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1. Introduction

The existing methods for searching a compromise solution 
to the problems of multi-criteria optimization are based on 
reducing the initial problem to one or more one-criterion 
optimization tasks. The so-called convolution of the partial 
criteria in the general one is used most often in the tasks of 
formation of multifunctional biopolymer materials [1–5]. 
However, the convolution, allowing finding the effective 
solutions to all the problems within one class may not be 
suitable for solving the tasks of another class. Therefore, the 
main issue a researcher faces at the stage of the generalized 
objective function is a preferable convolution method. 
The methods effectiveness of obtaining the generalized 
objective function, discussed below, is analyzed on the 
basis of the example of a number of models that describe 
various processes and stages of formation of multifunctional 
biopolymer materials.

2. Analysis of published data and problem statement

There are two basic approaches to the selection of 
the computational schemes of a compromise solution: the 
priority approach [1–3, 5, 6] and convolution of criteria [2–
4, 7]. In multi-objective optimization tasks for physical and 
chemical processes of formation of the biopolymer materials, 
the second approach is mainly used.

The most commonly used types of convolution are the 
additive and multiplicative convolutions [3, 5], maximin 
contraction [2], the method of ideal point [2], Harrington’s 
desirability function [4, 5], the analytic hierarchy process 
and some others [1–5]. The main difficulties encountered 

by engineers using these methods – the selection of the 
convolution and justification of the weighting coefficients 
of the generalized objective function. The papers [1, 2] 
prove that a low score on one criterion is not always can be 
compensated by the higher one on the other criterion. Let us 
mention as well that the quality of the compromise solution 
decreases with the increase of the output variables vector 
length i.e. transitioning to the “big” systems. In this case, the 
Intellectual Methodology of «Big» System Research [8, 9] 
allows us to estimate the reserves of improving the efficiency 
of the studied objects by formalizing the procedures of 
criteria convolution.

The use of the additive and multiplicative types of 
convolutions requires a limitation: the set of feasible 
solutions must be convex, while in case of the multiplicative 
convolution it additionally requires concavity of all 
functions iln f (x) , i 1,2, ,k=   [1, 2]. The failure to comply 
with these conditions may lead to results that can not be 
realized in practice, since the obtained solutions do not meet 
the technological limitations. Some types of convolutions 
mean equal contribution of all partial objective functions 
that are quite rare in practical tasks. According to the 
Intellectual Methodology of «Big» System Research [8], 
the convolution in a generic criterion should be based on 
the regulatory requirements and other formal restrictions, 
and a compromise suboptimization is conducted in the 
range of the permissible values. The main problem of 
choosing the convolution method is a subjectivity of the 
decision made.

Considering the above stated, a comparative analysis 
of the effectiveness of various computational schemes for 
a compromise solution to the tasks of formation of the 
biopolymer materials is of practical interest to specialists 
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in this field. Let us formulate the problem of multi-objective 
optimization in the following way.

Let the quality of the optimization object is estimated by 
a vector function

( ) ( ) ( ) ( )( )1 2 kf x f x ,f x ,...,f x ,=   (1)

the components of which are the given functions jf (x)
(j 1,2, ,k)=   of vector 1 2 nx (x ,x , x )=  . Vector x , thus, 
belongs to the set X  of its possible values. On the variables 

ix  (i 1,n= ), as a rule, the constraint in the following form is 
imposed

j j jl x u≤ ≤  (j 1, 2, ,n)=  , (2)

or

i iq (x) b≤ (i 1, 2, ,m)=  . (3)

In this case, when the set goal is characterized by 
several functions if (x) , the optimization task is to find 
the constrained minimum or maximum of all criteria. The 
solution of the formulated task requires finding a compromise 
between the criteria 1 2 kf (x),f (x), ,f (x) , which generally are 
contradictory.

We will call the limited and closed set D  as a set of 
admissible values of the vector x , which is formed by the 
limiting functions (2) and (3).

It is required to find such a point x D∗ ∈ , that will provide 
an optimal value of the functions 1 2 kf (x),f (x), ,f (x)  on the 
set D.

Analysis of publications devoted to the mathematical 
modeling of physical and chemical processes of the biopolymer 
materials formation showed that the authors mainly use the 
algebraic equations, resulting from the processing of the 
experimental data, as the objective functions [10–13]. This 
form of recording the mathematical models is the most 
convenient in case of having incomplete information about 
the specifics of the process.

Differential equations in publications devoted to 
the modeling and optimization of chemical technology 
processes describe the dynamic continuous-time processes 
[6]. Typically, these are the differential equations of the first 
or second order. The models in excess describe the processes 
with discrete time or established processes.

In [1, 2] it is shown that the solutions obtained for 
one class of tasks may not be suitable for another class of 
tasks. Thus, the comparison of the effectiveness of various 
computational schemes for obtaining a compromise solution 
for the tasks of multi-objective optimization for the formation 
of multifunctional biopolymer materials is an important task.

