- 6. Vogt, K. 4-Phase-Rhinomanometry Basics and Practice [Text] / K. Vogt, A. A. Jalowayski // Rhinology. 2010. № 21. P. 1–50.
- Canbay, E. I. A comparison of nasal resistance in white, Caucasians and blacks [Text] / E. I. Canbay, S. N. Bhatia // Rhinology. 1997. – Vol. 11, Issue 1. – P. 73–75. doi:10.2500/105065897781446801
- Samolinski, B. K. Changes in nasal cavity dimensions in children and adults by gender and age [Text] / B. K. Samolinski, A. Grzanka, T. Gotlib // Laryngoscope. – 2007. – Vol. 117, Issue 8. – P. 1429–1433. doi:10.1097/mlg.0b013e318064e837
- Crouse, U. Effects of age, body mass index, and gender on nasal airflow rate and pressures [Text] / U. Crouse, M. T. Laine-Alava // Laryngoscope. – 1999. – Vol. 109, Issue 9. – P. 1503–1508. doi:10.1097/00005537-199909000-00027
- 10. Seren, E. Frequency spectra of normal expiratory nasal sound [Text] / E. Seren // Am J Rhinology. 2005. № 19. P. 257–261.
- 11. Марпл-мл, С. Л. Цифровой спектральный анализ и его приложения [Text] / С. Л. Марпл-мл. М. Мир, 1990. 584 с.
- Нечипоренко, А. С. Особенности применения спектрального анализа для объективной оценки носового дыхания [Text] / А. С. Нечипоренко // Бионика интеллекта. – 2013. – № 2 (81). – С. 105–109.
- Broms, P. Rhinomanometry. II. A system for numerical description of nasal airway resistance [Text] / P. Broms, B. Jonson, C. J. Lamm // Acta Otolaryngology – 1982. – № 94 (1-2). – P. 157–168.
- 14. Mlynski, G. Diagnostik der respiratorischen Funktion der Nase [Text] / G. Mlynski, A. Beule // HNO. 2008. Vol. 56, Issue 1. P. 81–99. doi:10.1007/s00106-007-1655-0
- Грицунов, А. В. Выбор методов спектрального оценивания временных функций при моделировании СВЧ-приборов [Text] / А. В. Грицунов // Радиотехника. – 2003. – № 9. – С. 25–30.

Викладені результати досліджень розсіювачів, до складу яких входять елементи з нелінійними характеристиками. Показано, що за рахунок вибору типа випромінювача і його геометричних розмірів можна створити як поодинокі нелінійні розсіювачі, так і решітки на їх основі з коеффіцієнтом перетворення близьким до гранично можливого для використованих в них нелінійних елементів

Ключові слова: нелінійне розсіяння, нелінійний елемент, коеффіцієнт перетворення, побічне випромінювання, випромінювач

Изложены результаты исследований рассеивателей, в состав которых входят элементы с нелинейными характеристиками. Показано, что посредством выбора типа излучателя и его геометрических размеров возможно создание как одиночных HP, так и решеток на их основе с коэффициентом преобразования близким к предельно возможному для используемых в них нелинейных элементов

Ключевые слова: нелинейное рассеяние, нелинейный элемент, коэффициент преобразования, побочное излучение, излучатель

D

1. Введение

-

Эффект так называемого "нелинейного рассеяния", заключается в переизлучении сигнала рассеивателем как на частотах возбудающих воздействий, так и на побочных частотах, отсутствующих во внешнем воздействии (побочные излучения). Побочные излучения (на частотах гармоник внешних воздействий или их комбинационных составляющих) возникают из-за

УДК 621.396.67.01 УВЕЛИЧЕНИЕ ЭФФЕКТИВНОСТИ ГЕНЕРАЦИИ ГАРМОНИК НЕЛИНЕЙНЫМИ РАССЕИВАТЕЛЯМИ

А.И.Лучанинов Доктор физико-математических наук, профессор* E-mail: ailuchaninov@yahoo.com

Д. С. Гавва

Кандидат технических наук, доцент* E-mail: gavvads@gmail.com

С. Р. Уайд

Аспирант* E-mail: owaidsalman@yahoo.com *Кафедра основ радиотехники Харьковский национальный университет радиоэлектроники пр. Ленина, 14, г. Харьков, Украина, 61166

наличия в структуре рассеивателя элементов с нелинейными характеристиками. Сами же рассеиватели, в структуре которых имеются элементы с нелинейными свойствами, получили название нелинейных рассеивателей (НР). Они привлекают пристальное внимание исследователей, так как области их применения достаточно разнообразны. Во-первых, НР являются объектами нелинейной радиолокации [1]. Во-вторых, нелинейными рассеивателями являются и приемно-выпрямительные элементы (ПВЭ) систем беспроводной передачи энергии [2]. Кроме этого, в настоящее время решетки, состоящие из нелинейных рассеивателей, находят применение в миллиметровом диапазоне волн при создании источников излучения повышенной мощности [3–6].

