимущества отсутствие предварительной откачки смесительной камеры (отпадает необходимость в форвакуумном насосе), связанных с этим затрат электроэнергии и необходимости контроля остаточного давления компенсируют основной недостаток метода. Достоинством использования продувки является также сокращение общего времени приготовления смеси газов. Это связано с тем, что время одного цикла продувки не превышает 10 с (при объеме камеры, равном 10 л, и нагнетаемом давлении 5 атм.), поэтому общее время продувки намного меньше времени откачки камеры объемом 10 л, к тому же в смесительной камере при этом создается атмосферное давление одного из компонентов смеси, что дополнительно повышает производительность метола.

По завершении продувки в предложенном методе идет создание смеси последовательной подачей газов до создания ими в смесительной камере парциальных давлений p_A , p_B , p_C , определяемых заданным процентным составом газовой смеси в соответствии с законом Дальтона

$$p_A + p_B + ... + p_C = p_{CK},$$
 (2)

где p_{CK} — давление в смесительной камере после окончания приготовления смеси газов.

Достоинством такого подхода является возможность использования одного датчика давления, а не трех основных (как в [10]), что снимает потребность в калибровке. Сам датчик давления при этом может быть взят высокой точности (с основной погрешностью измерений не более 0,1 % от диапазона).

Для точного достижения заданных парциальных давлений газов необходимо в каналах их подачи применять управляемые клапаны, уменьшающие расход газа при приближении к заданному уровню давления. Такое управление можно организовать с помощью ПИД-регулятора. При его настройке особое внимание следует обращать на отсутствие перерегулировки, которая на этапе создания смеси недопустима (в отличие от этапа продувки).

5. Разработка генератора газовых смесей

Создание газовых смесей из трех газов предложенным методом осуществлялась с помощью разработанного $\Gamma\Gamma$ С, блок схема которого показана на рис. 1.

Функционально в ГГС можно выделить механическую и управляющую части.

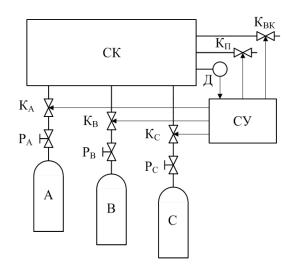


Рис. 1. Блок-схема ГГС: А, В, С — баллоны с газами; СК — смесительная камера; СУ — система управления; P_A , P_B , P_C — редукторы; K_A , K_B , K_C — управляемые клапаны; K_Π — клапан продувки; K_{BK} — выходной клапан; Π — датчик давления

5. 1. Механическая часть ГГС

Основные особенности механической части представленного ГГС следующие. Смесительной камерой являлся отрезок бесшовной цельнотянутой трубы, заглушенный через уплотнения с обоих сторон фланцами, объем камеры равнялся 10 л. На одном фланце были смонтированы управляемые клапана K_A , K_B , K_C и датчик давления \mathcal{J}_A , на другом — электрически управляемые клапана K_Π и K_{BK} , имеющие два состояния — «открыт—закрыт». Внутри смесительной камеры был установлен вентилятор (на рис. 1 не показан). В качестве управляемых клапанов K_A , K_B , K_C использовались пропорциональные электромагнитные клапана типа EV-260B 6B с катушкой BK024D фирмы Danfoss, имеющие расходную характеристику, представленную на рис. 2.

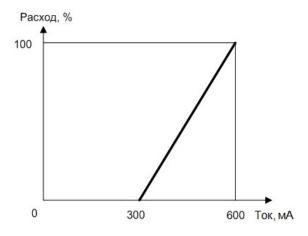


Рис. 2. Расходная характеристика клапана

В качестве баллонов со смешиваемыми газами A, B, C использовались стандартные бесшовные цель-

нотянутые 40-литровые баллоны высокого давления ($p_{\text{нач}} = 150$ атм), снабженные газовыми двухступенчатыми редукторами P_{A} , P_{B} , P_{C} , тип которых соответствовал сорту редуцируемого газа.

Для сброса давления в режиме продувки и подачи смеси в технологическую камеру (клапаны K_Π и K_{BK}) использовались позиционно управляемые электромагнитные клапаны прямого действия типа EV210A фирмы Danfoss. Повышение точности датчика давления Д типа 40PC фирмы Honeywell (основная погрешность по паспорту $\pm 0.2~\%$) до класса 0,1 достигалось его предварительной индивидуальной градуировкой на испытательном стенде калибратором давления Метран 517 классом точности 0,01.

5. 2. Система управления ГГС

Реализация метода осуществляется микропроцессорной системой управления СУ (рис. 1). Работа СУ в режиме подготовки газовой смеси выполняется по алгоритму, представленному на рис. 3.

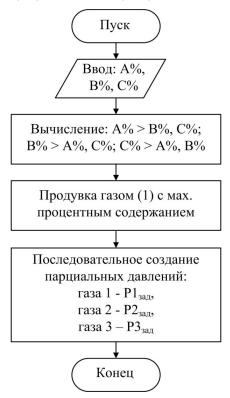


Рис. 3. Алгоритм работы системы управления

Для реализации алгоритма были разработаны подпрограммы:

- обработки сигналов клавиатуры при задании процентного содержания газов в смеси;
 - вычисления парциальных давлений газов;
- вычисления очередности подачи газов (1, 2, 3) в смесительную камеру по содержанию их в смеси от максимального к минимальному и определения газа с максимальным содержанием как продувочного;
 - продувки смесительной камеры;
- создания парциальных давлений газов в смесительную камеру в установленной очередности.

