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However, an AMB allows for a rapid change of dynamic 
parameters such as bearing stiffness and damping prop-
erties. PMBs realise the self-aligning effect by using 
permanent magnets in different design versions though 
fail to effect full suspension merely by using them. Earn-
shaw [7] proved this theoretically, and Brounbeck [8] 
confirmed this except for cases of embedding permanent 
magnets in a ferromagnetic fluid [6] or for bodies made of 
diamagnetics or superconductors under usual atmospheric 
conditions [9]. In the majority of cases, such a solution is 
impractical and technologically unfeasible for industrial 
rotor machinery.

Hence, based on the possibilities of practical implemen-
tation of complete magnetic bearings of rotors, this study 
considers the options of using either radial or axial AMBs 
for stabilising a rotor over all five degrees of freedom or one 
AMB jointly with several PMBs in different design versions. 
The most practical approach would be to use a combination 
of magnetic bearings of different types in medium-sized 
high-speed rotor machinery, e. g., turbo-expanders, expand-
er-generator, and expander-compressor units [4]. They can 
use two radial PMBs and one axial AMB arranged in the 
centre or at one end of the shaft. This is due to the design 
features such as the presence of one or two discs arranged on 
the rotor cantilevers [10].

1. Introduction

A magnetic bearing (MB) is one of the variants of 
elastic-damping bearings. Its feature is the use of magnetic 
fields to provide stable rotor levitation. These fields create 
bearing force responses to rotor displacement in order to 
ensure automatic alignment of its bearing areas in the MB 
stator elements and a required level of bearing stiffness. MBs 
that are the most applicable from the practical viewpoint 
are active magnetic bearings (AMBs) [1–5] and passive 
magnetic bearings (PMBs) [6]. Some MB design options are 
shown in Fig. 1. It shows radial and axial AMBs with elec-
tromagnets (Figs. 1, a, b) and a radial PMB with permanent 
annular magnets (Figs. 1, c, d), and the following notations 
are introduced: 1 – rotor; 2 – stators; 3 – AMB windings; 
4 – AMB position sensors; 5 – comparator in AMB control 
system; 6 – AMB control device; 7 – amplifiers feeding con-
trol voltages to AMB windings, which are formed according 
to the accepted control algorithm; 8 and 9 – movable and 
stationary annular permanent magnets.

The stability of rotor motion in an AMB is ensured 
by an automatic control system and its control algorithm. 
The presence of this complex and costly component, and 
also of power sources for control electromagnets, is one of 
the major drawbacks of an AMB as compared to a PMB. 
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Fig. 1. MB design options: a – radial AMB; b – axial AMB;  
c, d – radial PMB

In considering the problem of describing the dynamics 
of rotors in different power machinery in which magnetic 
bearings are used as rotor bearing assemblies, a conclusion 
can be made on the need to develop special approaches to 
mathematical modelling with account for all specific fea-
tures that this kind of elastic damping bearing introduces 
into rotor systems. Presently, there is a large variety of 
studies on this subject. However, they offer a simplified 
approach to mathematical modelling of rotor dynamics. 
Therefore, building refined mathematical models will en-
able increasing the accuracy of numerical computation of 
required dynamic parameters of rotors, magnetic bearings 
and control systems for active magnetic bearings. This 
will dramatically reduce the amount of experimental in-
vestigations and increase the effectiveness of research and 
development efforts.

2. Analysis of the studies and statement of the problem

Assessing the state of problems related to analysis and 
synthesis allows defining one of the most topical research 
subjects in the field of magnetic bearings [11]. This is the 
problem related to mathematical modelling of the dynamics 
of systems with magnetic bearings. All the components in 
the structure of MBs of different types, namely permanent 
magnets in a PMB or electromagnets, power amplifiers, 
controllers and even position detectors in an AMB are char-
acterised by nonlinear relationships of different parameters. 
Hence, any system with an MB is nonlinear in essence. In 
such a system, nonlinear phenomena of rotor dynamics can 
occur, as this was shown in [12] for rotors in nonlinear bear-
ings of other types.