3. Purpose and objectives of the study

The purpose of this paper is a comparative analysis 
of the effectiveness of some of the most frequently used 
computational schemes for a compromise solution for the 
physical and chemical processes of the biopolymer materials 
formation.

In accordance with the set goal the following research 
objectives are identified:

– the formulation of the criteria to assess the effectiveness 
of various computational schemes;

– the allocation of a group of tasks specific to the 
production of multifunctional biopolymer materials;

– adaptation of the computational schemes for the tasks 
of the constrained optimization of the biopolymer materials.

4. Computational schemes for obtaining a compromise 
solution in the tasks of formation of multifunctional 

biopolymer materials

Analysis of the effectiveness of different schemes for 
obtaining a compromise solution is made for a number 
of physical and chemical processes occurring during the 
formation of the biopolymer materials such as leather and 
fur. In this paper we use a mathematical description of the 
main stages of production of leather and fur materials:

1. The stage of preparation of raw skin for further 
processing, such as structuring. In this paper, we consider 
two processes of soaking and liming:

Process 1.1. Dehairing and liming with hair recycling. As 
a result of the experimental data, three algebraic equations 
of the second order are obtained; each criterion is minimized.

Process 1.2. One-step dehairing-liming. The process 
statics is described by two algebraic equations of the second 
order, dynamics – by ordinary differential equations (ODE) 
of the first order; the first criterion is minimized, the se- 
cond – is maximized.

2. The stage of stabilization and formation of the semi-
finished product structure:

Process 2.1. Semi-finished product tanning. The 
mathematical description of the process is represented by 
four algebraic models of the second order; all objective 
functions are maximized.

Process 2.2. Wool sheepskin tanning-greasing. The 
mathematical description of the static process is obtained 
by processing the experimental data and is represented by 
five algebraic equations of the second order, the dynamics of 
the process is described by the first order ODE; all partial 
criteria are maximized.

3. Semi-finished product treatment stage:
Process 3.1. Formation of the lacquer coating. As a result 

of the experimental data processing, four algebraic equations 
of the second order are obtained; three obtained criteria are 
maximized, the fourth – is minimized.

Process 3.2. Formation of the emulsion coating. The 
mathematical description of the static process is represented 
by three algebraic equations; dynamics - three ODE; all 
objective functions are maximized.

Let us consider in more detail the mathematical 
description of the physical and chemical processes of a 
semi-finished product structure formation – pelt at the 
stage of cowhide dehairing-liming, the features of which 
are analyzed in detail in [10–12]. The development of a 
universal two-stage technology of dehairing-liming with 
hair recycling requires rapid dehairing of raw materials. This 
is facilitated by the use of effective surface and biologically 
active substances. This creates favorable conditions for 
the transport of chemicals, due to the removal of non-
collagenous structures with animal skins, deep separation 
of fibrillar structures of the dermis, increased mobility of its 
structural elements, which contributes to the efficient use of 
raw materials.

The technology provides conduction all the soaking-ash 
processes at a rate of basic alkaline reagents and time course 
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of treatment presented in Table 1. The effectiveness of the 
process is determined by the consumption of raw materials 
to the 1 2m  of skin (y1, kg/m ), plumping extent due to 
excessive moisture content in the pelt (y2, % mass of the 
fresh raw materials), and elongation at a load of 9,8 MPa  
(y3, %) at minimal consumption of alkaline reactants and the 
duration of the process of preparation of raw hides to further 
technological processes.

Table 1

Experiment Plan Parameters

Factor Symbol
Zero 
Level

Variability 
Interval

Consumption, % by weight of raw 
materials

sulphides in recalculation to anion S2–
1x 0,74 0,2

calcium hydroxide in recalculation 
to cation Ca2+ 2x 1,19 0,22

Liming Time Length, h 3x 12 4

The greatest influence on the output variables has the 
liming time, and the smallest – the consumption of calcium 
hydroxide and sodium sulfide [12 In order to obtain the 
mathematical description of the process of dehairing-liming, 
a series of experiments on the implementation of the central 
composite rototable plan at the public Closed JSC Chinbar 
(Ukraine) using cowhides by green-salting cure. The results 
of the experiment are shown in Table 2.

Table 2

Experiment Results

# 1 2 3 4 5 6 7 8 9 10

y1 7,21 6,93 6,78 6,71 6,98 6,67 6,72 6,63 6,87 6,77

y2 14 19 17 23 20 25 24 29 17 26

y3 12 18 21 27 20 26 29 38 19 34

# 11 12 13 14 15 16 17 18 19 20

y1 6,74 6,45 7,03 6,46 6,57 6,44 6,5 6,45 6,55 6,59

y2 19 24 15 23 20,5 21,5 21 20 21,5 21

y3 21 39 17 38 34 35 37 35 32 33

As a result of the experimental data, the mathematical 
description of physical and chemical processes of soaking-
liming of raw hides of cattle is obtained:

Restrictions on the variables

10,54 x 0,94≤ ≤ ,
 20,97 x 1,41≤ ≤ ,

 38 x 16≤ ≤ . (5)

According to experts, all three indicators of quality 1y  – 
 have about the same weight, but more important from an 

economic point of view is the first indicator – consumption 
of raw materials per 1 2m  of skin.