Процесс создания смеси газов по алгоритму на рис. З состоит из последовательных этапов, что позво-

лило в схемотехническом решении СУ использовать один ПИД-регулятор (с автоматически изменяемыми коэффициентами на каждом этапе).

После завершения приготовления смеси газов ее отбор в технологическую камеру установки происходит через открытый клапан $K_{\rm BK}$. Регулирование расхода осуществляется системой автоматической подачи газа установки ионно-плазменного напыления. При продолжительном времени между отборами смеси предусмотрено ее перемешивание вентилятором, установленном в смесительной камере.

Разработанный на основе предложенного метода ГГС позволяет создавать смесь из трех газов с возможностью изменения содержания каждого газа в диапазоне 0–100 %, с шагом задания содержания компонента 0,1 % и погрешностью не более 0,1 % по каждому газу. Его характеризует простота конструкции, меньшая стоимость изготовления (отсутствие форвакуумного насоса) и малое время приготовления смеси газов (не более трех минут в камере объемом 10 л), что выгодно отличает его от предыдущих модификаций ГГС, работающих на иных принципах создания смесей газов.

6. Выводы

- 1. Разработан метод создания газовых смесей с предварительной циклической продувкой смесительной камеры, обеспечивающий высокие точность содержания компонентов в смеси и производительность.
- 2. На основе предложенного метода разработан и находится на этапе изготовления ГГС, предназначенный для работы в составе ионно-плазменной установки. Заложенные в конструкцию ГГС технические решения обеспечивают подготовку смесей из трех газов с возможностью изменения содержания каждого газа в диапазоне 0–100 % с шагом задания содержания компонента 0,1 % и погрешностью не более 0,1 % по каждому газу. От предыдущих модификаций ГГС, работающих на иных принципах создания смесей, его отличает простота конструкции, меньшая стоимость изготовления (отсутствие форвакуумного насоса) и малое время приготовления смеси газов (не более трех минут в камере объемом 10 л).

Литература

- 1. Белоус, В. А. Роль аргона в газовой смеси с азотом при получении нитридных конденсатов системы Ti-Si-N в вакуумно-дуговых процессах осаждения [Текст] / В. А. Белоус, Ю. А. Заднепровский, Н. С. Ломино, О. В. Соболь. // ЖТФ. 2013. Т. 83, Вып. 7. С. 69–76.
- 2. Suzuki Tribological performance of a sputtered MoS2 film in air, N_2 , O_2 and H_2O environments at pressures from 10^{-5} Pa to 10^{5} Pa [Text] / Suzuki // Journal of the Society of Tribologists and Lubrication Engineers. 2001. Vol. 57, N_2 1. P. 23–29.
- 3. Coller, R. The deposition of low-friction $TiN-MoS_x$ hard coatings by a combined arc evaporation and magnetron sputter process [Text] / R. Coller, P. Torri, M. A. Baker, R. Gilmore, W. Gissler // Surface and Coatings Technology. 1999. Vol. 120–121. P. 453–457.
- 4. Dobrzanski, L. A. Structure and properties of the TiN and Ti(C,N) coatings deposited in the PVD process on the high-speed steels [Text] / L. A. Dobrzanski, M. Adamiak // J. of Materials Processing Technology, 2003. Vol. 133. P. 50–62.
- Frenklash, M. J. The role of hydrogen in vapor deposition of diamond [Text] / M. J. Frenklash // J. Appl. Phys, 1989. Vol. 65, № 12. – P. 5142–5149.
- 6. Бугров, С. М. Устройство динамического смешения газов [Текст] / С. М. Бугров, Д. К. Симоновский, П. Г. Биндер, М. Н. Ковалев // Современное электротермическое оборудование для поверхностного упрочнения деталей машин и инструментов: тез. докл. симп. М.: Информэлектро, 1990. С. 20–21.
- 7. Сысоев, Ю. А. Получение газовых смесей с заданным соотношением компонентов [Текст] / Ю. А. Сысоев, А. В. Козаченко, А. А. Севенко // Новые технологии в машиностроении : матер. междунар. конференции, Рыбачье 20–23 сент. 1992. С. 59–62.
- 8. Van Sark, W. Computer automation of the Palse Reactor, a pulse operated low-pressure metal organic vapor phase epitaxy machine [Text] / W. van Sark, J. Hogenkamp, J. van Suchtelen, L. Giling // Rev. Sci. Instrum. 61. − 1990. − № 1. − P. 146–157.
- 9. Patent DK 8 702 096, 1988.
- 10. Пат. № 85625 Україна, МПК В01F3/00. Спосіб підготовки суміші газів для технологічних установок заданого відсоткового складу і пристрій для його реалізації/ Сисоєв Ю. О., Костюк Г. І., Евко Ю. С., Сисоєв А. Ю. № а 2007 05543 ; заявл. 21.05.2007 ; надрук. 10.02.2009, Бюл. № 3. 11с.: 4 табл; 6 іл.
- 11. Вершина, А. К. Комбинированная плазменно-вакуумная обработка дереворежущего инструмента [Текст] / А. К. Вершина // Электронная обработка материалов. 2009. № 3. С. 86–91.