Использование НР в любой из вышеперечисленных областей требует знания их характеристик. При этом возникают задачи исследования в различной формулировке. Так в области нелинейной радиолокации чаще всего требуется решение задач анализа НР. Если НР являются приемно-выпрямительные элементы систем беспроводной передачи энергии, то на первый план выдвигаются вредные аспекты нелинейного рассеяния - при выборе типа излучателя для ПВЭ ставится цель найти такие его параметры, которые бы позволили уменьшить побочное излучение и тем самым увеличить КПД элемента и улучшить характеристики ЭМС системы. Если же НР используются для реализации антенн с умножением частоты, то, в данном случае, необходимо решаеть задачу увеличения излучения НР на какой-либо из выбранных гармоник, так как именно оно определяет эффективность функционирования антенн с умножением частоты. Следует отметить, что в подобной постановке требуется решать задачу и при разработке НР для других целей [7, 8].

2. Анализ литературных данных и постановка задачи

Разработки антенных решеток с НР, работающих в режиме умножения частоты, начаты сравнительно давно [3-6]. Например, в [3] рассмотрена решетка НР, каждый из которых представляет собой симметричный излучатель, нагруженный на диод Шоттки. На входе и выходе решетки помещены соответствующие устройства фильтрации и согласования. Такая решетка НР, возбуждаемая плоской волной, обеспечила в режиме удвоения частоты эффективность преобразования около 9 % при выходной мощности 0,5 Вт на частоте 66 ГГц. Авторами цитируемой работы прогнозируется получение эффективности преобразования порядка 50 % при выходной мощности в несколько ватт и делается вывод о необходимости дальнейших исследований в этой области. Следует однако отметить, что в рассматриваемых работах авторы предполагали, что излучающая структура - решетка из симметричных вибраторов, а функции согласования и фильтрации выполняются квазиоптическими согласующими трансформаторами в виде частотно-селективных поверхностей, расположенных вне НР. Таким образом актуальной является задача улучшения характеристик НР за счет рационального выбора характеристик самого излучателя.

3. Цель и задачи исследования

Цель исследований заключается в поиске таких технических решений НР, которые, за счет выбора конструкции излучателя и, следовательно, его параметров, обеспечивали бы высокую эффективность преобразования, требуемые характеристики направленности и простоту реализации НР. Для достижения данной цели следует вначале, исходя из характеристик нелинейных элементов, изучить условия, при которых достигается максимум коэффициента преобразования в HP, а затем выяснить, при использовании каких излучателей данные условия могут быть реализованы.

При решении перечисленных задач предполагалось, что к HP предъявляются следующие требования: высокая эффективность умножения в широком диапазоне уровней плотности потока падающей мощности; широкая диаграмма направленности с максимумом излучения по нормали к плоскости решетки как на частоте внешнего воздействия ω_0 , так и на частоте переизлучения $n\omega_0$ (обеспечивает эффективное функционирование решетки HP в большом секторе углов возбуждения); максимально возможная рабочая частота; высокая технологичность.

Последнее и предопределило структуру построения анализируемых элементов - непосредственно соединенный с нелинейным элементом слабонаправленный излучатель, возбуждаемый плоской волной с частотой ω_0 и переизлучающий на частоте $n\omega_0$. В качестве НЭ рассматривались три группы серийно выпускаемых диодов. Первая группа – диоды с допустимой входной мощностью $\,P_{\!_M}\,{\sim}\,0,2\,$ Вт, вторая –диоды с $P_{\rm M}\,{\sim}\,0.5\,$ Вт и третья — диоды с $P_{\rm M}\,{\sim}\,1$ Вт. Для каждой из групп были определены по паспортным данным параметры "усредненного" диода группы и расчеты проводились для такого диода. В дальнейшем "усредненный" диод с ${\rm P_M} \sim 0.2$ Вт обозначен как "Д-1", диод с $P_{\rm M} \sim 0.5~{\rm Bt} - {\rm как}$ "Д-2", а диод с $P_{\rm M} \sim 1~{\rm Bt} - {\rm как}$ "Д-3". Таким образом, сделана попытка спрогнозировать параметры НР с учетом состояния элементной базы.

