
53

Информационно-управляющие системы

COMPARISON
OVERVIEW OF AN

ACTIVE FINGERPRINTING
APPLICATION OF THE

SECOND AND THE
THIRD LAYER OF TCP/IP

STACK
V . M o s o r o v

Doctor of Technical Science*
E-mail: volodymyr.mosorov@p.lodz.pl

S . B i e d r o n
Postgraduate student*

E-mail: SBiedron@wpia.uni.lodz.pl
T . P a n s k y i

Postgraduate student*
E-mail: panskyy@gmail.com

*Institute of Applied Computer Science
Lodz University of Technology

Stefanowskiego str., 18/22, Lodz, Poland, 90-924

Фінгерпрінтинг, як правило, використову-
ється, щоб уникнути порівняння та переда-
чі громіздких даних. Фінгерпрінтинг включає
в себе два методи: активний та пасивний. В
активному фінгепрінтингу ми працюємо із пев-
ними інструментами, які за допомогою переда-
них пакетів дозволяють дізнатись, що система
знаходиться в іншому кінці. У цій статті пока-
зано та проаналізовано основні методи актив-
ного фінгерпрінтингу, які використовуються
в канальному рівні передачі даних та в стеку
Інтернет протоколу TCP/IP

Ключові слова: активний фінгерпрінтинг,
рівень передачі даних, стек рівня TCP/IP

Фингерпринтинг, как правило, использует-
ся во избежание сравнения и передачи громозд-
ких данных. Фингерпринтинг включает в себя
два метода: активный и пассивный. В актив-
ном фингерпринтинге определенными инстру-
ментами осуществляется передача пакетов,
которые позволяют узнать, что система нахо-
дится в другом конце. В этой статье показаны
и проанализированы основные методы актив-
ного фингерпринтинга, которые используются
в канальном уровне передачи данных и в стеке
Интернет протокола TCP/IP

Ключевые слова: активный фингерпринтинг,
уровень передачи данных, стек уровня TCP/IP

UDK 004.738.5.057.4
DOI: 10.15587/1729-4061.2015.50983

1. Introduction

Fingerprinting is an extremely vast issue, considering its
origins. Remote operating systems detection is reduced to
identifying the operating system or applications running on
the scanned device which are identified applying methods
that uses small differences between implementations of the
TCP/IP stack protocols. With these seemingly insignificant
trifles we can successfully gain some very important infor-
mation from another user without his knowledge.

The objective of this method depends entirely on testing
and a number of intentions. With the appropriate knowledge
and tools, as the administrator we can check the security
of our systems or, if we have not done this before, learn the
topology and operation of the network we manage. Remote
detection of network computers is also used to carry out
reconnaissance without which Internet break-ins and thefts
would be almost impossible. Before they set to break com-
puter security, computer criminals diagnose the protections
they are dealing with and they use precisely the methods
described herein below. Uniform systems would reduce the
chance of intrusions, which would dramatically reduce the
number of attacks, and the time it takes to break the block-
ades would be much longer [1].

Fingerprinting involves two methods: active and passive.
This division and classification depends on how the desired
information is obtained. In active fingerprinting we deal
with certain tools which via crafted and transmitted packets
examine what system is at the other end. Passive fingerprint-

ing is based on monitoring, capturing and analyzing the
data transmitted by the victim. This method is mainly based
on the principle of sniffing, which is why such activities
are almost completely undetectable. When the prospective
“victim” is trying to establish a connection, they may not be
fully aware that the host or party they are connecting with is
equipped with spyware that monitors and collects informa-
tion on their computer. Basically, passive fingerprinting in-
volves all methods designed to intercept packets/datagrams,
and subsequent analysis of such packets/datagrams applying
the methods employed by active fingerprinting. The ways to
intercept data are legion, starting from the use of physical
devices within the network, such as hotspot WiFi that would
purport to be the router of an establishment, e.g. a café or
office. This option is used by a cybercriminals for capturing
or taking control over a legally operating devices during its
owner’s inattention or monitoring traffic on the Internet
sites via malicious software, e. g. viruses, Trojans, as well as
ordinary readable fluctuations in the received packets.

2. Analysis of published data and problem statement

Nowadays we are witnessing a dynamic development
of computer networks. Unfortunately, rapid development
often means that some products – in this case operating sys-
tems – are not fully worked out [2]. They feature loopholes
which, while the given system exists, are tried to be “patched
up” by developers. This feature is frequently used as the

 V. Mosorov, S. Biedron, T. Panskyi, 2015

54

Восточно-Европейский журнал передовых технологий ISSN 1729-3774 5/9 (77) 2015

advantage by the intruders, which are a consequence of
dynamic growth of cybercrime and ever more, appearance
of new ways and methods of criminal operation [3]. Each
omission by developers during the production process of the
operating system provides cybercriminals the opportunity
to exploit it. Fingerprinting [4] is just that set of principles
and methods that utilize such inaccuracies to determine the
operating system of the potential victim, which then makes
it much easier to carry out the attack [5, 6].

