Розглядається тягова підстанція із з'єднанням обвиток трансформатора за схемою зірка-трикутник. Живлення тягового навантаження здійснюється від одного із боків трикутника на вторинній стороні трансформатора, що створює несиметрію в системі електропостачання. За допомогою візуальної моделі та пошукової оптимізації знайдені параметри симетруючого пристрою, який складається з реактивних елементів. При цьому вирівнюються струми в лінії та повністю компенсується реактивна потужність в системі електропостачання

-0

D-

Ключові слова: симетрування, реактивна потужність, візуальне моделювання, пошукова оптимізація

Рассматривается тяговая подстанция с соединением обмоток трансформатора по схеме звезда-треугольник. Питание тяговой нагрузки осуществляется от одной из сторон треугольника на вторичной стороне трансформатора, что создает несимметрию в системе электроснабжения С помощью визуальной модели и поисковой оптимизации найдены параметры симметрирующего устройства, состоящего из реактивных элементов. При этом выравниваются токи в линии и полностью компенсируется реактивная мощность в системе электроснабжения

Ключевые слова: симметрирование, реактивная мощность, визуальное моделирование, поисковая оптимизация

1. Введение и анализ литературных данных

Электроснабжение железных дорог связано с проблемами, вызванными снижениием таких показателей, как коэффициенты симметрии и мощности. Основной схемой, по которой осуществляется питание тяговой нагрузки на железной дороге, является схема питания от трехфазной сети через трансформатор. Первичная обмотка трансформатора соединяется в звезду, а вторичная - в треугольник. Далее питание тягового электропривода осуществляется от одной из сторон вторичного треугольника по схеме однофазной нагрузки [1, 2]. Таким образом, системы электроснабжения переменного тока характеризуются существенной несимметрией нагрузки, что в свою очередь приводит к появлению в системе реактивной мощности. Некоторое ослабление влияния существенной несимметрии достигается использованием схемы так называемого «винта» [3, 4]. В этом случае для шести подстанций переменного тока изменяют точки подключения и фазировку тяговой нагрузки. Однако, эти мероприятия не позволяют кардинально решить проблему несимметрии тяговой нагрузки и появления реактивной мощности в системе электроснабжения. Всё это приводит к увеличению потерь и снижению коэффициента полезного действия. Известны также схемы симметрирования Кюблера, Леблана, Скотта

УДК 621.311

РАСЧЁТ ПАРАМЕТРОВ СИММЕТРИРУЮЩЕГО УСТРОЙСТВА ДЛЯ ТЯГОВОЙ ПОДСТАНЦИИ ПЕРЕ-МЕННОГО ТОКА НА ВИЗУАЛЬНОЙ МОДЕЛИ

В. Г. Ягуп

Доктор технических наук, профессор Кафедра электроснабжения городов Харьковский национальный университет городского хозяйства им. А. Н. Бекетова, ул. Революции, 12, г. Харьков, Украина, 61002 E-mail: Yagup_Walery@mail.ru

Е. В. Ягуп

Кандидат технических наук, доцент Кафедра автоматизации систем электрического транспорта Украинская государственная академия железнодорожного транспорта пл. Фейербаха, 7, г. Харьков, Украина, 61050 E-mail: Kate.Yag@rambler.ru

[5–7], однако их использование требует замены имеющегося оборудования, что оказывается неприемлемым с экономической точки зрения. В последние годы резко возрос интерес к вопросам симметрирования и компенсации реактивной мощности в сетях электроснабжения железных дорог [8, 9], однако в указанных работах отсутствует детальный анализ режимов оборудования, в том числе трансформаторного, а также точное определение параметров симметрирующих и компенсирующих элементов.

2. Постановка проблемы

Если исходить из приведенного анализа, то представляется существенным и актуальным поиск методов снижения несимметрии и компенсации реактивной мощности в системе электроснабжения железнодорожной тяговой однофазной нагрузки без изменения принятой основной схемы электропитания и без замены имеющегося традиционного электрооборудования.