The detailed description of the other processes is 
presented in [10–13].

In this paper, a compromise solution for each of the 
presented processes is obtained using the following types of 
convolutions: additive (linear and quadratic), multiplicative, 
maximin, ideal point method, the convolution based on 
Harrington’s desirability function. Below we briefly consider 
computational scheme of each method and the results of 
solutions for the model (4) subject to the restrictions (5).

The additive method for constructing the objective 
function is most frequently used in multi-objective 
optimization tasks:

i

k
p

i
i 1

f(x) f (x)
=

= α∑ , (6)

where iα  – weight coefficients, i 0α ≥ , 
k

i
i 1

1
=

α =∑ , p =1, 2, 3,… 

In this paper, the weighting coefficients values are 
assumed equal for easier comparison of different methods 
of convolutions. Thus, the vector of the coefficients takes 
the form (0,33 0,33 0,33 ) , and the generalized objective 
function at p =1:

1 2 3f(x) 0,33f (x) 0,33f (x) 0,33f (x)= + + . (7)

The search of the optimum function (7) is done by using 
the Box method; the algorithm of the method is discussed 
in detail, for example, in [7]. The following results are 
obtained.

Optimum  coordinates: 1x = 0,54 %, 2x = 0,97 %, 3x = 8,4 h.
The minimum values of the partial criteria: 1f (x) =

6,44 2kg/m  , 2f (x) = 26,24 % form weight of the fresh 
raw materials, 3f (x) = 40,02 % elongation under a load of 
9,8 MPa. The minimum value of the generalized objective 
function f(x) = 3,522.

In case of the increase of the exponent of the function 
(6) to p =2, we obtain the so-called additive quadratic 
convolution:

2 2 2
1 2 3f(x) 0,33f (x) 0,33f (x) 0,33f (x)= + + . (8)

Let us note that the increase in the degree of partial 
criteria had virtually no impact on the results of optimization: 
the coordinate values of the optimum in this example differ 
only in the second and third place.

More versatile compared to the previous 
method is the maximin convolution [1, 2]. Let the 
optimization task be formulated as

( ) i ii 1, ,k
f x min f (x)

=
= α



,

then the optimal point is chosen:

i ii 1, ,kx X
x max min f (x)∗

=∈
= α



.

In this example, the same values of the weighting 
coefficients are chosen the same: 1 2 3 0,33α = α = α = . 
The calculation results: coordinates of the optimum –  

1x = 0,74 %, 2x = 1,37 %, 3x =16 h, the minimum values 
of the partial criteria: 1f (x) = 6,44 2kg/m  , 2f (x) = 24,83 % 
from the weight of the fresh raw materials, 3f (x) = 38,99 % 
elongation at the load of 9,8 MPa. The minimum value of the 
generalized objective function f(x) = 0,479.

−= − ⋅ − − +

+ + +
= + + + +

+ + −
= +

2
1 1 2 3

2 2 2
1 2 3

2 1 2 3

2 2 2
1 2 3

3

y 6,51346 6,727833 10 x 0,1053295x 0,116352x

    0,127792x 0,0480732x 0,1012196x ,

y 20,89248 2,647162x 1,714939x 2,817191x

     0,3600024x 0,3600043x 0,5258x ,

y 34,45781 3,825634







 + + −
 − −

1 2 3

2 2 2
1 2 3

x 5,074461x 5,150681x

      3,56452x 2,324439x 3,210208x . (4)
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The multiplicative criteria convolution method envisages 
the acquisition of the generalized objective function in 
accordance with the following expression:

1

i

k

i 1

f(x) f (x)α

=

= ∑ , (9)

where iα  – weight coefficients, i 0α ≥ , 
k

i
i 1

1
=

α =∑ .

It was shown above that the convolution has the most 
stringent conditions of Paretooptimality: the convex set 
of feasible solutions and concavity of all the functions 

iln f (x) , i 1,2, ,k=   [2]. The results of the optimization 
process for the model with equal weighting factors: the 
coordinates of the optimum – 1x = 0,545 %, 0,98 %, 

3x = 8h, minimum values of the partial criteria: 1f (x) =
=6,5 2kg/m  , 2f (x) = 28,17 % from the weight of fresh raw 
materials, 3f (x) = 39,42 % elongation at a load of 9,8 MPa. 
The minimum value of the generalized objective function 
f(x) = 1,56.

In accordance with the method of an ideal point, in the 
criteria space an object which has the highest possible values 
for each of the criteria is selected:

i iX
b max f (x)= , (10)

where ib  – vector estimation of the ideal point x D∗ ∈  in the 
criterion space.