Over the years more and more complex methods for sam-
pling the operating systems taking advantage of the proto-
cols of the second [7] and third [8] TCP/IP layer have been
invented. A new programming tools for active fingerprinting
have created, among others SinFP [9], Xprobe2 [10], Nmap
[11]. In recent years, due to the wireless network populariza-
tion, new fingerprinting method that uses active faults in the
implementation of the protocols associated with WiFi had
been appeared [12].

In this article the basic methods of active fingerprinting
of second and the third layer of TCP/IT stack have been
mentioned. Also the various reactions of certain systems for
carried out scanning have been presented.

3. Purpose and objectives of the study

The main objective of this publication is to present basic
methods and functioning of an active fingerprinting data
link layer and the Internet TCP / IP stack.

In accordance with the set goal the following research
objectives are identified:

– Increase the public interest in Active Fingerprinting;
– Analysis of active methods of Fingerprinting;
– Present the potential threats that fingerprinting could

pose to ordinary users.

4. Reasons for the differences in the implementation of
the TCP/IP stack

In 1969, as part of the ARPANET, the idea of relation of
technical and organizational documents with the commu-
nications between computers had been born. Some of these
documents eventually began to form official standards to
which network protocols should be implemented. Unfortu-
nately, in the course of the implementation of TCP/IP stacks
in different systems there appeared some slight differences
between them. In the available literature we can find infor-
mation that the existing differences were caused by omission
or mistake of the developers during the implementation of
the stack.

Another more glaring issue is that the interpretation
of documents is often too superficial and some of the rec-
ommendations are ignored. One example might be a minor
“improvement” introduced by Microsoft into their products.
Older Windows, inclusive of the Win 98, were interpreted
by TTL=64 (as in Linux), but in later systems this number
was changed to 128 [13], thus exposing the system operated
by a potential client of the company to the risk of it being
identified by an intruder. It was this deliberate, though not
carefully considered, decision that has reduced the system
security. A user with basic knowledge how to operate this
software can easily identify which family the system comes
from, as no other system is identified by this TTL number.

5. Active fingerprinting of a data link layer

To carry out remote diagnosis of the operating system
on the level of the data link layer it takes to apply the ARP
protocol and one of the most popular NTA open-source
programs called arp-scans. This is a tool activated from
the command-line which constructs and transmits an ARP
request to the IP address and concurrently monitors the re-
action caused by the given data bits. This application enables
transmission of ARP packets to all the devices, helps deter-
mine the structure and number of hosts within the network,
including those behind the firewall, and makes it possible
to run tests without an appointed IP address. In this case,
the tool will use the IP 0.0.0.0 as the address of the sender.
In a nutshell, arp-scans provide the opportunity to easily
create your own ARP packets. They monitor and decode the
received ARP packets and include a fingerprinting utility,
“arp-fingerprint”.

This software, however, has significant drawbacks, first
and foremost of which is that it generates network traffic
based on custom-made and easy to capture packets, uses an
unroutable protocol, and enables work on a limited number
of selected operating systems.

Using ARP-scans it is possible to conduct the following
tests:

– Mac Vendor Decoding – it is possible to guess the
scanned system just by applying the ARP-scan without us-
ing any additional options.

The system’s identity is partly betrayed by the feedback
to the previously sent ARP request in the following form:

<IP address> <MAC address> <equipment manufacturer>.

The information obtained in the third column is the re-
sult of the Arp-scan decoding the first 24-bit MAC address
which contains information indicating the manufacturer.

Example:
00:04:27:6d:3a:a1 Cisco Systems, Inc.
For decoding purposes the ARP-scan uses three files

that must be updated from time to time in order to obtain
correct results. These include:

1. ieee-oui.txt – OUI IEEE list (Institute of Electrical
and Electronics Engineers Organisationally Unique Identi-
fier) which can be downloaded from the IEEE website and
updated using the get-oui script contained in the Arp-scan.

2. ieee-iab.txt – IEEE IAB list (Institute of Electrical
and Electronics Engineers Individual Address Block) which
can be downloaded from the IEEE website and updated us-
ing the get-IAB script contained in the Arp-scan.

3. mac-vendor.txt – a list identifying the other produc-
ers. It is maintained by the user and is usually much smaller
than the OUI and IAB.

When the Arp-scan starts working it reads the contents
of all three files into the hash table and checks with its con-
tents the MAC address of each received ARP feedback in
order to identify the manufacturer. Having such data it is
possible, e. g. to determine that a Cisco Systems, Inc. prod-
uct will run the IOS operating system. This method does
not help to accurately determine the version of the system;
nevertheless it reveals the devices that are bound to run a
specific operating system (e. g. Cisco).

– Non-standard ARP packets – the Arp-scan contains
a fingerprinting utility called ARP-fingerprint. It is a Perl
script used by the Arp-scan to transmit and receive ARP

55

Информационно-управляющие системы

packets. It performs eleven tests which, by exploiting the
differences in the implementation of the TCP/IP stack, will
determine what system we are dealing with.

The tests that were carried out using the program
ARP-scan are presented at the Table 1.

