УДК 661.73: 661.74: 66.095.252.091.7 DOI: 10.15587/1729-4061.2014.27665

КВАНТОВО-ХИМИЧЕСКОЕ ИССЛЕДОВАНИЕ МЕХАНИЗМА РЕАКЦИИ [4+2]-ЦИКЛОПРИ-СОЕДИНЕНИЯ 2,3 ДИМЕТИЛБУТА-1,3-ДИЕНА И АЛЛИЛМЕТАКРИЛАТА

Я. П. Ковальский Научный сотрудник* E-mail: yakovalskyi@polynet.lviv.ua

И. С. Костив Кандидат технических наук* E-mail: kostiv.irina@gmail.com

О. И. Маршалок Кандидат химических наук, ассистент Кафедра физической химии** E-mail: ostoja@in.lviv.ua

Г.А.Маршалок Доктор технических наук, профессор* E-mail: ostoja@in.lviv.ua

И. Ю. Пыриг Кандидат химических наук, доцент Кафедра химии Львовский медицинский институт ул. Полищука, 76, г. Львов, Украина *Кафедра аналитической химии** **Институт химии и химической технологии Национальный университет «Львовская политехника» ул. С. Бандеры, 12, г. Львов, Украина, 79013

углерод-углеродные связи не могут образоваться одновременно по динамической траектории. Разница во времени между образованием двух связей тесно повязана с ожидаемой степенью стереоспецифичности, наблюдаемой в реакции.

2. Анализ литературных данных

Два согласованных механизма были предложены авторами [4]. Синхронный механизм, в котором две новые связи образуются симметрично, и ступенчатый механизм через образование бирадикального интермедиата. Анализ энергий активации в этих механизмах, использующих теорию переходного состояния на различных квантово-химических уровнях, указывает, что энергия активации, связанная с образовани-

Досліджений механізм реакції [4+2]-циклоприєднання 2,3 диметилбита-1,3-дієну і алілметакрилату квантово-хімічним моделюванням за допомогою напівемпіричної програми МОРАС2009 методом RM1. Встановлено, що молекила кінцевого продукту – аліл-1,3,4-триметилциклогекс-3-енкарбоксилату має форму напівкрісла, в якому карбоксилатна група знаходиться в ендо-положенні до циклогексенового кільця. Взаємодія між 2,3 диметилбута-1,3-дієном і алілметакрилатом протікає за ступінчатим механізмом з утворенням інтермедіату

-0

Ключові слова: 2,3-Диметилбута-1,3-дієн, Алілметакрилат, Аліл-1,3,4триметилциклогекс-3-енкарбоксилат, MOPAC2009, RM1

Исследован механизм реакции [4+2]-циклоприсоединения 2,3 диметилбута-1,3-диена и аллилметакрилата квантово-химическим моделированием С помощью полуэмпирической программы МОРАС2009 методом RM1. Установлено, что молекула конечного продукта – аллил-1,3,4-триметилциклогекс-3-енкарбоксилата имеет форму полукресла, в котором карбоксилатная группа находится в эндо-положении. Взаимодействие между молекулами 2,3 диметилбута-1,3-диена и аллилметакрилата происходит по ступенчатому механизму с образованием интермедиата

Ключевые слова: 2,3-Диметилбута-1,3-диен, Аллилметакрилат, Аллил-1,3,4триметилциклогекс-3-енкарбоксилат, MOPAC2009, RM1

1. Введение

Успехи компьютерных технологий в области квантовой химии создают возможность исследовать теоретические аспекты сложных химических реакций [1]. Применение таких технологий оказывает заметную помощь экспериментальным исследованиям в области выяснения механизма реакций циклоприсоединения, в том числе реакции по Дильсу-Альдеру.

Механизмы реакций Дильса-Альдера были предметом интенсивного исследования со стороны экспериментальных и теоретических методов [2, 3]. Многие экспериментальные исследования показывают, что реакция Дильса-Альдера стереоспецифичная по отношению к обоим реагентам, в результате чего согласованный механизм традиционно определяет путь реакции. Кроме того, на время-зависимом уровне, две новые

32

ем бирадикального промежуточного соединения, на 2.3–7.7 ккал/моль выше, чем для синхронного механизма, будучи в хорошем согласии с экспериментальными оценками (2–7 ккал/моль).

Авторы [5], изучая взаимодействие между замещенными о-бензохинонами и фурановыми производными, пришли к выводу, что путь реакции может происходить по ступенчатому полярному механизму. Для демонстрации этого механизма они использовали методологию топологического анализа глобальных индексов реактивности.