As follows from analysis of studies [1, 2, 4, 5], nonlinear-
ity is neglected, as a rule, when modelling the dynamic be-
haviour of rotor systems with MBs, and linear mathematical 
models are used to simplify analysis. The main reason of this 
is the challenges in implementing nonlinear approaches. At 
the same time, failing to account for nonlinear properties in-
herent to the system can result during modelling to substan-

tial misrepresentation of results, both quantitative and qual-
itative ones (e.g., failing to represent certain phenomena).

Linear mathematical models are built by linearizing 
in the “zero point”, i. e. in the rotor’s central position, the 
nonlinear electromagnetic (in an AMB) or magnetic (in a 
PMB) forces. The linearized dependencies of these forces on 
gaps (in an AMB and a PMB) and currents (in an AMB) 
allow proceeding to the known linear mathematical model 
by replacing an MB with linear springs with damping [13]. 
However, a linear approximation of a magnetic force can be 
acceptable only in a small vicinity, i. e. only for small cur-
rents and small rotor deflections from the position of equi-
librium. For instance, if rotor deflection exceeds one-half 
of the gap, the total magnetic force created by the MB can 
differ by 40 % from the value obtained from the linearized 
relationship [14]. Actually, depending on the MB features, 
this difference can be yet greater, resulting in incorrectness 
of modelling rotor dynamics and preventing to use the en-
tire potential of a magnetic bearing when designing based 
on such models. Therefore, numerical analysis of the effect 
of nonlinearity on the dynamic behaviour of the “rotor in an 
MB” system with application of refined mathematical models 
is a highly topical problem. Its solution will allow, first, to 
obtain fundamental scientific data on system performance for 
different operating conditions and, second, to use parametric 
modelling to find optimal design solutions to ensure dynamic 
stability and improve reliability and fail-safe operation. In 
doing so, one should take into account that the quality of the 
active magnetic suspension depends directly on the control 
law and an algorithm implemented by the control system 
controller. Its development directly depends on in-depth 
knowledge of the system’s dynamic characteristics. If the 
control unit shall be developed based on erroneous modelling, 
this can lead to operational failures.

One can distinguish the following most essential causes 
of nonlinearity of the “rotor in MB” system, which limit the 
possibilities of linearising mathematical models and using 
linear approaches to analysing phenomena occurring in the 
system [11]:

(1) nonlinear dependence of magnetic forces on gaps be-
tween moving and stationary parts in a PMB and an AMB, 
and on currents in the windings of AMB electromagnets;

(2) current delay in the windings of AMB electromag-
nets, i. e. nonlinearity related to coil inductance;

(3) geometric links between the electromagnets of one 
AMB and links between all AMBs in one rotor, which result 
in coupling of processes in orthogonal directions;

(4) delays in the control system controller;
(5) presence of eddy currents and dissipation fluxes 

among other factors. Investigation of all these factors has 
shown that each of them can result in origination of sub-
harmonic and superharmonic vibrations, nonlinear resonant 
response, amplitude failures and jumps, chaotic motion, and 
also loss of rotor motion stability, whereas the overall action 
of nonlinear elements can only aggravate the situation.

In spite of the variety of studies on modelling the dynam-
ics of rotors in an MB with account for nonlinearities, the 
majority of them have been done while considering systems 
with one or two degrees of freedom and only with account 
for some of the above-mentioned causes of nonlinearity. For 
instance, in [15], this is the nonlinear dependence of mag-
netic force presented by a simplified expression in the form 
of a piecewise linear characteristic with account for a linear 
control system with feedback and possible saturation of its 
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force elements. A downside of the approach to modelling 
dynamics presented in the studies [16, 17] accounts for only 
nonlinear effects caused by the geometric interrelation of 
two pairs of electromagnet poles that create forces in mutu-
ally perpendicular directions and the dependence of forces 
on displacements and currents in AMB coils. The study [18] 
considers only nonlinearities occurring due to the effect of a 
thrust AMB on radial vibrations.