Table 1

Tests carried out by ARP-fingerprint

№ Description
Arp-scan

parameters
Information

1
source

address=localhost
–arpspa=127.0.0.1

127.0.0.1 should
never appear in LAN
as the source address

2
source

address=0.0.0.0
–arpspa=0.0.0.0 Some systems

respond only if the
source address of the

sender is „correct”3
source

address=broadcast
–arpspa=

=255.255.255.255

4
source

address=non-local
–arpspa=1.0.0.1

The IP 1.0.0.0/8
network is re3served
for IANA and should

not appear in LAN

5
Incorrect

operation code
–arpop=255

255 operation code
has not been defined

6
Hardware

Type=IEEE_802.2
–arphrd=6

Most systems
respond to this in the

same way as to the
type of equipment=1

7
Wrong type of

equipment
–arphrd=255

255 hardware has not
been defined.

(e. g. Ethernet=1)

8
Wrong protocol

type
–arppro=0xffff

0xffff protocol type
has not been defined

9 Protocol type=IPX –arppro=0x8137
Selected IPX

protocol

10
Incorrect length of

protocol address
–arppln=6

The length of the
protocol address is
normally 4 bytes

11
Incorrect length of
hardware address

–arphln=8
The length of the

hardware address is
normally 4 bytes

The result of each test is the answer yes (1) or no (0),
depending on whether the given host did respond or not.
From these eleven numbers the ARP-fingerprint builds a
sequence and then compares them with the list of known
“fingerprints”.

Example:
$ arp-fingerprint -o M–interface=eth0 –numeric”

172.128.1.2
01000100000 Linux 2.2, 2.4, 2.6
$ arp-fingerprint -o “–interface=eth0 –numeric”

172.128.1.3
11110100000 FreeBSD 5.3, Win98, WinME, NT4,

2000, XP, 2003 $ arp-fingerprint -o “–interface=eth0 –nu-
meric” 172.128.1.4

00000100000 Cisco IOS 11.2, 11.3, 12.0, 12.1, 12.2,
12.3, 12.4

where: $ arp-fingerprint is the arp-fingerprint option
that transmitted the sequence --interface=eth0 –numeric to
the arp-scan

–interface=eth0 selects the interface to be used (in this
case eth0)

–numeric is used in order to avoid the DNS lookup

Table 2 contains an example of the results of the scan
performed by the program ARP-scan.

Table 2

ARP-fingerprint fingerprint base

Result Sample systems

11110100000
FreeBSD 5.3, Win98, WinME, NT4, 2000, XP,

Win 2003

01000100000 Linux 2.2, 2.4, 2.6

01010100000 Linux 2.2, 2.4, 2.6, Vista, Windows 7, Windows 8

0000100000 Cisco IOS 11.2, 11.3, 12.0, 12.1, 12.2, 12.3, 12.4

11110110000 Solaris 2.5.1, 2.6, 7, 8, 9, 10, HP-UX 11

10010100011 SCO OS 5.0.7

10110100000 Win 3.11, 95, NT 3.51

11110000011
BSD 4.3, OpenBSD 3.1, OpenBSD 3.9, Nortel

Contivity 6.00, 6.05

10110110000 NetBSD 2.0.2

00000110000 Netware 6.5

As can be seen, many fingerprints concurrently identify
several systems, so it is not always possible to say with abso-
lute certainty that we are dealing with this or that system.
Sometimes even a different configuration may produce a dif-
ferent result, as is the case with, e. g. Linux which responds
to non-local source IP address when the IP is routed through
the interface on which the experiments are conducted.

– Ethernet Frame Padding – ARP packets only have
the length of 28 bytes, which is much less than the minimum
size of the Ethernet frame (46 bytes). For this reason, at least
an 18-byte filling must be placed before each ARP packet.
If the ARP implementation does not do it, the Ethernet
controller must deal with it. The arp-scan can add the filling
to the outgoing ARP-request with the -padding option. If
the -verbose option is chosen, then the arp-scan applica-
tion will inform us of any non-zero fillings received in the
ARP-response. Most implementations will reach the mini-
mum length required by the addition of the filling comprised
of zero bytes. However, there exist examples that differ sig-
nificantly from the established norms (Table 3).

Table 3

Differences in the fillings of the frames containing ARP
messages

IP address System Information

172.128.2.2 MacOS 10.4
Interval of 18 bytes 0x55

(binary 01010101)

172.128.2.3
NetScreen

ScreenOS 5.0.0
Interval of 18 bytes 0x88

(binary 10001000)

172.128.2.4 Solaris 8/SPARC
Interval of 18 bytes 0x55

(binary 01010101)

172.128.2.5 Xerox Phaser 6200
Uses the interval from

the ARP-request

172.128.2.6 HP JetDirect
Uses the interval from

the ARP-request

172.128.2.7
Linux with

eepro100 controller
Adds 4 non-zero bytes at

the end of the interval

172.128.2.8
Cisco Catalyst

IOS 12.0
Adds a part of the interval

from the ARP-request frame

Based on the results, there are some systems and devices
that react quite irregularly on the performed test, which sig-
nificantly allow for its identification in the network.