3. Цель и задачи исследования

Целью исследования является анализ режимов и электромагнитных процессов в системе питания

тяговой нагрузки переменного тока с целью симметрирования питающих токов трехфазной системы и определения условий полной компенсации реактивной мощности в этой системе для снижения затрат электроэнергии и повышения энергетических показателей системы электроснабжения в целом.

Для достижения поставленных целей необходимо:

 исследовать исходный несимметричный режим и оценить его энергетические показатели;

 выяснить, какие именно реактивные элементы должны быть включены в схему симметро-компенсиоующего устройства;

 – определить параметры этого устройства, при которых минимизируются реактивная мощность и несимметрия в системе;

 провести анализ оптимизированного режима с целью выявления его преимуществ перед исходным режимом в отношении условий работы оборудования системы электроснабжения.

4. Исследуемая система и её параметры

Будем рассматривать систему электроснабжения железнодорожной тяги на переменном токе с однофазе ной нагрузкой в виде одного состава на линии. Этот вариант соответствует случаю наиболее резко выраженной несимметрии в системе электроснабжения. Расчетная схема изображена на рис.1.

Здесь источники синусоидального напряжения имитируют питающую сеть неограниченной мощности, каковой можно считать в целом энергосистему, от которой питается тяговая подстанция. Элементы L_0 и r_0 отображают сопротивления линий электропередачи к тяговому трансформатору. Первичные обмотки этого трансформатора соединены в звезду, а вторичные – в треугольник (по схеме 11 группы соединения). Выводы вторичной обмотки a, b, с используются для питания тяговых нагрузок.

Рис. 1. Схема питания переменным током железнодорожной тяговой нагрузки

Фаза С заведена на рельс, а фаза А – на контактный провод. Сопротивление Z_H отображает единичную тяговую нагрузку, для которой будем полагать общепринятое значение Соs φ =0,8 и тогда Z_H =0,8+j0,6 Ом.

5. Формирование визуальной модели

Моделирование процессов осуществляем в нормированных параметрах на визуальной Simulink-модели (рис. 2). Принимаем амплитуды питающих напряжений трехфазной системы равными 400 В., частоту – 50 Гц. Параметры трансформатора, вторичные обмотки которого соединены в треугольник с амплитудами напряжений на каждой 100 В (представлены в том порядке, в котором они размещены в окне свойств трансформатора):

Рис. 2. Модель системы электроснабжения переменным током. Параметры линии электропередачи и нагрузки следующие: *г*₀=0,1 Ом; *L*₀=0,001 Гн; *R*_n=(0,8+0,6j) Ом

Pn=100000 VA; fn=50 Hz;

V1=489.9 Vrms; R1=0.01 Ohm; L1=0,006;

V2=70,711 Vrms; R2=0.000625 Ohm; L2=0,000375;

Rm=1200 Ohm; Lm=3.82 H.

При работе модели используется метод stiff 23s Розенброка с максимально допустимым шагом интегрирования 0,0001 с.

В процессе моделирования на виртуальные осциллографы выводятся токи в линиях электропередачи (они же являются токами в источниках электроэнергии и первичных обмотках трансформатора), напряжения на зажимах трансформатора, а также токи и напряжения нагрузки. Кроме того, с помощью виртуальных измерительных приборов фиксируются активные и реактивные мощности, отдаваемые каждым источником электроэнергии с передачей этих значений на цифровые измерители.

6. Анализ несимметричного режима

Результаты моделирования установившегося процесса при несимметричной нагрузке приведены на рис. 3.