Models with two degrees of freedom can partially ac-
count for certain geometric interrelations. In the study [19], 
such a case is mathematically described by equations of 
motion in the horizontal and vertical directions with qua-
dratic and cubic terms and excitation parameters. Based on 
this model, the study [20] has shown that in a system with 
variable bearing stiffness jumps from mode to mode can oc-
cur. Paper [21] offers a series of studies conducted by using 
numerical integration of equations of motion with account 
for both soft and rigid force characteristics of radial AMBs. 
These studies have proved the likelihood of occurrence of a 
large variety of nonlinear phenomena in the system. How-
ever, these mathematical models accounted for but several 
nonlinear dependencies.

The present study is an attempt to eliminate the draw-
backs of the existing models and to build new mathematical 
models describing rotor dynamics in MBs of different kinds 
with account for as much as possible nonlinear effects inher-
ent in such systems.

3. Research objective and tasks

The objective of the research is to develop a common 
method for mathematical description of the dynamic be-
haviour of rotors in systems with magnetic bearings of dif-
ferent kinds. Its distinctive features are approach generality 
and completeness of accounting for the nonlinear interrela-
tions of process occurring in such a system – electric, mag-
netic, and mechanical.

To achieve the stated research objective, the study spec-
ifies and solves the following tasks:

– to develop a common approach to building analyti-
cal models for a mathematical description of the dynamics 
of rigid rotors in complete magnetic suspensions that are 
implemented by magnetic bearings of different kinds, with 
the models accounting for the nonlinear interrelations 
of processes associated with the majority of practically 
significant physical, design and functional features of the 
system;

– to adapt the analytical method of analysing electro-
magnetic circuits of active magnetic bearings to find expres-
sions for magnetic energy and forces with account for the 
control laws to introduce the dynamics of rotors in magnetic 
bearings into mathematical models; 

– to develop an imitation numerical model and use it for 
numerical research to prove the adequacy of the approach 
suggested by comparing numerical and experimental data.

4. Description of rotors in magnetic bearings as dynamic 
electromagnetic mechanical systems

One of the methods of describing the dynamics of elec-
tromechanical systems is using Lagrange-Maxwell equa-
tions, having the equations of mechanics structure:

where Т and U are kinetic and potential energy respectively; 
W¢ is magnetic field co-energy; V is electric field energy;  
R is dissipation function; qr are generalised mechanical 
coordinates; Qr are nonpotential generalised forces; M is 
the number of generalised mechanical coordinates; D is an 
electric dissipation function; Ek is an algebraic sum of ex-
traneous electromotive forces; ik are circuit currents; χk are 
charges of capacitors; and N is the number of closed-loop 
circuits, whereas:

N N
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k,s 1 k,s 1

1 1 1
W' i i B B dxdydz L i i

2 2= =

= =
µ∑ ∑∫ , (2)
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2 2 CΩ
= =

χ
= χ ε =∑ ∑∫ , (3)

N

ks k s
k,s 1

1
D r i i

2 =

= ∑ , (4)

where Bk are magnetic inductions of magnetic circuits;  
Lks are induction coefficients of electromagnetic circuits; ε is 
a dielectric constant; Ck are capacitances of capacitors; and 
rks are active resistances.

The study considers a complete rotor magnetic suspen-
sion in two radial and one axial magnetic bearings. Such a 
variant is a most common one in small and medium-sized 
rotor machinery for different purposes (centrifugal compres-
sors and pumps, turbo-expanders, and expander-compressor 
units). However, the approach suggested for mathematical 
modelling can be used for describing the dynamics of the “ro-
tor in an MB” system with any number of magnetic bearings 
of any type. The design schematic for a rigid rotor in an MB 
is shown in Fig. 2.