56

Восточно-Европейский журнал передовых технологий ISSN 1729-3774 5/9 (77) 2015

6. Internet layer

At the level of this layer operate two very important pro-
tocols. One of them takes active part in the transport of data,
while the second is an information protocol.

At the level of this layer the following methods of remote
detection of network devices are available:

– Don’t Fragment flag – the “flags” field [14, 15] of
the IP protocol consists of 3 bits. The first and the third
bit are not essential in this method. The second bit informs
whether a piece of information is to be divided into parts
or not. Its setting causes a certain anomaly. The Don’t
Fragment flag, despite its intended function, is currently
used by modern operating systems to detect the optimum
packet on the route between the two devices involved in
the exchange of data so as to avoid fragmentation. The dif-
ference in the implementation of the TCP/IP stack is that
some of the systems respond to the transmitted packet/
datagram with the set DF flag by setting this flag in the
reply message, while others ignore it altogether, returning
0 value, or duplicate this value. The systems’ responses to
the transmitted datagrams with the set DF flag generate
the following ICMP messages:

Destination Unreach, Echo Response, Timestamp Re-
sponse, are presented in the Table 4.

Table 4

DF fingerprints base for ICMP messages

Sample systems

DF

Unreach Echo
Time-
stamp

FreeBSD 2.0.5, 2.1.0, 2.1.5,
2.1.6, 2.2.0, 2.2.1, 2.2.2, 2.2.5,
2.2.6, 2.2.7, 2.2.8, 2.2.9, 3.0,

3.1, 3.2, 3.3, 3.4, 4.0, 4.1,
4.1.1, 4.2, 4.3, 4.4, 4.5, 4.6,

4.6.2, 4.7, 4.8, 5.0, 5.1

Duplicates
the value

Duplicates
Duplicates
the value

Linux 2.0.29, 2.0.30, 2.0.34,
2.2.0, 2.2.1, 2.2.2, 2.2.3,

2.2.4, 2.2.5, 2.2.5 15, 2.2.6,
2.2.7, 2.2.8, 2.2.9, 2.2.10,
2.2.11, 2.2.12, 2.2.12-20,
2.2.13, 2.2.14, 2.2.14-5,
2.2.15, 2.2.16, 2.2.16 22,

2.2.17, 2.2.18, 2.2.19, 2.2.20,
2.2.20-idepci, 2.2.21, 2.2.22,

2.2.23, 2.2.24

Does not
set

Sets
Does not

set

Linux 2.0.32, 2.0.36
Does not

set
Sets

Does not
respond

Linux 2.4.0, 2.4.1, 2.4.2,
2.4.2-2, 2.4.3, 2.4.4,

2.4.4-4GB
Sets Sets Sets

Linux 2.4.5. 2.4.6, 2.4.7,
2.4.8, 2.4.9, 2.4.10, 2.4.10-
4GB, 2.4.11, 2.4.12, 2.4.13,

2.4.14, 2.4.15, 2.4.16, 2.4.17,
2.4.18, 2.4.18-3, 2.4.18-4GB,
2.4.18 14, 2.4.19, 2.4.19-4GB,

2.4.20, 2.4.20 8,
2.4.21-0.13mdk

Does not
set

Sets
Does not

set

MacOS 7.5.3, 7.5.5, 7.6, 7.6.1,
8.0, 8.1

Sets Sets
Does not
respond

IPID sampling – This method uses another loophole in
the implementation of the IP protocol’s TCP/IP stack. It
brings to attention the “Identification” field. It is used in
the same way as during transmission of large size data, i.e.
such data that cannot be processed by intermediate devices
at a time (obviously provided that the “Do not Fragment”
flag is not set) [16]. Without this field it would be impossi-
ble to distinguish which element belongs to which packet/
datagram. Any system with TCP/IP stack has a way of
assigning subsequent ID values (0–65536) to subsequent
split packets/datagrams for each protocol. However, the
methods of numbering, as it turns out, are not the same
for all systems, which is why they are divided into groups
(Table 5).

Table 5

Fingerprint base of IPID fields depending on the layer 4
protocol used

Sample systems Value Session Protocol

Microsoft Windows 95 Retail,
SP 1

+256 Global
TCP, UDP,

ICMP

Microsoft Windows 95
OEM Service Release 2, 2.1, 2.5

+256 Global
TCP, UDP,

ICMP

Microsoft Windows 98 +256 Global
TCP, UDP,

ICMP

Microsoft Windows 98
Second Edition

+256 Global
TCP, UDP,

ICMP

Microsoft Windows NT 3.1–4.0 +256 Global
TCP, UDP,

ICMP

Microsoft Windows NT 5.0–6.0 +1 Global
TCP, UDP,

ICMP

Microsoft Windows Millennium
Edition

+1 Global
TCP, UDP,

ICMP

Microsoft Windows 2000, SP 2,
SP 3, SP 4

+1 Global
TCP, UDP,

ICMP

Microsoft Windows XP +1 Global
TCP, UDP,

ICMP

Microsoft Windows VISTA +1 Global
TCP, UDP,

ICMP

Microsoft Windows 7 +1 Global
TCP, UDP,

ICMP

Time To Life Identification – to perform this test, use
the TTL field contained in the ICMP in the IP header. Ac-
cording to commercially available books in which the ICMP,
IP protocol is discussed at least on a basic level, you can
learn that many systems set different TTL values. At this
point the mention of this field most frequently ends and we
are referred to the RFC standards [17]. Unfortunately, these
documents represent a dead end, as they only tell us what
TTL is and how it should be implemented. The difference in
the values of the TTL field in some older systems frequently
varies depending on the selected protocol (Table 6) or ICMP
message (Table 7).