4. Пути максимизации коэффициента преобразования

В качестве критерия эффективности преобразования частоты HP выберем интегральный критерий, так называемый коэффициент преобразования $K_n(n\omega_0)$ [9], который определяется как отношение мощности, излучаемой HP на частоте *n*-й гармоники $P_{\Sigma n}$ к максимальной мощности P_{in} , которую может извлечь из поля возбуждения излучатель HP, то есть $K_n(n\omega_0) = P_{\Sigma n} / P_{in}$. Учитывая структуру построения анализируемого HP (непосредственное соединение излучателя с HЭ) конкретизируем соотношение для определения $K_n(n\omega_0)$. В рассматриваемом случае мощность излучения *n*-той гармоники равна

$$P_{\Sigma n} = \frac{0.5 U_m^2 (n\omega_0)}{R_A (n\omega_0)},$$
(1)

где $U_m(n\omega_0)$ – амплитуда напряжения *n*-той гармоники на НЭ, зависящая от степени нелинейности характеристик диода, $R_A(n\omega_0)$ – активная часть импеданса излучателя относительно клемм подключения нелинейных элементов на частоте $n\omega_0$.

Максимальная мощность, которую может извлечь антенна из поля возбуждения и передать в согласованную нагрузку, равна

$$P_{\rm in} = \frac{e_{\rm A}^2(\omega_0)}{8R_{\rm A}(\omega_0)}.$$
(2)

Здесь $e_A(\omega_0)$ – амплитуда ЭДС, наводимой полем возбуждающей волны на клеммах НР, к которым пдключается нелинейный элемент, $R_A(\omega_0)$ – активная часть импеданса излучателя относительно клемм подключения нелинейного элемента на частоте возбуждения.

С учетом данных выражений для коэффициента преобразования из (1) и (2) получим:

$$K_{n}(n\omega_{0}) = \frac{P_{\Sigma n}}{P_{in}} = \frac{4U_{m}^{2}(n\omega_{0})R_{A}(\omega_{0})}{e_{A}^{2}(\omega_{0})R_{A}(n\omega_{0})}.$$
(3)

Как видно из приведенного соотношения, величина коэффициента преобразования зависит о целого ряда факторов: уровня возбуждения e_A , параметров диода, определяющих величину $U_m(n\omega_0)$, и значений импеданса излучателя на основной частоте и частоте *n*-й гармоники. Изучалось влияние на величину K_n каждого из перечисленных факторов для двух режимов работы умножительного диода - режима резистивной и режима емкостной нелинейностей. Поэтому диод Шоттки моделировался в виде параллельного соединения резистивного нелинейного сопротивления с характеристикой

$$i(u) = \begin{cases} I_{s}(e^{\alpha u} - 1), & \forall \quad u \leq U_{M} \\ D(u - U_{M}) + I_{s}(e^{\alpha U_{M}} - 1), & \forall \quad u > U_{M} \end{cases}$$
(4)

и нелинейной емкости C(u), равной

$$C(u) = \begin{cases} \frac{C_0}{\left(1 - \frac{u}{\phi_k}\right)^{\nu}}, & \forall \ u \le U_{\max}, \\ C_{\max}\{k(u - U_{\max}) + 1\}, & \forall \ u > U_{\max}. \end{cases}$$
(5)

Здесь

$$U_{max} = \phi_k \left\{ 1 - \exp\left[\frac{1}{\nu} ln\left(\frac{C_0}{C_{max}}\right)\right] \right\},$$
(6)

$$k = \frac{\nu C_0}{\phi_k C_{max} \left(1 - \frac{U_{max}}{\phi_k}\right)^{1+\nu}},$$
(7)

где $U_{\rm M}$ – напряжение, соответствующее максимально допустимому току диода; D – параметр, выбираемый эмпирическим путем из условия улучшения сходимости итерационного процесса; C_0 – емкость диода при u=0; $C_{\rm max}$ – емкость диода при $u=U_{\rm max}$; $U_{\rm max}$ – напряжение, определяемое из условия ($\phi_{\rm k} - U_{\rm max}$)/ $U_{\rm max}$ <<1 ≠ 0. Остальные параметры см., например, [10].

В ходе расчетов применялся разработанный на кафедре ОРТ ХНУРЭ пакет программ VEGA, основанный на методе гармонического баланса.

Остановимся на результатах исследований для НЭ, работающих в режиме с резистивной нелинейностью. Из общей теории умножителей частоты [11] известно, что максимально возможное значение коэффициента преобразования в данном случае ограничивается величиной $1/n^2$, т. е. такой режим разумно применять только при малой кратности умножения. Поэтому ограничимся случаем n=2 и предположим, что излучение на всех гармониках с n>2 отсутствует ($Z_A(n\omega_0) = 0$ при n>2). На рис. 1 и 2 представлены результаты расчета зависимостей $K_n(2\omega_0) = F(P_{in} / P_M)$ и $K_n(2\omega_0) = F[R_A(2\omega_0) / R_A(\omega_0)]$ для диодов "Д-3", 2 – "Д-2", 3 – "Д-1" (кривые 1–3 соответственно).