Fig. 2. Schematic diagram of a complete rotor suspension in 
an MB

Here, a spatial fixed orthogonal system of coordinates 
O*xyz has been introduced. Its axis O*z passes through the 
centres of radial MBs. Point C is centre of the mass, m is 
the rotor mass, Jx, Jy, and Jz are the main central moments of 
inertia; ex=e1 and ey=e2 (e2=e1

2+e2
2) are linear whereas γx=γ1 

and γy=γ2 are angular unbalance parameters. Points O, O1, 
O2, and O3 are on the rotor axis of stiffness, with O being in 
one plane with C (perpendicular to the axis); O1 and O2 are 
centres of the thrust areas of radial MBs (with l1+l2=l); and 
O3 is that of the axial MB. Gaps in MB1, MB2, and MB3 
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equal to dr1, dr2, and da, respectively. The rotor rotates with a 
constant angular speed ω. To determine rotor positions, the 
study suggests use of generalised coordinates q={x1, y1, x2, 
y2, z3}, i. e. the coordinates of the centres of MB thrust areas, 
with their total number being M=5.

In this case, when conductance currents are closed and 
there are no capacitors in electric branches, electromechani-
cal systems, apart from Lagrange-Maxwell equations in the 
form (1), can be described by equations identical to Routh 
equations in mechanics [22]:

r
r r r r r

N
k

Cks k
s 1 s

d T T U R W
Q , (r 1,...,M),

dt q q q q q

W
r E , (k 1,...,N),

t =

¶ ¶ ¶ ¶ ¶ − + + = − + = ¶ ¶ ¶ ¶ ¶
¶Ψ ¶ + = = ¶ ¶Ψ

∑

 

 (5)

where W is energy of the MB magnetic field (W+W¢=Ψi); 
N is the number of closed-loop circuits with currents ik;  
Ψk is an induction flux (magnetic flux linkage); rC ks are active 
resistances of electric circuits; and Ek is an algebraic sum 
of extraneous electromotive forces in the k-th circuit, with:

1 N 1 M k

N N
1

ks s s ks k
s 1 k 1k s

W W( ,..., ,q ,...,q ),

W W
L i , i L ,

i
−

= =

= Ψ Ψ Ψ =

¶ ¶
= = = = Ψ

¶ ¶Ψ∑ ∑  (6)

where Lks=Lks(x1, y1, x2, y2, z3) are self and mutual induc-
tance coefficients of circuits.

The mathematical model (5) for the case of an AMB in 
the system contains differential equations for the flux link-
age Ψk, corresponding to Kirchhoff’s second law for magnet-
ic circuits, and they are a form of notation of Ampere’s law 
for each k-th electric circuit in the system (AMB windings). 
Such an approach accounts for resistance forces and delays in 
such an electromechanical system as an AMB.

The kinetic energy of a rigid rotor has the form:

2 0
0 0 C

1T [mv 2m(v ) R ],
2

= + × Ω ⋅ + ΩΘ Ω¢  (7)

where m is the rotor mass; v0 is the pole O vector velocity;  
Ω is an angular speed vector; R′C is a radius vector of OC; 
and Θ0 is an inertia tensor in pole O.

In applying Euler’s angles, the projections of vectors 
of pole velocity v0 and of angular speed Ω on the system 
of coordinate axes shall be written down using directional 
cosines. By using the expansion of trigonometric functions 
into exponential series, expressing these angles through 
generalised coordinates, substituting the expression for T 
into the Lagrange equation and retaining only the first, sec-
ond and third-order terms for generalised coordinates, their 
derivatives and unbalance parameters, we obtain nonlinear 
motion equations for a rigid rotor in an MB. Such a structure 
of representing nonlinear inertia forces corresponds to the 
structure of potential forces in an MB, and is sufficient for a 
correct description of nonlinear vibrations.

Terms –∂W/∂qr in equations (5) are ponderomotive forc-
es, i.e. generalised forces caused by the mechanical action of 
a magnetic or electromagnetic field. These forces are sug-
gested to be determined by differentiating for generalised 
mechanical coordinates of the magnetic energy function 
obtained by using equivalent circuits for the AMB electro-
magnetic circuits. The practical application of the suggested 

approach is further demonstrated whilst analysing the dy-
namics of one of the variants of a complete rotor magnetic 
suspension.