Диаграммы свидетельствуют о весьма неблагоприятных условиях работы электрооборудования при несимметричной нагрузке на вторичных обмотках тягового трансформатора. На рис. 3, а приведены напряжения каждого источника совместно с током этого источника (масштаб по токам увеличен в 10 раз для улучшения наглядности). Здесь видно, что от фазы А отбирается отстающий ток, соответствующий индуктивному характеру нагрузки на эту фазу. Виртуальный измеритель мощностей показывает, что полная мощность, отдаваемая фазой А, имеет значение S_A=2217+j2131. Для фазы В значение полной мощности S_B=-290,4+j1514, и диаграммы напряжения и тока (рис.3,а средняя) свидетельствуют о том, что источник фазы В работает в режиме потребления мощности. В фазе С (рис.3, а нижняя диаграмма) ток несколько опережает напряжение, что говорит о емкостном характере отдаваемой мощности, и значение полной мощности S_C=1498-j349. Из значений реактивных мощностей сконструирован среднеквадратичный функционал, значение которого для несимметричного режима составляет величину Nev=2637 Вар. Сразу отметим, что в дальнейшем именно этот функционал будет приниматься в качестве целевой функции при проведении поисковой оптимизации.

Рис. 3. Диаграммы для несимметричного режима: *a* − токи и напряжения источников; *б* − токи в линиях электропередачи; *β* − напряжения на первичных обмотках; *г* − напряжения на вторичных обмотках; *д* − ток и напряжение на тяговой нагрузке

На диаграмме рис. 3, б изображены токи в линиях электропередачи (они же токи в первичных обмотках трансформатора). Амплитуда тока фазы А составляет величину 15,355 А, а токи в фазах В и С почти совпадают – их амплитуды равны соответственно 7,705 А и 7,69 А. Точно в такой же пропорции рознятся и токи вторичных обмоток трансформатора – 59,72 А, 29,87 А и 29,87 А. Это показывает, что обмотки стержня фазы А перегружены, а остальные недогружены, и трансформатор работает с большим перекосом токов обмоток. Это в свою очередь обусловливает и несимметрию напряжений между выводами трансформатора, диаграммы которых приведены на рис. 3, в (первичная сторона трансформатора – амплитуды наложений равны 685, 693 и 688 В) и на рис. З, г (вторичная сторона трансформатора – амплитуды напряжений равны 92.5, 102 и 89.6 В). Таким образом, на вторичной рабочей обмотке фазы к которой подключается тяговая нагрузка, снижение напряжения составляет 10,4 % по сравнению с номинальным значением 100 В. Это соответственно уменьшает и амплитуды напряжения и тока (рис. 3, ∂), действующих в нагрузке, что сводит мощность в нагрузке до величины 0.8082 от номинальной мощности, то есть означает заметное уменьшение тяговой мощности. Полная мощность на тяговой нагрузке составляет величину S_H=3214+*j*2392. Можно сделать вывод, что каждый элемент электрооборудования системы электроснабжения работает при несимметрии в нерациональном режиме.

7. Поисковая оптимизация для нахождения параметров симметро-компенсирующего устройства

Поиск параметров компенсатора реактивной мощности осуществляется с помощью поисковой оптимизации на основе алгоритма метода деформируемого многогранника [10], реализуемого в системе MATLAB совместно с Simulink-моделью [11]. Методика организации такого поиска обоснована и разработана авторами применительно к обобщенной трёхфазной системе электроснабжения в [12].

Особенностями организации поисковой оптимизации для рассматриваемого случая являются следующие моменты:

- В процессе циклического запуска визуальной модели она прогоняется в течение некоторого числа периодов, достаточного для выхода на установившийся режим.
- По завершении моделирования вычисляется целевая функция в виде функционала, о чём было уже выше сказано, и правило конструирования которого можно уяснить из вида визуальной модели системы электроснабжения.
- Целевая функция считается глобальной переменной, и с помощью специального блока To Workspace передается в рабочую область.
- В рабочей области значение целевой функции передается в моделирующую программу, использующую встроенную функцию fmisearch, реализующую метод деформируемого многогранника.
- Программа поиска оптимума воздействует по заданному алгоритму выбранного метода на параметры оптимизации, в качестве которых могут вы-

бираться необходимые электрические величины, показатели и параметры.