Рис. 1. Изменение коэффициента преобразования $K_n(2\omega_0)$ от уровня входной мощности P_{in} / P_M для различных диодов: 1 – "Д-3"; 2 – "Д-2"; 3 – "Д-1"

Рис. 2. Зависимость коэффициента преобразования $K_n(2\omega_0)$ от соотношения импедансов излучателя $R_A(2\omega_0)/R_A(\omega_0)$ для различных диодов: 1 – "Д-3"; 2 – "Д-2"; 3 – "Д-1"

Под P_{M} здесь понимается предельно допустимая входная мощность для рассматриваемого типа диода. Первая зависимость получена для случая $R_{A}(\omega_{0}) = 25 \text{ Om}, a R_{A}(2\omega_{0}) / R_{A}(\omega_{0}) = 0,25$. Вторая из указанных зависимостей вычислялась при условии, что $R_{A}(\omega_{0}) = 50$ Ом а отношение P_{in} / P_{M} равно 0,01 для диода "Д-3" и 0,05 – для других диодов. Данные расчетов энергетических характеристик антенн-удвоителей приведены в табл. 1.

Анализ приведенных результатов, позволил выявить следующие закономерности:

– при уменьшении сопротивления $R_A(\omega_0)$ область максимальных величин коэффициента преобразования смещается в сторону больших значений P_{in} ;

- чем меньше допустимая мощность диода, тем больше отношение P_{in} / P_M, соответствующее максимуму величины K_n(2ω₀);

– для серийных диодов Шоттки, работающих в режиме резистивной нелинейности, при изменении величины R_A(ω_0) в пределах (25...800) Ом максимум коэффициента преобразования наблюдается преимущественно в том случае, если отношение сопротивлений $R_{A}(2\omega_{0})/R_{A}(\omega_{0})$ лежит в интервале значений 0,25....0,5.

При расчетах энергетических характеристик НР, построенных по схеме с нелинейной емкостью, как и следовало ожидать, получены более высокие значения коэффициента преобразования. Данные предварительных расчетов показали, что этом случае коэффициент преобразования имеет приемлемую для построения умножительной схемы величину (около 30 %) даже при *n*=4. Однако создание НР с коэффициентом умножения более двух представляется затруднительным в силу сложности реализации излучателя с сопротивлением $R_A(4\omega_0)$ ~1,5 Ом, что примерно на порядок меньше,

бразно изучать условия максимизации коэффициента преобразования только для случая *n*=2.

ски не изменяются, тогда как активные резко убывают с уменьшением е_А;

- наибольшее отношение $R_A(2\omega_0)/R_A(\omega_0)$ соответствует интервалу значений е_А, в пределах которого максимальные величины K_n(2ω₀) близки предельному значению, равному единице (например, е_А 0,4...0,25 в табл. 2). Одновременно и величина R₄(2ω₀) приемлема для реализации излучателя.

Таблица 2

Зависимость $\mathrm{K_{nmax}}(2\omega_{_0})$ от $\mathrm{e}_{_A}$											
е _А , В	0,1	0,15	0,2	0,25	0,3	0,35	0,4	0,45	0,5		
$K_{nmax}(2\omega_0)$ %	81,5	98,2	99,9	100	97,8	91,7	88,3	80,2	83,0		
$R_{A}(\omega_{0})$, Om	7	7,5	8	9	10,3	12	13,8	15,8	20		
$X_{A}(\omega_{0})$, Om	46	46	46	46	46	46	46	46	46		
$R_{A}(2\omega_{0}), Om$	1	2	2,4	2,4	4	6	6	6	5,3		
$X_{A}(2\omega_{0})$, O_{M}	23	23	23	23	23	23	23	23	23		

Приведенные выше данные позволяют оценить потенциальные возможности НР по коэффициенту преобразования для случаев умножения частоты на нелинейном сопротивлении и на нелинейной

Таблица 1 емкости и являются исходными для поиска вариантов реализации излучателей антенн-умножителей.