Учитывая безоговорочный приоритет экспериментальных исследований процесса получения аллил-1,3,4-триметилциклогекс-3-енкарбокислата, в данной работе обращается внимание на достижения теоретического моделирования взаимодействия 2,3-диметилбута-1,3-диена и аллилметакрилата методом химических реакций. Теоретическое описание разрыва и образования химических связей в молекулах во время таких процессов, связанных с изменением электронной структуры участников реакции, требует применения формализма квантовой теории [2].

3. Цель работы

Целью работы было проведение квантово-химического исследования механизма реакции [4+2]-циклоприсоединения 2,3-диметилбута-1,3-диена и аллилметакрилата, которое позволит проанализировать качественные стороны этой реакции и особенности строения исходных веществ и синтезированного продукта – аллил-1,3,4-триметилциклогекс-3-енкарбоксилата. Кроме того, была поставлена задача сравнения экспериментальных [6] и полученных с помощью квантово-химических расчётов активационных параметров этой реакции.

4. Методики квантово-химических расчётов

Квантово-химическое обоснование механизма взаимодействия 2,3-диметилбута-1,3-диена (ДМБ) с аллилметакрилатом (АМА), было проведено с помощью полуэмпирической программы MOPAC2009 [7] и графического интерфейса Winmostar [8].

Для оптимизации геометрии и расчёта теплоты образования ($\Delta_f H^{298}$) реакционных состояний, энергий электронного ($E_{3\pi}$) и межядерного ($E_{\pi\pi}$) взаимодействия, дипольного момента (D), ионизационного потенциала (I) и определения пути реакции был использован полуэмпирический метод RM1 с коэффициентом нормирования за энергией от 0.01 до 0.5 ккал/моль Å. Этот метод расчёта использован ввиду того, что он позволяет оптимизировать геометрию молекул, которые состоят из атомов элементов C, H и O, с наименьшей погрешностью для длин

связей и углов между ними в сравнении с другими методами пренебрежения двухатомного дифференциального перекрывания (МПДДП) [9]. Применение при квантово-химических расчетах модели COSMO (параметр EPS=x.x), учитывающей диэлектрическую

проницаемость (є) конденсированной фазы, разрешает сравнить экспериментальные и теоретические термодинамические параметры исследуемой реакции. При расчетах использовали параметр EPS=2.1, который моделирует проведение реакции в среде ДМБ с ε=2.1 [10]. Термодинамические параметры (энтальпия Н, теплоемкость C_p , энтропия S) для различных реакционных состояний рассчитывали в температурном интервале 403-433 К с использованием функции THERMO (403, 433, 10), что позволило определить энтальпию ($\Delta H^{\#}$) и энтропию ($\Delta S^{\#}$) активации. Для расчёта согласно исходной Z-матрицы внутренних координат начального состояния реакции [4+2]-циклоприсоединения 2,3-диметилбута-1,3-диена и аллилметакрилата было использовано ограниченное (RHF) и неограниченное (UHF) приближения Хартри-Фокка.

Результаты и обсуждение квантово-химического моделирования реакции [4+2]-циклоприсоединения 2,3 диметилбута-1,3-диена и аллилметакрилата

Как известно, реакция [4+2]-циклоприсоединения 2,3-диметилбута-1,3-диена с алкилметакрилатами принадлежит к электроциклическим реакциям и протекает по согласованому механизму [2, 3]. Реакция происходит между граничными молекулярными орбиталями (ГМО) донора электронов ДМБ и акцептора электронов АМА при супраповерхостном размещении реагентов. Как видно из рис. 1, многоцентровое взаимодействие происходит между высшими занятыми молекулярными орбиталями (ВЗМО) конечных атомов С(10) и С(13) диеновой системы ДМБ с низшими свободными молекулярными орбиталями (НСМО) атомов С(1) и С(2) π-системы АМА по нормальному, контролируемому граничными орбиталями, взаимодействию [11]. Нумерация атомов рис. 1, а, б соответствует нумерации атомов расчётной Z-матрицы внутренних координат.