В исследуемом случае параметрами оптимизации принимаются величины параметров элементов, подключаемых для симметрирования режима и компенсации реактивной мощности в рассматриваемой системе электроснабжения. В качестве симметро-компенсирующего устройства (СКУ) выбран набор из трёх реактивных элементов, включаемых по схеме треугольника к выводам вторичной обмотки тягового трансформатора. На схеме модели эти элементы обозначены Саb, Cbc и Cca, однако здесь они не видны, так как отключены для моделирования несимметричного режима с помощью опции Open circuit в окнах свойств каждого из указанных элементов.

Поскольку заранее неизвестно, какой именно элемент должен быть подключен в схеме СКУ, включаем в каждую сторону треугольника СКУ конденсаторы. Это реализуется установкой соответствующего варианта с помощью раскрывающегося списка в окне свойств каждого элемента. Такой выбор вполне обоснован, поскольку нагрузка имеет индуктивный характер, и, как показал опыт исследования подобной схемы в [10], три конденсатора в СКУ способны симметрировать линейные токи и полностью компенсировать реактивную мощность в системе электроснабжения переменного тока. Однако, в данном случае решение не привело к ожидаемому эффекту. В действительности в процессе проведения поисковой оптимизации целевая функция после некоторого количества циклов перестала уменьшаться, и величина емкости конденсатора Cbc стала уменьшаться и стреє миться достичь бесконечно малой величины. Это послужило сигналом для изменения в СКУ соответствующего конденсатора на дуальный элемент – индуктивность. После этого целевая функция свелась к величине, близкой к нулю. Это означает, что в системе реактивная мощность полностью скомпенсирована, и при этом линейные токи образовали совершенно симметричную систему.

8. Анализ режима полной симметрии и компенсации реактивной сощности

На рис. 4 приведена модель системы электроснабжения после окончания процесса поисковой оптимизации, которая произведена с повышенными опциями по точности как для целевой функции, так и для параметров оптимизации. Этот режим достигнут при следующих параметрах СКУ(они скопированы из рабочей области с максимальным количеством значащих цифр):

Cab=0.001572118247105 Φ;

Lbc=0.007389198210021 Гн;

Cca=0.00201869365386.

При этом значение целевой функции Nev=1.244E-7. Приборы показывают отсутствие в системе реактивной мощности, и каждый из источников отдает лишь активную мощность 1404 Вт. Полная мощность в нагрузке определяется значением $S_{\rm H}$ =4019+j2994, что означает увеличение активной мощности на тяговой нагрузке на 25 % по сравнению с несимметричным режимом при отсутствии СКУ.

На рис. 5 приведены диаграммы токов и напряжений, упомянутых и идентичных рис. 3, но соответствующих симметричному режиму с компенсацией реактивной мощности. Из них видно, что и линия, и трансформатор нагружаются совершенно равномерно. Линейные напряжения на первичной и вторичной стороне уравнялись и имеют амплитуды соответственно 691,6 и 100, 2 В. Аналогично выровнялись и токи трансформатора и линии электроснабжения, амплитуды которых равны соответственно 7,04 и 26,9 А.

Рис. 4. Модель системы после нахождения параметров СКУ

Рис. 5. Диаграммы для симметричного режима с полной компенсацией реактивной мощности: *a* — токи и напряжения источников; *б* — токи в линиях электропередачи; *β* — напряжения на первичных обмотках; *г* — напряжения на вторичных обмотках; *д* — ток и напряжение на тяговой нагрузке

Относительные уменьшения токов линии электропередачи по фазам А,В,С составили соответственно значения 2,181; 1,094 и 1,092. Следовательно, относительная разница по потерям в линии электропередач составит 4,76; 1,197 и 1,192. Это соответствует экономии электроэнергии на потерях в линии электропередачи 376 %, 19,7 % и 19,2 %. Важно также отметить, что тяговый трансформатор при этом работает в совершенно симметричном режиме. Это доказывает возможность энергосбережения на железной дороге путем оптимизации режимов тяговых подстанций переменного тока с помощью относительно простого дополнительного электрооборудования СКУ.