5. Анализ нелинейных рассеивателей с различными типами излучателей

Рассмотрим вопросы выбора излучателя для НР. Как показано выше, отношение его входных сопротивлений на второй и первой гармониках $R_{A}(2\omega_{0})/R_{A}(\omega_{0})$ должно составлять величину порядка 0,25...0,5. Следует отметить, что задача разработки излучателя с указанным соотношением входных импедансов ранее не решалась. Однако, как следует из теории линейных

излучателей, возможность получения близкого к необходимому значения $R_{A}(2\omega_{0})/R_{A}(\omega_{0})$ существует даже для простейших излучателей - полуволновых вибраторов - путем смещения вдоль него точки питания, которое детально исследовано, например, в [12]. Конкретные вычисления, подтвердившие данное предположение, были проведены на основе метода интегральных уравнений для линейного вибратора (рис. 3, *a*) длиной *l*, расположенного на высоте h над экраном. Результаты показали, что, изменяя размеры l, l1 и h, можно добиться выполнения условия $R_A(2\omega_0)/R_A(\omega_0) = 0.25...0,5.$ Таким образом, данные расчеты позволили выбрать требуемые размеры излучателя. Например, при kl=3,14; kl_1=0,87; *kh*=1,6 (*k* – волновое число свободного пространства) излучатель имеет следующие значения входных сопротивлений на частотах гармоник: Z_A(ω_0) =251 Ом, $Z_A(2\omega_0) = 116 \text{ Om.}, Z_A(3\omega_0) = (99 \text{-} j151) \text{ Om}, Z_A(4\omega_0) =$ =(44-ј107) Ом.

чем величина R_A(ω_0). В связи с этим далее целесоо-

Параметр	Тип диода	$R_{A}(\omega_{0})$, OM							
		25	50	100	150	200	400	800	
$K_{nmax}(2\omega_0),\%$	"Д-1"	14,2	14,5	13,7	13,2	12,9	12,8	11,1	
	"Д-2"	15,9	16,6	14,4	12,2	11,7	9,5	6,9	
	"Д-3"	17,0	17,7	17,7	17,6	16,8	16,6	16,2	
$R_{A}(2\omega_{0})/R_{A}(\omega_{0})$	"Д-1"	0,25	0,5	0.5	0,25	0,5	0,5	0,25	
	"Д-2"	0,5	0,25	0,25	0,1	0,1	0,25	0,25	
	"Д-3"	0,25	0,5	0,5	0,25	0,25	0,5	0,25	
P_{in} / P_M	"Д-1"	0,4	0,1	0,05	0,05	0,01	0,005	0,005	
	"Д-2"	0,1	0,05	0,05	0,05	0,05	0,01	0,005	
	"Л-3"	0.05	0.01	0.01	0.005	0.005	0.001	0.001	

Результаты вычисления параметров НР для различных диодов

Для определения требований к частотной характеристике импеданса излучателя численно была решена задача нахождения максимального значения коэффициента преобразования в зависимости от значений входного импеданса излучателя на основной частоте и частоте второй гармоники. Так же, как и для резистивной нелинейности предполагалось, что излучение на всех высших гармониках, кроме второй, отсутствует. В табл. 2 приведена зависимость максимальной величины К_n(2ω₀) от уровня возбуждения и указаны сопротивления $Z_{A}(\omega_{0})$ и $R_{A}(2\omega_{0})$, при которых достигаются эти значения коэффициента преобразования.

Из полученных данных следует, что:

 – активные составляющие сопротивлений R_Δ(2ω₀), при которых K_n(2ω₀) достигает максимума, имеют весьма небольшие значения, причем на частоте 2ω последние в 2...4 раза меньше, чем на частоте $2\omega_0$;

– реактивные составляющие сопротивлений Х₄(2ω₀) с изменением уровня возбуждения практиче-

Рис. 3. Варианты реализации НР: *а* - на основе излучателя со смещенной точкой включения диода и блокировочными индуктивностями L; *б* - на основе излучателя со

смещенной точкой включения диода без блокировочных индуктивностей; *В* - на основе двухчастотного излучателя

При объединении такого излучателя с диодом типа "Д-3" образуется НР (рис. 3, *a*), динамическая характеристика которого показана на рис. 4.

Рис. 4. Зависимость коэффициента преобразования $K_n(2\omega_0)$ от плотности потока мощности возбуждающего поля для HP с резистивной нелинейностью

Расчеты проводились с учетом влияния третьей и четвертой гармоник (т. е. учитывались конкретные

значения $Z_{A}(3\omega_{0})$ и $Z_{A}(4\omega_{0})$, отличные от нуля) в предположении, что диод работает в режиме резистивной нелинейности. Полученный результат свидетельствует о том, что энергетические показатели исследуемого НР близки к предельно достижимым для данного режима (максимальный коэффициент преобразования НР составляет 15,5 %, т. е. близок к 17,7 % (табл. 1)). При этом величина K_p(2w₀) превышает 10 % в широком интервале плотностей потока падающей мощности (от 5 до 90 Вт\м²). Сравнивая полученные результаты со случаем, когда в НР используется симметричный вибратор, отметим, что такое простое решение – смещение точки питания излучателя позволило почти в два раза увеличить К_р(2ω₀). Несомненное достоинство рассмотренной конструкции – простая конфигурация излучателя, что существенно при разработке технологичных конструкций решеток антенн-умножителей.