Рис. 1. Оптимизированые модели [4+2]-циклоприсоединения ДМБ с АМА: *а* – начальное состояние ДМБ+АМА; *б* – продукт Р_{ах}

Как видно из схемы 1, [4+2]-циклоприсоединение ДМБ и АМА может проходить по согласованному механизму при синхронном взаимодействии (расчет с RHF) и ступенчатому взаимодействию (расчет с UHF) между атомами C(13)-C(1) и C(10)-C(2), соответственно:

Схема 1. Механизм согласованного [4+2]-циклоприсоединения ДМБ с АМА

Построение поверхности потенциальной энергии (ППЭ) [4+2]-циклоприсоединения ДМБ и АМА проводили по двум координатам реакции d(C13-C1) и d(C10-C2) от 3.3 до 1.5 Å с шагом –0.02 Å и рассчитывали потенциальную энергию в определенном состоянии реакционной системы. Предложенная схема позволяет получить непрерывную функцию изменения энергии системы от координаты реакции. Для определения пути реакции были построены поверхности потенциальной энергии [4+2]-циклоприсоединения ДМБ и АМА при расчете с использованием RHF и UHF (рис. 2, 3).

В случае синхронного взаимодействия ДМБ с AMA реакция преодолевает энергетический барьер переходного состояния TS (схема 1, рис. 2). Энергия активации такого взаимодействия $E_a(TS)$, рассчитанного по RHF, составляет 24.5 ккал/моль (табл. 1):

 $E_a(TS) = \Delta_f H^{298}(TS) - \Delta_f H^{298}(ДМБ+AMA) =$ =-27.9+52.4=24.5 (ккал/моль).

О теоретической возможности синхронного взаимодействия, рассчитанного по RHF, указывают значения новых связей C13-C1 и C10-C2, а также значения кратностей связей C11-C10, C12-C11, C13-C12, C2-C1, C13-C1 и C10-C2 образовавшегося цикла переходного состояния TS (табл. 2).

Что касается возможности прохождения реакции по ступенчатому механизму, то анализ поверхности потенциальной энергии, полученной расчетами с использованием UHF (рис. 3), указывает на то, что взаимодействие диена ДМБ и диенофила AMA может проходить по двум путям: с первоочередным взаимодействием атомов C(13) и C(1) (путь T11-I1-T12) или с

Таблица 1 Расчетные параметры реакционных состояний

первоочередным взаимодействием атомов С(2) и С(10)

(путь Т21-І2-Т22) (схема 1).

Pea

[4+2]-циклоприсоединения ДМБ с АМА							
кци-	- Расчетные параметры						
ное гоя-	$\Delta_{\rm f} {\rm H}^{298},$	E., eB	Ec.c. eB	D . Л	I,	v*. ci	

онное состоя- ние	Δ _f H ²⁹⁸ , ккал/моль	E _{ел} , eB	E _{C-C} , eB	D, Д	I, eB	v*, см ⁻¹
ДМБ+ +AMA	-52.4	-10080.5	7535.9	2.44	9.36	-
T11	-34.8	-11140.9	8597.1	2.38	8.43	-850.15
I1	-54.2	-11204.2	8659.6	2.34	8.42	-
T12	-50.8	-11285.7	8741.2	2.32	8.48	-277.35
T21	-30.6	-11089.7	8546.2	2.35	8.48	-833.21
I2	-46.8	-11406.0	8861.7	1.91	8.51	-
T22	-45.4	-11453.1	8908.8	1.88	8.50	-236.69
TS	-27.9	11289.6	8746.1	2.47	8.59	-874.46
P _{ax}	-97.4	-11616.3	9069.8	1.83	8.98	-

По первому пути T11-I1-T12 реакция может проходить через переходное состояние T11 с преодолением энергетического барьера E_a (T11), равного 17.6 ккал/моль (табл. 1):

 E_a (T11)= $\Delta_f H^{298}$ (T11)- $\Delta_f H^{298}$ (ДМБ+АМА)=-34.8+ +52.4=17.6 (ккал/моль).

При этом образуется новая связь между С(1) АМА и С(13) ДМБ и ослабевают связи С13-С12, С11-С10 и С2-С1, а кратность связи С12-С11 частично увеличива-

ется (табл. 2). Это свидетельствует о согласованном образовании новых и преобразовании старых связей. Образование метастабильного интермедиата I1 и переходное состояние T12 с последующим взаимодействием атомов C(2) и C(10) также проходит согласованно и дает целевой продукт P_{ax} , в котором карбоксилатная группа находится в эндо-положении к циклогексеновому кольцу (рис. 1). Формирование цикла происходит при выходе из второго переходного состояния T12 с дисротаторным вращением предельных орбиталей атомов C(2) и C(10).