9. Выводы

1. Проведенный в статье анализ электромагнитных процессов в системе электроснабжения железных дорог на переменном токе показывает, что возникающий несимметричный режим характеризуется значительными уровнями реактивной мощности в системе и несимметрией как токов, так и напряжений.

2. Использование разработанной в статье визуальной модели и предложенного метода поисковой оптимизации позволило определить параметры симметро-компенсирующего устройства, включая также и вид элементов, составляющих его.

3. Показано, что в процессе поисковой оптимизации представляется возможным выяснить тип реактивного элемента, который должен включаться в состав симметро-компенсирующего устройства для совершенной компенсации реактивной мощности в системе электроснабжения.

4. Подключение симметро-компенсирующего устро-йства с найденными в процессе исследования параметрами позволяет полностью симметрировать систему и компенсировать реактивную мощность в ней, что существенно улучшает условия работы основного оборудования тяговой подстанции переменного тока и существенно снижает потери в линии электропередачи.

Литература

- 1. Справочник по электроснабжению железных дорог. Том 1 [Текст] /Под ред. К.Г.Марквардта. М.: Транспорт, 1981. 390 с.
- 2. Справочник по электроснабжению железных дорог. Том 2 [Текст] / Под ред. К. Г.Марквардта. М.: Транспорт, 1981. 392 с.
- 3. Марквардт, К. Г. Электроснабжение электрифицированных железных дорог [Текст] / К. Г. Марквардт. М.: Транспорт, 1982. 528 с.
- 4. Гарро, М. Электрическая тяга [Текст] / М. Гарро. М.: Гос. трансп. железнодор. изд-во, 1959. 387 с.
- Жежеленко, И. В. Показатели качества электроэнергии на промышленных предприятиях. [Текст] / И. В. Жежеленко. М.: Энергия, 1977. – 128 с.
- Шидловский, А. К Симметрирование однофазных и двухплечевых электротехнологических установок [Текст] / А. К. Шидловский, Б. П. Борисов. К.: Наукова думка, 1977. 160 с.
- Шидловский, А. К. Повышение качества энергии в электрических сетях [Текст] / А. К. Шидловский, В. Г. Кузнецов. К.: Наукова думка, 1985. – 324 с.
- Закарюкин, В. П. Анализ схем симметрирования на тяговых подстанциях железных дорог переменного тока [Текст] / В. П. Закарюкин, А. В. Крюков, Е. С. Иванова // Електрифікація транспорту. – 2013. – № 6. – С. 26–33.
- Бардушко, В. Д. Параметрический синтез систем параллельных емкостных компенсирующих устройств в тяговой сети в современных условиях [Текст] / В. Д. Бардушко. – Електрифікація транспорту. – 2013. – № 6. – С. 8–13.
- Nelder, J. A. A Simplex Method for Function Minimization [Text] / J. A. Nelder, R. Mead // Computer J. 1965. Vol. 7, Issue 4. – P. 308–313.
- Дьяконов, В. П. МАТLAB 6/6.1/6.5 + Simulink 4/5. Основы применения. Полное руководство пользователя [Текст] / В. П. Дьяконов. – М.: СОЛОН-Пресс, 2002. – 768 с.
- Ягуп, В. Г. Расчет режима компенсации реактивной мощности в несимметричной системе электроснабжения методом поисковой оптимизации [Текст] // В. Г. Ягуп, Е. В. Ягуп // Наукові праці Донецького національного технічного університету. Серія «Електротехніка і енергетика». – 2011. – Вип. 11 (186). – С. 449–454.