ICMP echo request, echo reply – the systems set differ-
ent TTL field values depending on the ICMP message.

Impact of higher layer protocols – UDP, TCP.

57

Информационно-управляющие системы

Table 6

Fingerprint base of TTL fields depending on the type of
message

System Echo request Echo reply

RedHat 5.0, 5.2 64 64

RedHat 6.1 64 255

Mandrake 7.0 64 255

FreeBSD 7.1 64 64

Windows95 32 32

Windows NT4 Workstation
(SP4, SP5)

32 128

Windows Milenium 128 128

Windows XP 128 128

Windows Vista 64 bit
home premium

128 128

Windows 7 128 128

Windows Server 2008 128 128

OpenBSD 2.6, 2.7 255 255

NetBSD 255 255

HP UX 10.20 255 255

Table 7

Fingerprint base of TTL fields depending on the layer 4
protocol used 4

System IP +UDP IP + TCP

AIX 30 60

FreeBSD 2.1R 65 64

HP-UX9.0x 30 30

HP-UX10.01 64 64

Irix5.3 60 60

Windows95 32 32

MS Windows 98 128 128

MS Windows NT 3.51 32 32

MS Windows NT 4.0 128 128

MS Windows 2000 128 128

MS Windows XP 128 128

MS Windows VISTA 128 128

MS Windows 7 128 128

MS Windows Server
2008

128 128

ICMP Error Message Quenching [18] – this is a method
most commonly employed in the course of scanning the
ports. It utilizes more simply built datagrams (UDP in-
stead of TCP) transmitting them to the sampled port. The
reaction occurs when we find the port closed. The scanned
system responds with the ICMP message “port unreach-
able” (“port Unreach”). On this basis it is possible to tell the
closed UDP ports from the open ones. Keep in mind that
neither protocol is sure to be reliable. Sending about 100
such datagrams to a closed port, we can come across some
surprising behavior. This discrepancy has its roots in the
standardization document RFC 1812 which proposed three
approaches to reducing the number of ICMP messages sent
in order to ensure reduced network traffic:

– Count-base – for each rejected datagram one ICMP
message is transmitted;

– Time-base – one ICMP message can be sent at T mil-
liseconds;

– Bandwidth-base – an ICMP message can be transmit-
ted only at the maximum speed established for this type of
information.

Most of the operating systems have an implemented
method of reducing transmission of an excessive number of
ICMP messages, but, as one might expect, not all of them.
Such systems include those produced before 1995. Further
distinguishing parameters are the values used in setting the
limiter.

Example:
Linux limits the number of “unattainable goal” (“desti-

nation unreachable”) messages to 80 per 4 seconds. If this
number is exceeded, subsequent messages are transmitted
at intervals of 0.25 seconds. As a standard, FreeBSD 7.1
supports up to 200 messages per 1 second, and after an
overrun it will automatically reduce the number of incoming
datagrams per second.

– ICMP Message Quoting - operating systems with im-
plemented ICMP protocol react to the error resulting from
the failure to transmit a received packet to the specified port
number that is closed at the time by sending the feedback
message “port unreachable” (“port unreachable”). Accord-
ing to the RFC 1122 standard this message should have
at least 8 bytes replicated from the original message that
caused this error. The vast majority of software vendors have
implemented in their TCP/IP stacks a return “cargo” equal
to 8 bytes. Many systems return more bytes, sometimes even
a whole datagram delivered with the ICMP message. This
method not only distinguishes a group of systems, for exam-
ple. 7.x Sun Solaris, HP-UX 11.x, MacOS 7.55, 8.0, 8.1, 9.04
or devices from 3Com, Foundry, Alcatel, but it can identify
Linux 2.2.x / 2.4 tx that relies on Kernel.

– ICMP Error message echoing integrity – like the
previous one, this test is based on the RFC 1122 standard-
ization document which provides that the return ICMP mes-
sage “port unreachable” should contain at least 8 bytes of the
original packet. In this case, however, we will look not at the
quantity of the “cited” datagram, but the quality of the data
returned. Deficiencies in the implementation of the TCP/IP
stack have caused certain groups of operating systems to in-
correctly cite the original datagram received [19]. The fields
in which they can be distorted are as follows:

– IP – Overall Length – some systems, such as, e. g. AIX,
BSDI wrongly cite the length of the field complete IP protocol
in the returned datagram for adding to its value 20 bytes. Oth-
er OSs can, therefore, react differently and go in the opposite
direction by reducing the original value by the said 20 bytes.