Let us define the distance s(b,f(x))  between the points 
b  and f(x)  as

1
k p

p
i i

i 1

s(b,f(x)) (b f (x))
=

 
= − 

 
∑ , (11)

where p =1, 2, 3,…
Then the search for the optimal solution is reduced to 

finding the point x D∗ ∈ , the closest one to the ideal point:

x X
s(b,f(x)) min

∈
→ . (12)

Let us consider this method on the example of a 
process 1.1 model, the mathematical description of which 
is represented by the equations (4) and constraints (5). We 
take p =1, then the distance between the points b  and f(x)  
can be written as:

1 1 2 2 3 3s b f (x) b f (x) b f (x) .= − + − + −            (13)

Using the necessary extremum conditions of several 
variables function, we find the partial derivatives of the 
function (13) by 1 2 3x ,x ,x  and equate them to zero. We 
obtain a system of three equations with three unknowns:

1 2 3

1 1 1

1 2 3

2 2 2

1 2 3

3 3 3

f (x) f (x) f (x)
0,

x x x

f (x) f (x) f (x)
0,

x x x

f (x) f (x) f (x)
0.

x x x

∂ ∂ ∂
+ + = ∂ ∂ ∂

∂ ∂ ∂ + + = ∂ ∂ ∂
∂ ∂ ∂

+ + =
∂ ∂ ∂

 (14)

After substituting the corresponding partial derivatives 
of the equations (4) to (14) and solving the resulting 
system by the known methods (iteration method, Newton’s 
method, etc.), we find the vector of the optimal values 

( )x 0,532 0,80633 7,68∗ = . In accordance with the ideal 
point method, the resulting coordinates of the optimum 
provide the shortest distance between the optimum and 
ideal point. Let us substitute the coded values of the vector 
x∗  in the equation (5) to obtain the optimal values of the 
partial criteria: 1f (x) =7,295 2kg/m  ; 2f (x) =12,97 % of the 
mass of the fresh raw materials; f (x) =1,386 % elongation 
at a load of 9,8 MPa.

When using the Harrington’s desirability function [4] 
the quality of the process is assessed by the formula:

k

k
i

i 1

D d
=

= ∏ , (15)

where k – the number of indicators of process quality, id  – 
the private desirability function for the i-th quality index iy ,  
which is determined by the formula

i id exp[ exp( y )]= − − ′ , (16)

where iy′  – dimensionless quality index iy .
With the best value of the property id =1, the worst –  

id =0. In practical problems it is usually assumed that the 
value of id =0,37 corresponds to the lower boundary of 
the acceptable values, and id =0,63 – the lower limit of 
“satisfactoriness”. In this paper, the values of the partial 
criteria corresponding to the worst and the best value, 
are the following: 1y  – 6,58 and 6,47 kg of raw mate- 
rial/m2 of skin, 2y  – 21,5 and 20,5 % of raw materials weight, 

3y  – 32 and 37 % of the initial sample length. The calculations 
showed the vector of optimal values for the process 1.1: 

( )x 0,71 1,25 11,76∗ = . The value of the desirability 
function at the optimum point D = 0,62165, and the cor- 
responding partial criteria 1y =6,51 kg of raw material/m2 

of skin, 2y =20,8 % of the raw material weight, 3y =34,6 % of 
the initial sample length.

The results of the experimental verification of the results 
of the optimization of different types of convolutions for 
the rest of the formation of the biopolymer materials are 
presented below.

5. Comparative analysis of the effectiveness of different 
types of convolutions

In order to compare and analyse the optimization results 
for all the models listed in p. 4, a software module in the VBA 
environment (Visual Basic for Application) was developed. 
It implements the considered computational schemes of 
a compromise solution. A user places initial data on the  
MS Excel sheet, and then can run the calculation of one of 
the computational schemes. When evaluating the different 
kinds of convolutions in the first place, the possibility of 
finding all effective solutions, the results of experimental 
verification of the solutions, simplicity of the algorithm, 
as well as the time it takes the researcher to carry out the 
calculations, including the time for the performance of 
mathematical operations required to form a generalized 
objective function were considered.
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Optimum 1. 1 process parameters obtained using 
different types of convolutions are given in Table 3.