5. Mathematical model of rotor dynamics in a laboratory 
setup

The dynamic behaviour of a rotor in an MB was analysed 
for a laboratory setup of a rotor in a complete combined pas-
sive-active magnetic suspension, which was a prototype of 
the magnetic suspension for a rotor in an expander compres-
sor unit (ECU). A schematic diagram of a complete magnetic 
suspension of a rotor, including two radial PMB1.2 and one 
axial AMB3, is shown in Fig. 3. Here, a PMB (Fig. 1, с) is 
used as PMB1 and PMB2, and an AMB is used as AMB3 
(Fig. 1, b). A rigid rotor is considered because the vibrations 
caused by dynamic unbalance induce motion of the cylindri-
cal and conical precession type. They are the most common 
ones in practice and are distinguished by excessive ampli-
tudes, which make them especially dangerous.

a 

b 
 

Fig. 3. Complete suspension for a laboratory setup rotor 
in an MB: a – schematic diagram; b – restoring magnetic 

forces in PMB1 and 2 vs. rotor displacements

If the energy of the AMB3 magnetic field is W=W(x1, y1, 
x2, y2, z3, Ψc1, Ψc2), then the currents in the windings of its 
coils ic1 and ic2 are linked to total magnetic fluxes through the 
circuits of coils Ψc1, Ψc2 (flux linkage in windings of respec-
tive AMB3 electromagnets) by the following expressions:

1 1 2 2 3 c1 c2
c1

c1

W(x ,y ,x ,y ,z , , )
i ,

¶ Ψ Ψ
=

¶Ψ

1 1 2 2 3 c1 c2
c2

c2

W(x ,y ,x ,y ,z , , )
i .

¶ Ψ Ψ
=

¶Ψ
 (8)

We also assume that all generalised coordinates – dis-
placements x1,..., z3, unbalance parameters e1, e2 and γ1, γ2, 
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and gaps in the MB – dr1, dr2, and da – have the same order 
of smallness. Then, with account for this assumption on 
smallness of generalised coordinates and their derivatives, 
the nonlinear addends of equations of motion can be con-
sidered small as compared to the linear terms. By excluding 
from consideration the addends of the equations of motion, 
with an order of smallness higher than three, we derive a 
completely coupled system of seven nonlinear differential 
equations describing the dynamics of this electromagnetic 
mechanical system:

where f′′qr(x1,...,z3) and f′′′qr(x1,...,z3) are nonlinear terms of the 
equations of motion due to inertia forces and the second and 
third-order potential field; bx1,...,z3 are viscosity coefficients; 
rc 1,...,N are active resistances in winding circuits; uc 1,…,N are 
control voltages applied across AMB windings whose mag-
nitude is formed according to the accepted control law de-
pending on the rotor current position ; mks, j are inertial and 
gyroscopic coefficients with the following values:

2
2 1

11 2

ml J
m ,

l
+

= 1 2 1
12 2

ml l J
m ,

l
−

=

2
1 1

22 2

ml J
m ,

l
+

= 3
2

J
j .

l
ω

=  (10)

Addenda –FMqr are potential forces that depend only 
on the generalised coordinates. In this case, these are the 
magnetic forces in PMB1.2 (Fig. 3, b). The magnetic forces 
dependencies were obtained using the Maxwell tension tensor 
by solving a series of magnetic statics problems in the finite el-
ement statement for a fixed number of rotor magnet positions 
corresponding to certain discrete values of its displacement, 
though they can be described by analytical expressions as 
in [23]. Terms –¶W/¶qr are ponderomotive forces, i. e. the 
electromagnetic responses of AMB3. Their dependence on 
the generalised coordinates and currents in windings is sug-
gested in this study to be obtained analytically by considering 
magnetic circuits with the use of equivalent circuits and the 
loop fluxes method. Forces Qqr are other generalised forces, 
in particular, the force of gravity, and Hqr(t) are external 
time-dependent exciting forces and moments, in particular, 
caused by unbalance, whereas:

x1 11 x x

x2 22 x x

y1 11 y y

y2 22 y y

x 1 2

y 1 2

x 1 2

y 1 2

H (t) m j ,

H (t) m j ,

H (t) m j ,

H (t) m j ,

e cos( t) e sin( t),

e sin( t) e cos( t),

sin( t) cos( t),

cos( t) sin( t).