– IP – Identification – for certain versions of BSDI,
FreeBSD, OpenBSD, Ultrix, VAX it is a huge problem to
correctly cite the “Identification” field.

– IP – flags – another relationship is the wrong citation
of the flags field, whose bits will be transmitted in a different
order than that in which they were received.

– IP – Type of service – most systems return 0 value
in the return ICMP message, however, some of them will
change the value of this field, e. g. Linux returns 0xC0 value.
We can observe this in the preceding example above. The
difference is highlighted in blue.

– IP – Checksum – the checksum is another deter-
minant of correct identification of the system. A group of
OSs incorrectly calculates the value of the field, or returns
0 value in the returned datagram.

– UDP –checksum – as in the case of the IP the check-
sum is either wrongly calculated or returns 0 value.

58

Восточно-Европейский журнал передовых технологий ISSN 1729-3774 5/9 (77) 2015

– ICMP Echo Requests Field Code Values – this is one of
the simplest fingerprinting tests that utilize a slightly mod-
ified ICMP Echo Request/Reply communication method.
This small modification consists in transmitting an ICMP
Echo Request datagram with modified “Code” field. If you
set it to a value other than zero, in keeping with the RFC
792 standardization document this field should be replicat-
ed without any change in the return ICMP Reply message.
However, Microsoft operating systems react quite different-
ly. In addition to changing the “type” value and converting
the checksum they reset the “Code” field in the ICMP Reply
message.

– ICMP Responses – another very interesting relation-
ship is the handling or non-handling of the various ICMP
messages [20]. Non-application or less and less frequent use
of certain options has led to a situation in which many OS
manufacturers resigned from their implementation. This has
resulted in some confusion, because not all manufacturers
introduced changes, which is why on this basis many systems
can be identified or classified in the given group. Such irreg-
ularities occur during the exchange of messages:

All of the fingerprinting tests are shown at Table 8 (time-
stamp request), Table 9 (address mask request), and Table 10
(ICMP information).

Table 8

Fingerprint base of ICMP Timestamp replies

Sample systems
Timestamp

response

BEOS 5 Reply not sent

FreeBSD 2.0.5, 2.1.0, 2.1.5, 2.1.6, 2.1.7.1, 2.2.0,
2.2.1, 2.2.2, 2.2.5, 2.2.6, 2.2.7, 2.2.8, 3.0, 3.1, 3.2,

3.3, 3.4, 3.5.1, 4.0, 4.1, 4.1.1, 4.2, 4.3, 4.4, 4.5, 4.6,
4.6.2, 4.7, 4.8, 5.0, 5.1

Reply sent

Linux 2.0.30, 2.32, 2.0.36 (all Red Hat) Reply not sent

Linux 2.0.29, 2.0.34, 2.0.36 (all Debian) Reply sent

Linux 2.2.0, 2.2.1, 2.2.2, 2.2.3,
2.2.4, 2.2.5, 2.2.5-15, 2.2.6,

2.2.7, 2.2.8, 2.2.9, 2.2.10, 2.2.11, 2.2.12, 2.2.12-20,
2.2.13, 2.2.14, 2.2.14-5, 2.2.15, 2.2.16, 2.2.16-22,

2.2.17, 2.2.18, 2.2.19, 2.2.20, 2.2.20-idepci, 2.2.21,
2.2.22, 2.2.23, 2.2.24, 2.4.0, 2.4.1, 2.4.2, 2.4.2-2,
2.4.3, 2.4.4, 2.4.4-4GB, 2.4.5, 2.4.6, 2.4.7, 2.4.8,
2.4.9, 2.4.10, 2.4.10-4GB, 2.4.11, 2.4.12, 2.4.13,

2.4.14, 2.4.15, 2.4.16, 2.4.17, 2.4.18, 2.4.18-3,
2.4.18-4GB, 2.4.18-14, 2.4.19, 2.4.19-4GB, 2.4.20,

2.4.20-8, 2.4.21-0.13mdk

Reply sent

MacOS 7.5.3, 7.5.5, 7.6, 7.6.1,
 8.0, 8.1, 9.0, 9.1, 9.2.1, 9.2.2

Reply not sent

Windows 98, 98 SE Reply sent

Windows NT 4 standard, sp3, sp4, sp6 Reply not sent

Windows Millennium standard Reply sent

Windows 2000 standard, sp2, sp3, sp4 Reply sent

Windows XP Home, Professional Reply sent

Windows Net standard Reply sent

Windows 2003 Server standard Reply sent

Windows 7 Reply sent

Windows Server 2008 Reply sent

Table 9

Fingerprint base of ICMP Address Mask Request replies

System
Timestamp

response

Linux 2.4.10, 2.4.10-4GB, 2.4.11, 2.4.12, 2.4.13,
2.4.14, 2.4.15, 2.4.16, 2.4.17, 2.4.18, 2.4.18-3,