Table 3

The results of the optimization process of raw materials 
dehairing-liming with hair recycling

Type of 
Convolution

Optimum Coordi-
nates

Objective Functions 
Value

Value of 
Gener-
alized 

Objective 
Function

x1 x2 x3 y1 y2 y3

Additive 0,54 0,97 8,4 6,443 26,242 40,016 3,52238

Maximin 0,74 1,37 12,3 6,444 24,828 38,994 0,47871

Multipli-
cative

0,545 0,98 8 6,500 28,117 39,417 1,56192

Generalized 
Desirability 

Function
0,71 1,25 11,76 6,51 20,8 34,6 0,62165

Ideal Point 
Method

0,532 0,81 7,68 7,295 12,97 1,386 –

Compromise area for a mathematical model of the process 
1.1 is shown in Fig. 1. Response surface of partial private 
functions are created when changing the coded values  
of the factors ranging within [–1; 1] in the increments of  

ix∆ =0,01.
Experimental verification of the optimization results 

shown in Table. 3 shows that the lowest consumption of raw 
materials in rational elongation under load of 9,8 MPa is 
achieved at moderate plumping is achieved at ashing process 
duration of about 12 hours; wherein the consumption of 
hydrosulfide, sodium sulfide and calcium hydroxide does 
not exceed 0,89; 1,19; 3,30 respectively % by weight of 
raw materials [10]. Thus, the best results are obtained 
using a maximin convolution and Harrington’s desirability 
function. In accordance with the received data, raw material 
consumption can be reduced by 4.7 %, compared with other 
options, which differ by longer duration and a high content of 
environmentally hazardous substances in the waste solution. 
It should also be noted that the method of ideal point is the 
most cumbersome.

Optimum process parameters for 1. 2, process obtained 
using discussed in p. 4 convolutions types are presented in 
Table 4.

Table 4

The results of the optimization of one-step process of 
dehairing-liming of raw leather materials

Type of 
Convolution

Optimum 
Coordinates

Objective 
Functions 

Value

Value of 
Generalized 
Objective 
Functionx1 x2 x3 x4 y1 y2

Additive 5,4 10,2 13 32 631,74 83,09 49,19542188

Maximin 6 6 3,2 28 669,99 82,80 7,896796875

Multipli-
cative

6,8 10,6 13 32 631,74 83,09 36,20436238

Generalized 
Desirability 

Function
7,99 8,99 4 32 640,67 82,73 0,61425

Ideal Point 
Method

3,98 8,70 9,5 28,9 637,94 90,74 –

 

 

 

 

a  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b 
 
 
 
 
 
 
 
 
 
 
 
 
c 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d 
 

Fig. 1. The compromise area for a mathematical model of the 
process 1. 1: a – compromise area in the space of criteria 

y1–y3; b–d – response surface of the partial objective 
functions y1=f(x1,x2), y2=f(x1,x2), and y3=f(x1,x2) accordingly
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The compromise area for the mathematical model of 
the process 1. 2 is shown in Fig. 2. The response surface of 
the partial objective functions are created when changing 
the coded values of the factors ranging within [ 1;  1]−  in 
increments of ix∆ =0,01.

 
 
 
 
 
 
 
 
 
 
 
 
 

a 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c 
 

Fig. 2. Compromise area for a mathematical model of  
1.2: a – compromise area in the space of criteria y1–y2;  

b, c – the response surface of the partial objective functions 
y1=f(x1,x2) and y2=f(x1,x2) accordingly

The analysis of the information provided shows that the 
use of maximin convolution allowed to find all compromise 
tasks, unlike other methods of convolutions; while in the 
method of ideal point the value of the partial objective 
function 2y  is out of the bounds of the permissible area 
[82 85] . The conducted experiments confirmed the results 
of the calculations.

The optimal values of physical and chemical processes 
occurring at the stage of stabilization and structure formation 
of the semi-finished product are presented in Tables 5, 6.

Table 5

The results of the optimization process of semi-finished 
product tanning

Type of 
Convo-
lution

Optimum 
Coordinates

Objective Functions 
Value

Value of 
Generalized 
Objective 
Functionx1 x2 x3 y1 y2 y3 y4

Additive 1,288 33,8 0,68 87,74 108,5 243,1 –7,21 2,91136
Maximin 1,4 26 0,2 85,24 105,0 220,2 –7,69 1,10891

Generalized 
Desirability 

Function
1,2 34,17 0,68 99,27 106,6 239,6 –4,05 0,64523

Ideal Point 
Method

1,366 34,2 0,71 94,06 109,8 248,9 –3,70 –

The multiplicative convolution was not used for 2.1 
process, since the value of the partial objective function 4y  
is negative.

Table 6

The results of the optimization process of wool sheepskin 
tanning-greasing

Type of 
Convolution

Optimum 
Coordinates

Objective Functions Value

x1 x2 x3 y1 y2 y3 y4 y5

Additive 1,4 4,8 3,55 81,0 0,159 0,213 14,534 40,442
Maximin 0,6 3 3,25 62,8 0,089 0,065 12,703 30,546

Multiplicative 1,4 4,8 3,25 81,0 0,159 0,213 14,534 40,442
Generalized 
Desirability 

Function
1,01 3,91 3,55 75,8 0,064 0,041 14,5 43,0

Ideal Point 
Method

1,2 4,9 3,55 78,4 0,116 0,204 14,896 44,951

The results of the optimization processes at the stage of 
semi-finished product treatment are presented in Tables 7, 8.