Рис. 2. Поверхность потенциальной энергии реакции [4+2]-циклоприсоединения ДМБ с АМА, рассчитанная с приближением RHF

Согласно второму пути T21-I2-T22 реакция может проходить также по согласованному механизму (табл. 2) через переходное состояние T21 с преодолением энергетического барьера E_a (T21) (табл. 1) и последующим образованием интермедиата I2, переходного состояния T22 к продукту P_{ax} :

Е_а (Т21)=Δ_fH²⁹⁸(Т21)−Δ_fH²⁹⁸(ДМБ+АМА)=−30.6 + +52.4=21.8 (ккал/моль).

Поскольку второй путь требует больших затрат энергии для преодоления энергетического барьера по сравнению с первым, то вероятнее всего, реакция будет проходить по первому пути, энергетический выигрыш которого в данном случае составляет:

E_a (T21)-E_a (T11)=21.8-17.6=4.2 (ккал/моль).

Рис. 3. Поверхность потенциальной энергии реакции [4+2]-циклоприсоединения ДМБ с АМА, рассчитанная с приближением UHF

Если сравнивать результаты расчётов активационных параметров, полученных с использованием неограниченного и ограниченного приближений Хартри-Фокка, преимущество получают данные, которые указывают на прохождение процесса по ступенчатому механизму (UHF), а не по синхронному (RHF). Поскольку при прохождении процесн са по ступенчатому механизму требуется меньшая энергия для преодоления энергетического барьера:

E_a (TS)-E_a (T11)=24.5-17.6=6.9 (ккал/моль).

Таблица 2

Координаты реакции и кратности связей реакционных состояний реакции ДМБ с АМА, рассчитанные в приближениях RHF и UHF

Carrier	Координата	а реакции, Å	Кратность связи (n)							
Состояние	C13-C1	C10-C2	C11-C10	C12-C11	C13-C12	C2-C1	C3-C2	C4-C3	C13-C1	C10-C2
RHF										
ДМБ+АМА	3.80	4.50	1.924	0.995	1.923	1.915	0.946	1.785	0.001	0.000
TS	2.07	2.20	1.557	1.273	1.499	1.492	0.969	1.753	0.366	0.269
Pax	1.52	1.53	0.993	1.868	0.993	0.968	0.907	1.806	0.983	0.964
UHF										
ДМБ+АМА	3.80	4.51	1.924	0.995	1.923	1.915	0.947	1.785	0.001	0.000
T11	1.99	3.29	1.638	1.158	1.295	1.361	0.990	1.778	0.396	0.006
I1	1.53	3.85	1.483	1.300	1.012	1.014	0.999	1.782	0.973	0.001
T12	1.54	2.41	1.351	1.396	1.016	1.014	0.994	1.776	0.967	0.101
T21	2.90	1.99	1.269	1.175	1.623	1.313	0.945	1.807	0.016	0.412
I2	2.90	1.54	1.013	1.298	1.483	1.021	0.914	1.832	0.007	0.946
T22	2.43	1.55	1.016	1.377	1.371	1.021	0.913	1.834	0.085	0.945
P _{ax}	1.52	1.53	0.991	1.873	0.992	0.973	0.909	1.805	0.991	0.970

На построенных поверхностях потенциальных энергий (рис. 2, 3) рассчитанные максимумы TS, T11, Т12, Т21 и Т22 является седловыми точками поверхности и характеризируются наличием мнимых частот колебаний (v*) в теоретически рассчитанных ИК-спектрах, приведенных в табл. 1. А точки I1 и I2 – промежуточные локальные минимумы, существование которых подтверждено расчётом внутренней координаты реакции. Молекула конечного продукта P_{ax} – аллил-1,3,4-триметилциклогекс-3-енкарбоксилата (рис. 1, б), имеет форму полукресла: в циклогексеновом кольце фрагменты диена и диенофила находятся в антараповерхностном положении. А именно, атомы С(1) и С(2) находятся с разных сторон плоскости образующегося цикла. Это указывает на то, что взаимодействие между молекулами ДМБ и АМА, плоскости которых в начале реакции находятся супраповерхностно (рис. 1, а), происходит ступенчато с дисротаторным замыканием цикла на второй ступени.