2.4.18-4GB, 2.4.18 14, 2.4.19, 2.4.19-4GB,
2.4.20, 2.4.20-8, 2.4.21-0.13mdk

Reply not sent

MacOS 10.1.0, 10.1.1, 10.1.2, 10.1.3,
10.1.4, 10.1.5, 10.2.1, 10.2.2, 10.2.3, 10.2.4,

10.2.5, 10.2.6
Reply not sent

NetBSD 1.1, 1.2, 1.2.1, 1.3, 1.3.1, 1.3.2, 1.3.3, 1.4,
1.4.1, 1.4.2, 1.4.3, 1.5, 1.5.1, 1.5.2, 1.5.3, 1.6, 1.6.1

Reply not sent

Netware 4.11, 4.11 sp9 Reply sent

Netware 5, 5 sp6a Reply sent

Table 10

Fingerprint base of ICMP Information replies

System
Timestamp

response

BEOS 5 Reply not sent

HP UX 10.0, 10.2, 10.24, 10.30 28 Reply sent

FreeBSD 2.0.5, 2.1.0, 2.1.5, 2.1.6, 2.1.7.1, 2.2.0,
2.2.1, 2.2.2, 2.2.5, 2.2.6, 2.2.7, 2.2.8, 3.0, 3.1, 3.2,

3.3, 3.4, 3.5.1, 4.0, 4.1, 4.1.1, 4.2, 4.3, 4.4, 4.5, 4.6,
4.6.2, 4.7, 4.8, 5.0, 5.1

Reply not sent

Linux 2.0.29, 2.0.30, 2.0.32, 2.0.34, 2.0.36, 2.2.0,
2.2.1, 2.2.2, 2.2.3, 2.2.4, 2.2.5, 2.2.5-15, 2.2.6,

2.2.7, 2.2.8, 2.2.9, 2.2.10,
2.2.12, 2.2.12-20, 2.2.13, 2.2.14, 2.2.14-5, 2.2.15,
2.2.16, 2.2.16-22, 2.2.17, 2.2.18, 2.2.19, 2.2.20,

2.2.20-idepci, 2.2.21, 2.2.22, 2.2.23, 2.2.24, 2.4.0,
2.4.1, 2.4.2, 2.4.2-2, 2.4.3, 2.4.4, 2.4.4-4GB, 2.4.5,

2.4.6, 2.4.7, 2.4.8, 2.4.9, 2.4.10, 2.4.10-4GB,
2.4.12, 2.4.13, 2.4.14, 2.4.15, 2.4.16, 2.4.17, 2.4.18,

2.4.18-3, 2.4.18-4GB, 2.4.18-14, 2.4.19,
2.4.19-4GB, 2.4.20, 2.4.20-8, 2.4.21-0.13mdk

Reply not sent

MacOS 7.5.3, 7.5.5, 7.6, 7.6.1, 8.0, 8.1, 9.0, 9.1,
9.2.1, 9.2.2, 10.1.0, 10.1.1, 10.1.2, 10.1.3, 10.1.4,

10.1.5, 10.2.1, 10.2.2, 10.2.3, 10.2.4, 10.2.5, 10.2.6
Reply not sent

NetBSD 1.1, 1.2, 1.2.1, 1.3, 1.3.1, 1.3.2, 1.3.3, 1.4,
1.4.1, 1.4.2, 1.4.3, 1.5, 1.5.1, 1.5.2, 1.5.3, 1.6, 1.6.1

Reply not sent

OpenVMS 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 6.1, 7.0, 7.1 29 Reply sent

Netware 4.11, 4.11 sp9 Reply not sent

Netware 5, 5 sp6a Reply not sent

With the information gathered from the test results pre-
sented in Table 6–8 users could quite clearly increase their
chances to identify the scanned computer or device.

7. Summary

The future of fingerprinting is very clear at the present
time. To date, only a negligible part of the “faulty” imple-
mentation of TCP/IP stack has been corrected, while the
overlays frequently installed to ensure computer security
open further loopholes, thus exposing both the system and
our confidential data. First and foremost, this article helps to
draw attention to the threat posed by non-observance of the
principles of standardization in the implementation of the
TCP/IP stack in operating systems. Subsequent versions of
the same operating system usually contain the same irregu-

59

Информационно-управляющие системы

larities, and not infrequently even new unexpected reactions
do appear. Looking at how the market for operating systems
is developing and how the group of regular users who use
the computer only as a tool for “surfing” on the Internet is
growing, the era of illegal harvesting of information is only
just beginning. Lack of proper knowledge and negligence in
the implementation of the TCP/IP stack make up a marriage
that will always facilitate fingerprinting and dynamic deve-
lopment of cybercrime that employs more and more new
ways and methods of its operation.

Major breakthroughs and further discoveries can be
expected in fingerprinting of the application layer. In con-
trast to the other layers of the TCP/IP model, it is exactly
at this level that tens of new programs are created with
newly implemented protocols. It can be concluded that the
greater the number of new applications, the greater the

chances of finding a mistake, and the factors that facilitate
its occurrence go beyond big corporations that develop
operating systems.