Table 7

The results of the optimization process of the formation of 
the lacquer coating

Type of 
Convo-
lution

Optimum 
Coordinates

Objective Functions 
Value

Value of 
Generalized 
Objective 
Functionx1 x2 x3 y1 y2 y3 y4

Additive 189 9,4 52,5 256,02 54,10 342,2 9,82 2,5507

Maximin 246 8,4 26 290,00 66,09 263,1 10,98 0,7698

Multi-
plicative

193 10 50 256,02 54,10 342,2 9,82 2,2875

Generalized 
Desirability 

Function
197 11,25 55 347,7 74,8 320,1 7,5 0,74821

Ideal Point 
Method

197,25 11,55 51,4 368,12 73,34 331,1 10,11 –

 

 

 



16

Восточно-Европейский журнал передовых технологий ISSN 1729-3774 1/4 ( 73 ) 2015

Table 8

The results of the optimization of the formation of the 
emulsion coating process

Type of 
Convolution

Optimum 
Coordinates

Objective Functions 
Value

Value of 
Generalized 
Objective 
Function

x1 x2 x3 y1 y2 y3

Additive 28,6 10 1,85 226,23 272,78 25,90 3,1749
Maximin 26,6 6,2 1,5 240,24 336,59 22,96 1,2883

Multiplicative 28,8 9,6 1,85 226,23 272,78 25,90 3,1420
Generalized 
Desirability 

Function
29 9,25 1,75 248,5 342,7 22,9 0,74322

Ideal Point 
Method

28,1 9,05 1,86 248,89 343,01 22,77 –

Compromise area for a mathematical model of the process 
3. 2 is shown in Fig. 3. Response surface of partial objective 
functions are constructed when changing the coded values 
in the range of factors [ 1;  1]−  in increments of ix∆ =0,01.

The conducted studies and experimental verification of 
the obtained results showed that using the method of ideal 
point the worst vectors of the optimal values for processes 
1. 2, 2. 1 and 3. 1, т were found, as in this case some values 
of the partial objective functions are out of bounds of the 
admissible area. At the same time, the method of ideal point 
is the most time-consuming. The coordinates of the optimum, 
closest to the experimental, in most cases, are obtained using 
the maximin convolution. Note also that the use of maximin 
convolution allows you to find all efficient solutions.

6. Discussion of the results of studies on the effectiveness 
of different types of convolutions

The comparative analysis of the above mentioned 
computational schemes for a compromise solution in 
multiobjective constrained optimization tasks showed that 
the least convenient for practical use is the method of the 
ideal point.

Listed examples in p. 4 and 5 showed that the method 
of the ideal point is quite cumbersome, especially when p  
is enlarged. For example, for the process 1. 2 with p =2 the 
distance between the points b  and f(x)  makes

( )( ) ( )( )2 2

1 1 2 2s b f x b f x= − + − ,

and the system (14) takes the form: 

( )

( )

( )

( )

2 2 1 2
1 1 2 2

1 1

2 2 1 2
1 1 2 2

2 2

2 2 1 2
1 1 2 2

3 3

2 2 1 2
1 1 2 2

4 4

f (x) f (x)
(b f (x)) (b f (x)) 0,

x x

f (x) f (x)
(b f (x)) (b f (x)) 0,

x x

f (x) f (x)
(b f (x)) (b f (x)) 0,

x x

f (x) f (x)
(b f (x)) (b f (x))

x x

 ∂ ∂
− + − + = ∂ ∂ 

 ∂ ∂
− + − + = ∂ ∂ 

 ∂ ∂
− + − + = ∂ ∂ 

 ∂ ∂
− + − + ∂ ∂ 

0.












 =

 (17)

 

 

 

 

a                                                                                                     b 
 
 
 
 
 
 
 
 
 
 
 
 
 

c                                                                                                     d  
Fig. 3. Compromise area for a mathematical model of the process 3. 2: a – compromise area in the space of criteria: 

adhesion to wet skin y1, N/m – resistance to wet friction of rotation y2, revolutions - relative vapor permeability y3, %; 
b–d – response surfaces of partial objective functions y1=f(x1,x2), y2=f(x1,x2), and y3=f(x1,x2) accordingly
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With the increase of the number of variables and 
partial objective functions the difficulty of obtaining a 
particular type of system (17) increases. The calculations 
showed that the method of an ideal point is the most 
time-consuming and cumbersome, as it provides for the 
determination of the values of the partial derivatives 
that are a part of the system (14) or (17). Calculation of 
derivatives manually requires appropriate mathematical 
skills of the researcher, that is not always possible in the 
real production, and the use of numerical methods leads 
to more errors. Furthermore, the system of the type (17) 
may either not have real solutions, or have their infinite 
number. It should also be noted that the method uses only 
the necessary conditions for an extremum, which explains 
the result of values of the partial objective functions 
beyond the feasible region in case of 1.2, 2.1 and 3.1 
processes.