Исследуем теперь возможность использования излучателя со смещенной точкой питания для НР с емкостной нелинейностью (рис. 3, б). Будем полагать, что в антенне-умножителе используется диод с параметрами: $I_s = 10^{10}$ A; $\alpha = 5$ B⁻¹; $C_0 = 0,1$ пФ; $\phi_k = 1$ B; $\nu = 0,5$. В данном случае для достижения максимального значения коэффициента преобразования необходимо, чтобы обеспечивалось отношение импедансов излучателя R₄(2ω₀)/R₄(ω₀) порядка 0,5 (табл. 2 при е₄ =0,2...0,4), причем значение их активной составляющей должно быть существенно меньше, чем у резонансного полуволнового вибратора (R_A(ω₀)≈10 Ом). Требуемая величина R_A(ω₀) может быть получена за счет уменьшения расстояния до экрана. Однако, как показали расчеты, одновременно с этим невозможно обеспечить нужные значения $X_A(\omega_0)$, $R_A(2\omega_0)$ и $X_A(2\omega_0)$, что объясняется различным числом варьируемых l, l_1, h и оптимизируемых $R_A(\omega_0)$, $X_A(\omega_0)$, $R_A(2\omega_0)$, $X_A(2\omega_0)$ параметров.

Наилучший результат для рассматриваемого случая был получен при следующих геометрических размерах излучателя kl=3,1; kl_1 =0,53; kh=0,17. Значение импедансов на частотах гармоник соответственно равны: $Z_A(\omega_0) = (7,6+j49)$ Ом, $Z_A(2\omega_0) = (9,9+j32)$ Ом, $Z_A(3\omega_0) = (16,6-j32)$ Ом, $Z_A(4\omega_0) = (4,3-j62)$ Ом. Динамическая характеристика НР на основе такого излучателя показана на рис. 5, кривая 1.

Рис. 5. Зависимость коэффициента преобразования $K_n(2\omega_0)$ от плотности потока мощности возбуждающего поля П для HP с емкостной нелинейностью

Видно, что получен весьма хороший результат по коэффициенту преобразования, хотя значение $K_n(2\omega_0)$ и отличается от предельно достижимого $K_{nmax}(2_0)$ приблизительно на 10%. Приблизить $K_n(2\omega_0)$ к $K_{nmax}(2\omega_0)$ можно усложнив излучатель, т. е. увеличив число параметров, варьируемых с целью получения требуемых входных импедансов.

Пример такого излучателя и НР на его основе приведен на рис. 3, *в*. Излучатель состоит из двух линейных вибраторов 2, 3, настроенных соответственно на частоты ω_0 и $2\omega_0$ и соединенных между собой параллельно линией передачи 4. Для уменьшения активных составляющих сопротивлений $Z_A(\omega_0)$ и $Z_A(2\omega_0)$ предусмотрены два пассивных рассеивателя 5, 6. Вся структура располагается над экраном 1. Значения импедансов могут также изменяться варьированием точки включения диода, т.к. отрезки линии 4 являются трансформаторами.

Расчеты электродинамических характеристик излучателя, показанного на рис. 3, в, подтвердили, что наличие большого числа степеней свободы в геометрии последнего позволяет более точно выполнить условия получения максимально возможного коэффициента преобразования. Так, например, для одного из вариантов рассматриваемого излучателя были получены следующие значения импеданса относительно точек подключения диода: $Z_{A}(\omega_{0}) = (12,4+j45)$ OM; $Z_A(2\omega_0) = (5,7+j23)$ OM; $Z_A(3\omega_0) = (6,2+j37)$ OM; Z_A(4ω₀)=(7,6-j158) Ом. Сравнивая приведенную частотную зависимость с данными табл. 2, легко видеть, что величина $K_n(2\omega_0)$ практически совпадает с $K_{nmax}(2\omega_0)$ при уровне возбуждения $e_A = 0,35$ В. Следовательно, энергетические характеристики НР, построенного на основе излучателя, геометрия которого показана на рис. З, в лучше, чем при использовании вибратора со смещенной точкой питания (соответственно кривые 2 и 1 на рис. 5).

Однако при разработке HP и, особенно, при использовании их в составе решеток, целесообразность применения того или типа излучателя определяется не только частотными зависимостями импеданса, но и характеристиками направленности на частотах ω_0 и $2\omega_0$.

На рис. 6 приведены диаграммы направленности одиночных НР с излучателями двух типов. Кривая 1 описывает на частотах 30 и 60 ГГц ДН антенны-удвоителя на основе вибратора со смещенной точкой питания, эскиз которой приведен на рис. 3, *б*.