Таблица 3

Экспериментальные [6] и рассчитанные в приближениях UHF и RHF активационные параметры [4+2]-циклоприсоединения ДМБ с АМА

Параметры	Е _а , ккал/моль	ΔН [#] , ккал/моль	ΔS [#] , ккал/моль К
Експериментальные	18.2	17.4	-40.7
Рассчитанные (T11-I1-T12) (UHF)	17.6	17.3	-35.6
Рассчитанные (T21-I2-T22) (UHF)	21.8	20.5	-42.6
Рассчитанные (TS) (RHF)	24.5	23.9	-49.8

Кроме того, исходя из экспериментальных [6] и квантово-химически рассчитанных активационных параметров [4+2]-циклоприсоединения 2,3-диметилбута-1,3-диена с аллилметакрилатом (табл. 3), можно утверждать, что согласованный двухступенчатый механизм этой реакции (расчёт с UHF) является более вероятным по сравнению с синхронным (расчёт с RHF), поскольку энергия и энтальпия активации такого взаимодействия максимально совпадают с экспериментальными данными.

6. Выводы

Методом химический реакций с помощью полуэмпирической пограммы MOPAC2009 исследован механизм [4+2]-циклоприсоединения 2,3-диметил-бута-1,3-диена и аллилметакрилата. Результаты расчётов активационных параметров и анализ поверхностей потенциальной энергии, полученных с использованием неограниченного и ограниченного приближений Хартри-Фокка, указывают на прохождение процесса по согласованному ступенчатому механизму с открытой электронной оболочкой, а не по синхронному механизму с закрытой оболочкой. При прохождении процесса по ступенчатому механизму для преодоления энергетического барьера реакции требуется меньшая энергия по сравнению с синхронным взаимодействием.

Молекула конечного продукта – аллил-1,3,4-триметилциклогекс-3-енкарбокислата, имеет форму полукресла, в котором карбоксилатная группа находится в эндо-положении к циклогексеновому кольцу. Строение этой молекулы также указывает на то, что взаимодействие между диеном 2,3-диметилбута-1,3-диеном и диенофилом аллилметакрилатом проходит согласованно по ступенчатому механизму с дисротаторным замыканием цикла на второй ступени.

Литература

- Dykstra, C. Theory and Applications of Computational Chemistry: The First Forty Years [Text] / C. Dykstra, G. Frenking, K. Kim, G. Scuseria. – Netherlands, First Edition, 2005. – 1167 p.
- 2. Jensen, F. Introduction to Computational Chemistry [Text] / F. Jensen. Wiley, 2006. 620 p.
- Br ckner, R. Hardcover Organic Mechanisms Reactions, Stereochemistry and Synthesis [Text] / R. Br ckner. First Edition, 2010. – 856 p.
- Domingo, L. R. Understanding the mechanism of non-polar Diels-Alder reactions. A comparative ELF analysis of concerted and stepwise diradical mechanisms [Text] / L. R. Domingo, E. Chamorro, P. Prerez // Org. Biomol. Chem., 2010. – Vol. 8. – P. 5495–5504. doi: 10.1039/C0OB00563K
- Morales-Bayuelo, A. Topological model to quantify the global reactivity indexes as local in Diels–Alder reactions, using density function theory (DFT) and local quantum similarity (LQS) [Text] / A. Morales-Bayuelo, R. Vivas-Reyes // J Math Chem. – 2013. – Vol. 51. – P. 125–143. doi: 10.1007/s10910-012-0069-8
- Polyova, I. Kinetics of allyl-1,3,4-trimethylcyclo-hex-3-encarboxylate obtaining [Text] / I. Polyova, G. Marshalok, J. Yatchyshyn, I. Polyuzhin // Chemistry & chemical technology. – 2012. – Vol. 6, Issue 2. – P. 119-122.
- 7. Stewart, J. J. P. Program Package MOPAC2009 [Electronic resource] / J. J. P. Stewart. Available at: http://www.openmopac.net
- 8. Senda, N. Program Package Winmostar [Electronic resource] / N. Senda. Available at: http://www.winmostar.com
- 9. Справочник химика. Т. 1 [Text] / «Химия», 1966. 952 с.
- Коновалов, А. И. Реакция Дильса-Альдера: Влияние внутренних и внешних факторов на реакционную способность систем диен-диенофил [Текст] / А. И. Коновалов, В. Д. Киселов // Изв.АН. Серия хим. – 2003. – № 2. – С. 279–297.
- 11. Uryadov, V.G. Chemistry and computer modeling [Text] / V.G. Uryadov, E. N. Oficerov // Butlerov messages. 2003. Vol. 1. P. 1–8.