The rest of the considered computational schemes 
for compromise solutions are quite simple and easy to 
program. However, when using additive and multiplicative 
convolutions it should be noted that the set of feasible 
solutions must be convex. Solving convex programming 
problems usually complicates the optimization problem 
for a specialist in leather and fur production area. Note 
also that the main problems encountered by researchers 
for additive, multiplicative and maximin methods for 
generation of generalized objective function – the selection 
of criteria weight. This issue requires further research and 
is not considered in this paper.

The method multiplicative convolution is not 
applicable for processes in which one or more partial 
criteria take negative values. For example, in the case 
of the process 2.1 a special criterion 4f (x)  has negative 
values, and raising its value to 0,25 power is impossible. 
Also, the calculations showed that in the process of search 
for the optimum of the 2.3 process, the objective function 
takes negative values at several points, as the variation 
range is close to zero. Modification of some methods of 
search for the optimum, e. g. scanning method, would 
allow “skipping” negative values, but considerably limit 
the use of this type of convolution.

The disadvantage of the computational scheme using 
the Harrington’s desirability function is the stiffness of 
the formula (15), which does not allow to use responses 
without additional distortion distributed under laws 
other than normal. Therefore, the use of this method of 
generation of the generalized function requires testing the 
hypothesis of normal distribution of experimental data. 
Great difficulties are caused by those quality indicators, 
the values of which increase at first, but after a certain 
value (or a range of values) begin to decrease. In addition, 
the results of the optimization affects the experience of 
a researcher, as the experimenter sets the best and worst 
values of quality randomly. The disadvantage of this 

computational scheme should include the fact that all 
private quality indicators are recognized as equilibrium, 
although in practical problems this situation is rare.

In case of the maximin convolution the calculation 
is carried out for the worst case, and the result is 
influenced only by the partial criterion to which for the 
particular point (i)x , ( i 1,2, ,m=  ) the smallest value 
of the corresponding function (i)

if (x )  corresponds. This 
computational scheme is devoid of limitations associated 
with the convex set of vector assessments, making it 
convenient for practical use. The results presented in p. 4 
and 5 proved that the maximin convolution is considered 
the most efficient among the convolutions described in 
this article.

7. Conclusion

Comparative assessment of the efficiency of five 
computation schemes for obtaining a compromise solution 
is made for six models describing the basic physical 
and chemical processes of formation of the biopolymer 
materials for various purposes. The mathematical 
description of the processes under study contains the most 
commonly used types of equations.

The criterion for assessing the various types 
of convolutions is formulated. It takes into account 
the possibility of finding all effective solutions, the 
simplicity of the algorithm, the time it takes a researcher 
to carry out the calculations, including the time to 
perform mathematical operations necessary to verify the 
possibility of using a particular type of a convolution and 
the formation of generalized objective function, as well as 
the results of the experimental verification of the obtained 
solutions.

It is shown that the maximin convolution is the most 
effective and allows to take into account the technological 
features of production of the biopolymer materials. The 
use of the additive and maximin convolutions is restricted 
by the convex programming problem; the generation 
of the generalized criterion using the Harrington’s 
desirability function requires testing the hypothesis of 
normal distribution, and the ideal point method is the 
least effective and most time-consuming, and poorly 
programmed.

The software implementation of computational schemes 
of the additive, multiplicative, maximin convolutions and 
the convolution using the desirability function and the 
ideal point method is conducted; the developed software 
module is included in the application package COTSolution, 
developed at the Department of Cybernetics of Chemical-
Technological Processes of the KPI. The results can be used 
to improve existing and develop innovative technologies 
forming biopolymer materials.

References 

1. Taha, H. A. Operations Research: An Introduction (8th Edition) [Text] / H. A. Taha. – Upper Saddle River, NJ: Pearson Prentice 

Hall, 2007. – 819 p.

2. Steuer, R. E. Multiple Criteria Optimization: Theory, Computation and Application [Text] / R. E. Steuer. – New York: John Wiley, 

1986. – 546 p.

3. Ostrovskiy, G. M. Optimizatsiya himiko-tehnologicheskih protsessov. Teoriya i praktika [Text] / G. M. Ostrovskiy, T. A. Berezhinse-

kiy. – Moscow: Himiya, 1984. – 240 p.



18

Восточно-Европейский журнал передовых технологий ISSN 1729-3774 1/4 ( 73 ) 2015

 Л. Г. Євсеєва, 2015

4. Ahnazarova, S. L. Ispolzovanie funktsii zhelatelnosti Harringtona pri reshenii optimizatsionnyih zadach himicheskoy tehnologii 

[Text] / S. L. Ahnazarova, L. S. Gordeev. – Moscow: izd-vo RHTU, 2003. – 76 p.

5. Bandi, B. Metodyi optimizatsii. Vvodnyiy kurs [Text] / B. Bandi; perevod s angl. – Moscow: Radio i svyaz, 1988. – 129 p.