= Ε + Γ
 = Ε − Γ
 = Ε − Γ


= Ε + Γ
Ε = ω − ω
Ε = ω + ω


Γ = g ω + g ω
Γ = g ω − g ω

 (11)

For second-order nonlinear terms f′′qr(x1,...,z3), required 
to account for the nonlinear features of the electromechan-
ical system being considered, the following relations hold:

(

)

x1 3 x

x2 3 x

y1 3 y

y2 3 y

2
z3 2 1 2 1

2 1 x

2
2 1 2 1

2 1 y

f mz / l,

f mz / l,

f mz / l;

f mz / l,

f m (x x ) (x x )

2 (y y )

(y y ) (y y )

2 (x x ) / l.

= − Ε¢¢
 = Ε¢¢
 = − Ε¢¢


= Ε¢¢

 = − − ω − +¢¢ 
+ ω − Ε +
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− ω − Ε









 

 

 

 

 (12)

Third-order nonlinear terms f′′′qr(x1,...,z3) 
are not shown here due to their cumber-
some notation; however, it is they that 
demonstrate the full co-relation between 
all generalised coordinates with the help of 
terms having no dependence on unbalance 
parameters.

In characterising analytical model (9), it is necessary to 
note that, along with second-order differential equations of 
motion for generalised coordinates, it contains also first-or-
der differential equations for flux linkages. However, the last 
two equations in (9) are present in the mathematical model 
because AMB takes part in the magnetic suspension of the 
rotor. The number of these equations equals that of the wind-
ings in all AMBs. The time constant of current change in the 
windings of electromagnets in these equations is accounted 
for by self and mutual induction coefficients (self-induction 
and mutual induction of circuits in electromagnets). The val-
ues that are inverted to these parameters are the coefficients 
with Ψ2

c k/2 and Ψc kΨc s/2 in the expression for magnetic 
energy W. The AMB damping properties are determined by 
the values of active resistances rc k and control system pa-
rameters accounted for in uc k. The expression for magnetic 
energy W has the magnetic resistances of sections of AMB 
magnetic core circuits and the resistances of air gaps whose 
formulae also include constants defined by their geometry 
and the values of the gaps proper, and hence, the generalised 
coordinates as well, with the dependence on them being 
nonlinear. Besides, magnetic energy has a square-law depen-
dence on all flux linkages. Such an expression for magnetic 
energy couples equations of motion and equations for flux 
linkages into a unique system and determines the correlation 
of electric and magnetic dynamic phenomena with mechan-
ical ones.

The expressions for magnetic energy W and the links 
between flux linkages Ψc 1,2 and currents ic 1,2 (Fig. 3) can 
be found by considering equivalent circuits for the AMB3 
electromagnetic circuit and schematisation of magnetic flux 
paths. The suggested method allows obtaining an expression 
for magnetic energy for any arbitrary complex and branched 
circuit of any radial or axial AMB. In the general case, 
such an approach accounts for both resistances of air gaps 
between stator poles and the rotor, and separate sections of 
magnetic cores and sections carrying dissipation fluxes [24].

Let us consider the schematic construction of AMB3 
(Fig. 1, b) used in the laboratory setup and the equivalent 
circuit for magnetic circuits with account for dissipation 

11 1 12 2 1 2 x1 x1 x1 1 Mx1 1 1 x1 x1

22 2 12 1 1 2 x2 x2 x2 2 My1 1 1 x2 x2

11 1 12 2 1 2 y1 y1 y1 1 Mx2 2 2

m x m x j(y y ) f f b x F (x ,y ) Q H (t),

m x m x j(y y ) f f b x F (x ,y ) Q H (t),

m y m y j(x x ) f f b y F (x ,y

+ + − + + + = − + +¢¢ ¢¢¢
+ − − + + + = − + +¢¢ ¢¢¢

+ − − + + + = −¢¢ ¢¢¢

    

    

    