To sum up, the aim of the publication was to draw atten-
tion to a safety problem associated with different approaches
to program developers at the implementation of TCP/IP
stack and motivate developers for better protection of their
products. At the same time to warn against the dangers of
a regular user and ease of how you can become the object
of attack or scan carried out by an unauthorized person.
The development of Fingerprinting definitely will occur in
the coming years as well as we use computer networks as
a preventive or diagnostic tool, or as a tool for obtaining
information unlawfully. This situation may change, if the
developers will pay more attention to customer data security
and documents standardization.

References

1. Montigny-Leboeuf, A. D. A Multi-Packet Signature Approach to Passive Operating System Detection [Text] / A. D. Montig-

ny-Leboeuf. – Communications Research Centre Canada, 2005

2. Arkin, O. Active & Passive Fingerprinting of Microsoft based Operating Systems using the ICMP Protocol [Text] / O. Arkin. –

BlachHat Windows 2k Security, 2001.

3. Lloyd, G. G. Evaluating Tests used in Operating System Fingerprinting [Text] / G. G. Lloyd, J. T. Tavaris // LGS Bell Labs Innova-

tions Technical Memorandum TM-071207. – Available at: http://alcatel-lucent.de/wps/DocumentStreamerServlet?LMSG_CAB-

INET=LGS_Resources&LMSG_CONTENT_FILE=LGS_White_Papers/GreenwaldThomasTM-071207.pdf

4. Pallavi, M. TCP/IP STACK Fingerprinting [Text] / M. Pallavi // Raport. – 12 p.

5. João Paulo, S. M. A Qualitative Survey of Active TCP/IP Fingerprinting Tools and Techniques for Operating Systems Identifi-

cation [Text] / S. M. João Paulo, B. J. Agostinho de Medeiros, P. Paulo S. Motta // 4th International Conference CISIS, 2011. –

P. 68–75. doi: 10.1007/978-3-642-21323-6_9

6. Allen, J. M. OS and Application Fingerprinting Techniques [Text] / J. M. Allen. – SANS Institute InfoSec Reading Room,

2007. – 49 p.

7. Templeton, S. J. Detecting Spoofed Packets [Text] / S. J. Templeton, K. E. Levitt // In proceedings of the DARPA Information

Survivability Conference and Exposition, 2003.

8. Beverly, R. Server Siblings: Identifying Shared IPv4/IPv6 Infrastructure via Active Fingerprinting [Text] / R. Beverly, A. Ber-

ger // 16th International Conference, PAM 2015, 2015. – P. 149–161. doi: 10.1007/978-3-319-15509-8_12

9. Auffret, P. SinFP, Unification Of Active And Passive Operating System Fingerprinting [Text] / P. Auffret // Journal in Computer

Virology. – 2010. – Vol. 6, Issue 3. – P. 197–205. doi: 10.1007/s11416-008-0107-z

10. Arkin, O. Revolutionizing Active Operating System Fingerprinting The Present & Future of Xprobe2 [Text] / O. Arkin. – Sys-

Security Group, 2003.

11. Fyodor. Nmap: Scanning the Internet [Text]. – Black Hat Briefings Defcon 16, 2008.

12. Maurice, C. Improving 802.11 Fingerprinting of Similar Devicesby Cooperative Fingerprinting [Text] / C. Maurice, S. Onno,

C. Neumann, O. Heen, A. Francillon // SECRYPT 2013, 10th International Conference on Security and Cryptography, 2013.

13. Tomaszewski, M. Haking – Sprzątanie pajęczyn -detekcja nielegalnego współdzielenia łącza [Text] / M. Tomaszewski, M. Szmit,

M. Gusta // Hakin9. – 2005. – Vol. 2. – P. 10

14. Sanders, C. Operating System Fingerprinting with Packets [Electronic resource] / C. Sanders. – 2011. – Available at: http://

www.windowsecurity.com/articles-tutorials/intrusion_detection/Operating-System-Fingerprinting-Packets-Part1.html

15. Shu, G. Network Protocol System Fingerprinting – A Formal Approach [Text] / G. Shu, D. Lee // Proceedings of 25th IEEE

International Conference on Computer Communications, 2006. – P. 12. doi: 10.1109/infocom.2006.157

16. Sobolewski, P. Czy da się oszukać fingerprinting warstwy aplikacji [Text] / P. Sobolewski // Hakin9. – 2006. – Vol. 6. – P. 15

17. Zalewski, M. Cisza w sieci [Text] / M. Zalewski. – Helion, 2005. – 304 p.

18. Arkin, O. Xprobe - Remote ICMP Based OS Fingerprinting Techniques [Text] / O. Arkin. – Managing Security Architect, 2001.

19. Crowley, D. Advanced application-level OS fingerprinting: Practical approaches and examples [Text] / D. Crowley. – 2008

20. Prigent, G. IpMorph: Fingerprinting spoofing unification [Text] / G. Prigent, F. Vichot, F. Harrouet // Journal in Computer Virol-

ogy. – 2010. – Vol. 6, Issue 4. – P. 329–342. doi: 10.1007/s11416-009-0134-4