6. Sanginova, O. Multi-objective optimization in formation tasks of leather and fur materials [Text] / O. Sanginova, A. Danylkovych, 

S. Branovitskaja // ScienceRise. – 2014. – Vol. 2, Issue 2. – P. 43–50. doi: 10.15587/2313-8416.2014.27262

7. Danylkovych, A. G. Application of Box method for multi-objective optimization problems [Text] / A. G. Danylkovych,  

S. V. Branovitskaja, S. G. Bondarenko, O. V. Sanginova // Eastern-European Journal of Enterprise Technologies. – 2013. – Vol. 3,  

Issue 4 (63). – P. 4–8. – Available at: http://journals.uran.ua/eejet/article/view/14743/12521

8. Kats, M. A new method for solving the problems of identification, diagnosis, prognosis and optimization of complex systems  

[Text] / M. Kats // Eastern-European Journal of Enterprise Technologies. – 2011. – Vol. 3, Issue 12 (51). – P. 17–28. – Available 

at: http://journals.uran.ua/eejet/article/view/2467/2268

9. Zraychenko-Polozentsev, A. V. Evaluation of potential reserves of production for melting synthetic iron [Text] / A. V. Zraychenko-

Polozentsev, O. S. Koval, D. A. Demin // Technology audit and production reserves. – 2011. – Vol. 1, Issue 1 (1). – P. 7–15. – 

Available at: http://journals.uran.ua/tarp/article/view/4081/3747

10. Ekologichno orientovani tehnologiyi virobnitstva shkiryanih ta hutrovih materialiv dlya stvorennya konkurentospromozhnih 

tovariv. In 2 part:, Part I [Text] : monografiya / A. G. Danilkovich, V. I. Lischuk, V. P. Plavan, E. E. Kasyan, O. G. Zhigotskiy;  

A. G. Danilkovich (Ed.). – Kiev: FenIks, 2011. – 437 p.

11. Danylkovych, A. G. Innovatsiyni tehnologiyi virobnitstva shkiryanih i hutrovih materialiv ta virobiv [Text]: monografIya /  

A. G. Danylkovych, I. M. Grischenko, V. I. Lischuk et. al.; A. G. Danylkovych (Ed.). – Kiev: Feniks, 2012. – 344 p.

12. Lischuk, V. I. Vikoristannya bagatokriterialnoyi optimizatsiyi dlya poshuku kompromisnoyi oblasti protsesu zolinnya [Text] /  

V. I. Lischuk, T. G. Voytsehovska, A. G. Danylkovych // Legka promislovist. – 2007. – Vol. 1. – P. 37–39.

13. Danylkovych, A. G. Pidvischennya yakosti vtorinnogo pokrittya shlyahom optimizatsiyi pokrivnoyi kompozitsiyi [Text] /  

A. G. Danylkovych, A. S. Brayilko, N. V. Omelchenko // Visnik HNU. – 2010. – Vol. 3. – P. 129–134.

ЗАСТОСУВАННЯ 
ІНТЕРВАЛЬНИХ 

МАТЕМАТИЧНИХ 
МОДЕЛЕЙ ЗАДАЧ 

РОЗМІЩЕННЯ 
ГЕОМЕТРИЧНИХ 

ОБ’ЄКТІВ

Л .  Г .  Є в с е є в а 
Кандидат  

фізико-математичних наук, доцент
Полтавське вище міжрегіональне 

професійне училище
вул. Бірюзова, 64а,  

м. Полтава, Україна, 36009
Е-mail: lg.yevseeva@gmail.com

Статтю присвячено прикладним аспектам інтерваль-
ного математичного моделювання оптимізаційних задач 
розміщення геометричних об’єктів. Будується повний 
клас реалізацій інтервальної математичної моделі основ-
ної інтервальної оптимізаційної задачі розміщення геоме-
тричних об’єктів. Пропонуються інтервальні математичні 
моделі низки оптимізаційних задач розміщення та модифіка-
ції методів локальної та глобальної оптимізації для їх реалі-
зації в інтервальних та евклідових просторах

Ключові слова: геометричне проектування, інтервальна 
геометрія, інтервальна математична модель оптимізаційної 
задачі розміщення

Статья посвящена прикладным аспектам теории интер-
вального математического моделирования оптимизацион-
ных задач размещения геометрических объектов. Строится 
полный класс реализаций интервальной математической 
модели основной интервальной оптимизационной задачи раз-
мещения геометрических объектов. Предлагаются интер-
вальные математические модели ряда оптимизационных 
задач размещения и модификации методов локальной и гло-
бальной оптимизации для их реализации в интервальных и 
евклидовых пространствах

Ключевые слова: геометрическое проектирование, интер-
вальная геометрия, интервальная математическая модель 
оптимизационной задачи размещения
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1. Вступ

На сучасному етапі стрімко зростає інтерес до 
ефективного розв'язання оптимізаційних задач геоме-

тричного проектування, зокрема, задач розміщення, 
що пояснюється розмаїттям практичних застосувань 
і надзвичайною складністю математичних моделей та 
методів їхнього розв'язання. 