3 3

y1 y1

22 2 12 1 1 2 y2 y2 y2 2 My2 2 2 y2 y2

3 z3 z3 z3 3 Mz3 1 1 1 Mz3 2 2 2 z z
3

c1 c1 c1 1 2 1 2 3 c2 c
c1

) Q H (t),

m y m y j(x x ) f f b y F (x ,y ) Q H (t),

W
mz f f b z F (x ,y ,z ) F (x ,y ,z ) Q H (t),

z

W
r u (x ,x ,y ,y ,z ); r

+ +

+ + − + + + = − + +¢¢ ¢¢¢

¶
+ + + = − − − + +¢¢ ¢¢¢

¶
¶

Ψ + = Ψ +
¶Ψ

    

 

 

2 c2 1 2 1 2 3
c2

(9)

W
u (x ,x ,y ,y ,z ),












¶ = ¶Ψ
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fluxes through slots filled with copper windings. They 
are shown in Fig. 4. The following notations are accepted:  
Φk are magnetic fluxes in circuit sections; ΦCk are loop flux-
es; Rk are magnetic resistances of circuit sections, where 
Rpk are for the poles, Rgk are for the air gaps between the 
poles and the rotor, Rsk are for the sections of the stator yoke 
between two poles, Rlk are for dissipation between the poles 
(slots filled with copper winding), and Rak are for the disk; 
Ek=ic kwk are electromotive forces of coils.

The magnetic circuit is analysed using the loop fluxes 
method, which is an analog of the loop circuit one. The sys-
tem of algebraic equations for loop fluxes is as follows:

C1 C11 C3 C13 c1 1

C2 C22 C4 C24 c2 2

C3 C33 C1 C31 C4 C34

C4 C44 C2 C42 C3 C43

R R i w ,

R R i w ,

R R R 0,

R R R 0,

Φ − Φ = −


Φ − Φ =
Φ − Φ − Φ =
Φ − Φ − Φ =

  (13)

where

C11 s1 l1 p1 p2

C13 l1 C31 l1

C34 a2

C22 s2 l2 p3 p4

C24 l2

C42 l2

C43 a1

C33 l1 a1 g1 1 1 2 2 3

g2 1 1 2 2 3

C44 l2 a2 g3 1 1 2 2 3

g4 1 1 2 2

R R R R R ,

R R , R R ,

R R ,

R R R R R ,

R R ,

R R ,

R R ,

R R R R (x ,y ,x ,y ,z )

R (x ,y ,x ,y ,z ),

R R R R (x ,y ,x ,y ,z )

R (x ,y ,x ,y ,

= + + +

= =

=

= + + +

=

=

=

= + + +

+

= + + +

+ 3z ).





















  (14)

The expressions for fluxes in circuit sections in terms of 
loop fluxes (the fluxes in nonadjacent branches are equal to loop 
fluxes if their directions coincide, and they are equal to loop 
fluxes with the opposite sign if they do not coincide; the fluxes 
in adjacent branches are determined in the same manner):

1 C1 4 C3 7 C3 C1

2 C2 5 C4 8 C2 C4

3 C3 6 C4 9 C4 C3

, , ,

, , ,

, , .

Φ = −Φ Φ = −Φ Φ = Φ − Φ
Φ = Φ Φ = Φ Φ = Φ − Φ
Φ = −Φ Φ = Φ Φ = Φ − Φ

  (15)

The magnetic energy of the axial AMB (the energy of 
the entire magnetic circuit is the sum of energies of sections 
of this circuit):

2
s1 p1 p2 1

2 2
s2 p3 p4 2 g1 3

2 2 2
g2 4 g3 5 g4 6

2 2 2
l1 7 l2 8 a1 9

(R R R )

(R R R ) R1
W

2 R R R

R R R

 + + Φ +
 
+ + + Φ + Φ + 

=  
+ Φ + Φ + Φ + 

 
+ Φ + Φ + Φ  

. (16)