Кривые 2 и 3 соответствуют диаграммам направленности на тех же частотах НР, изображенного на рис. 3, *в*. Видно, что с точки зрения направленности для использования в составе антенных решеток предпочтительнее НР на основе вибраторов со смещенной точкой питания. Они позволяют, при незначительном проигрыше в величине коэффициента преобразования по сравнению с НР на основе более сложных излучателей, обеспечить хорошие показатели крупноапертурных решеток антенн-умножителей в широком секторе углов сканирования.

Чтобы показать возможность достижения высоких энергетических параметров крупноапертурных решеток НР, были рассмотрены параметры НР на основе вибратора со смещенной точкой питания при функционировании его в составе решетки. Расчет выполнен в приближении бесконечной периодической решетки. В этом случае, как показано в [13], вычисления сводятся к определению характеристик одной ячейки периодичности. При проведении численных экспериментов использовался метод интегральных уравнений. Также полагалось, что в качестве элементов НР применены микрополосковые вибраторы со смещенной точкой питания, расположенные на подложке с относительной диэлектрической проницаемостью є ,. Ранее было показано, что высокие значения коэффициента преобразования можно получить тогда, когда умножительный диод работает в режиме емкостной нелинейности. Поэтому исследовался именно этот случай.

Рис. 6. Диаграммы направленности одиночных HP: 1 – ДН вибратора со смещенной точкой питания (рис. 3, 6) на частотах 30 и 60 ГГц, 2 – ДН двухчастотного излучателя (рис. 3, 6) на частоте 30 ГГц, 3 – ДН двухчастотного излучателя (рис. 3, 6) на частоте 60 ГГц

В качестве примера на рис. 7-10 приведены результаты расчетов энергетических характеристик НР в составе бесконечной периодической решетки с параметрами kl=2,44; kl₁=0,6; ka=0,0628; kd=3,24; kh=0,15; α_r=60°; R_н=1000 Ом; f₀=30 ГГц; θ=50° (здесь *а* - ширина микрополоскового проводника излучателя; *d* и α_г – соответственно длина стороны и угол при вершине ромбической сетки, в узлах которой расположены излучатели; θ – угол, отсчитываемый от нормали к плоскости решетки и характеризующий направление прихода возбуждающей плоской волны). При таких значениях в режиме удвоения частоты было получено значение коэффициента преобразования K_n(2ω₀)=92 %. На рис. 7 показана зависимость величины K_n(2 ω_0) от изменения направления прихода возбуждающей волны

На рис. 8–10 соответственно приведены зависимости $K_n(2\omega_0)$ рассматриваемой НР от величины диэлектрической проницаемости подложки ε_n плотности потока мощности возбуждающей волны Π и толщины подложки h. Из их анализа следует, что использование в составе решеток антенн-умножителей элементов на базе вибраторов со смещенной точкой питания позволяет получить хорошие энергетические показатели. Величина коэффициента преобразования решетки превышает 70 % в довольно широком диапазоне изменения указанных выше параметров.

Следовательно, проведенные исследования показали возможность создания как одиночных нелинейных рассеивателей, так и решеток на их основе с коэффициентом преобразования близким к предельно возможному для используемых в них нелинейных элементов. Это достигается посредством выбора типа и размеров излучателя таким образом, чтобы его электрические параметры соответствовали требованиям, определенным из решения задачи максимизации K_n для конкретного типа НЭ. Данный путь позволяет упростить конструкцию решеток НР, исключить из них дополнительные устройства согласования и фильтрации, характерные для подобных устройств, разработанных к настоящему времени.

Рис. 7. Зависимость коэффициента преобразования $K_n(2\omega_0)$ решетки НР от угла прихода возбуждающей волны θ

Рис. 9. Зависимость коэффициента преобразования $K_n(2\omega_0)$ решетки НР от плотности потока мощности возбуждающего поля П

Рис. 10. Зависимость коэффициента преобразования $K_n(2\omega_0)$ решетки НР от высоты расположения излучателей над экраном kh

6. Выводы

В настоящей работе изложены результаты исследований нелинейных рассеивателей.

Показано, что для серийных диодов Шоттки, работающих в режиме резистивной нелинейности, при изменении величины $R_A(\omega_0)$ в пределах (25...800) Ом максимум коэффициента преобразования наблюдается преимущественно в том случае, если отношение сопротивлений $R_A(2\omega_0)/R_A(\omega_0)$ лежит в интервале значений 0,25...0,5. Для диодов, работающих в режиме емкостной нелинейности значения активной составляющей входного сопротивления излучателя HP, при которых коэффициент преобразования достигает максимума, имеют весьма небольшие значения, причем на частоте $2\omega_0$ последние также в 2...4 раза меньше, чем на частоте ω_0 .

Показано, что посредством выбора типа излучателя и его геометрических размеров возможно создание как одиночных HP, так и решеток на их основе с коэффициентом преобразования близким к предельно возможному для используемых в них нелинейных элементов (в режиме удвоения частоты для режима емкостной нелинейности было получено значение коэффициента преобразования нелинейного рассеивателя порядка 90 %).

Показано, что HP на основе вибраторов со смещенной точкой питания, при незначительном проигрыше в величине коэффициента преобразования по сравнению с HP на основе более сложных излучателей, позволяют обеспечить хорошие показатели крупноапертурных решеток антенн-умножителей в широком секторе углов сканирования.

Использование результатов работы позволяет упростить конструкцию решеток НР, исключив из них дополнительные устройства согласования и фильтрации, характерные для подобных устройств, разработанных к настоящему времени.

Литература

 Нелинейная радиолокация. Части 1 -3 [Текст] // Под общ. ред. А. П. Колданова, Е. П. Чигина, А. А. Потапова, А. А. Горбачёва. – М.: Радиотехника, 2006.

- Шокало, В. М. Крупноапертурные антенны-выпрямители систем беспроводной передачи энергии микроволновым лучом [Текст] / В. М. Шокало, А. И. Лучанинов, А. М. Рыбалко, Д. В. Грецких. – Харьков: Коллегиум, 2006. – 308 с.
- Jou, C. F. Millimeter-wave diode-grid frequency doubler [Text] / C. F. Jou, W. W. Lam, H. Z. Chen, K. S. Stolt, N. C. Luhmann, D. B. Rutledge // IEEE Trans. Microwave Theory Techn. - 1988.- Vol. 36, Issue 11.- P. 1507–1514. doi:10.1109/22.8914
- Mortazawi, A. A periodic second harmonic spatial power combining oscillator [Text] / A. Mortazawi, H. D. Foltz, T. Itoh // IEEE Trans. Microwave Theory Techn. - 1992.- Vol. 40, Issue 5. - P. 851–856. doi:10.1109/22.137390
- Epp, L. W. Periodic structures with time-varying loads [Text] / L. W. Epp, C. H. Chan, R. Mittra // IEEE Trans. Antennas Propagat. - 1992. - Vol. 40, Issue 3. - P. 251–256. doi:10.1109/8.135465
- Carman, E. V-band and W-band broadband, monolithic distributed frequency multipliers [Text] / E. Carman, M. Case, M. Kamegawa, R. Yu, K. Giboney, M. Rodwell. – IEEE Microwave Symposium Digest MTT-S, 1992. - P. 819–822. doi:10.1109/ mwsym.1992.188113
- Колданов, А. П. Дистанционное обнаружение и идентификация терпящих бедствие людей на основе методов нелинейной радиолокации [Текст] / А. П. Колданов, А. А. Потапов, Е. П. Чигин, А. А. Горбачёв // Нелинейный мир. - 2007. - Т. 5, № 7-8. - С. 55–58.
- Колданов, А. П. Обозначение маршрутов следования с использованием нелинейных рассеивателей электромагнитных волн [Текст] / А. П. Колданов, В. С. Добровольский. А. А. Горбачёв, А. А. Васенков, Е. П. Чигин // Нелинейный мир. - 2007. -Т. 5, № 7-8. - С. 526–530.
- Шифрин, Я. С. Антенны с нелинейными элементами. Справочник по антенной технике. Т. 1 [Текст] / Я. С. Шифрин, А. И. Лучанинов; под ред. Л. Д. Бахраха и Е. Г. Зелкина. – М.: Изд-во ИПРЖР, 1997. - С. 207–235.
- 10. Зи, С. Физика полупроводниковых приборов. Т.1. [Текст] / С. Зи. М.: Мир, 1984. 456 с.
- Стриха, В. И. Полупроводниковые приборы с барьером Шоттки [Текст] / В. И. Стриха, Е. В. Бузанева, И. А. Радзиевский. -М.: Сов. радио, 1974. - 248 с.
- 12. Гавеля, Н. П. Антенны. Ч. 2 / Н. П. Гавеля, А. Д. Истрашкин, Ю. Н. Муравьев и др.; Под ред. Ю.Н. Муравьева. Ленинград: Изд-во ВКАС, 1963. 542 с.
- Лучанинов, А. И. Алгоритм анализа эквидистантной решетки ленточных микрополосковых излучателей произвольной геометрии, адаптированный к расчету крупноапертурных антенн с нелинейными элементами [Текст] / А. И. Лучанинов, В. М. Шокало, А. А. Коновальцев, Ю. А. Лучанинов, М. А. Омаров // Радиотехника. - 2001. - Вып. 117. - С. 78–84.