To determine the loop fluxes ΦC1, ΦC2, ΦC3, 
ΦC4 as a function of currents, it is necessary to 
solve a system of all four equations (13). Next, 
transferring them into expressions for magnetic 
fluxes in the circuits (15), and these, in turn, 
into the expression for magnetic energy (16), 
yields the formula for W as a function of cur-
rents ic1 and ic2 and resistances of sections of the 
magnetic circuit (gaps), depending on gener-
alised coordinates Rg1=Rg1(qr), Rg2=Rg2(qr) and 
Rg3=Rg3(qr), Rg4=Rg4(qr), where qr=(x1,...,z3). 
The system of the last two equations in (13) 
allows finding the dependencies of ΦC3 and ΦC4 
on ΦC1 and ΦC2 because it is written namely for 
loop fluxes ΦC3 and ΦC4. By using these expres-
sions in (15), we obtain relationships:

3 4 1 13 2 23

5 6 2 24 1 14

7 2 23 1 13

8 1 14 2 24

9 1 13 14 2 24 23

R R ,

R R ,

R (1 R ),

R (1 R ),

(R R ) (R R ),

Φ = Φ = Φ − Φ
Φ = Φ = Φ − ΦΦ = Φ + Φ −
Φ = Φ + Φ −
Φ = Φ − + Φ −

  (17)

where, with account for (14), the coefficients depend on the 
generalised coordinates and are equal to:

C31 C44
13 r

C33 C44 C34 C43

C34 C42
23 r

C33 C44 C34 C43

C31 C43
14 r

C33 C44 C34 C43

C33 C42
24 r

C33 C44 C34 C43

R R
R (q ) ,

R R R R

R R
R (q ) ,

R R R R

R R
R (q ) ,

R R R R

R R
R (q ) .

R R R R

 = −


= −

 =
 −

 = −

  (18)

The magnetic fluxes in circuit sections with coils can be 
replaced with flux linkages if we assume that the magnetic 
flux pertinent to each turn of the coil is the same. Then the 
total or full magnetic flux through the coil circuit shall ex-
ceed this flux by the number of times equal to the number 
of coil turns:

c1 1 1

c1
c2 2 2 1

1

c2
2

2

w ,

w ,
w

w

Ψ = Φ

Ψ
Ψ = Φ ⇒ Φ =

Ψ
Φ =

 (19)

                
.

Accounting for this link of magnetic fluxes Φ1 and Φ2 in 
circuit sections with coils with flux linkages Ψ={Ψс1, Ψс2}, 
we obtain a final expression for magnetic energy in terms 
of flux linkage and generalised mechanical coordinates qr= 
={x1, y1, x2, y2, z3}:

 

Fig. 4. Design chart and the equivalent chart for substitution of magnetic 
circuits in an axial AMB
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2 211 22 12
c1 c2 c1 c22 2

1 2 1 2

R R R1
W .

2 w w w w
Ψ Ψ Ψ 

= Ψ + Ψ + Ψ Ψ 
 

 (20)

where, with account for expressions (14) and (18), the 
coefficients with flux linkages Ψ depend on generalised 
coordinates qr and are equal to the following:

2
11 r s1 p1 p2 g1 g2 13

2 2 2
g3 g4 l2 14 l1 13 a 13 14

22 r s2 p3 p4

2 2
g1 g2 l1 23 g3 g4 24

2 2
l2 24 a 23 24

12 r g1 g2 13 23 g3 g4 14 24

R (q ) R R R (R R )R

(R R R )R R (1 R ) R (R R ) ,

R (q ) R R R

(R R R )R (R R )R

R (1 R ) R (R R ) ,

R (q ) (R R )R R (R R )R R

Ψ

Ψ

Ψ

= + + + + +

+ + + + − + −

= + + +

+ + + + + +

+ − + −
= − + − +

l1 23 13 l2 14 24

a 24 23 13 14

R R (1 R ) R R (1 R )

R (R R )(R R ).











+
+ − + − +
+ − −

(21)

In coefficients (21), the magnetic resistances of mag-
netic core sections Rpk Rsk, Rlk and of the disk Rak are 
constant values depending on the geometric and physical 
parameters of AMB, and they can be found by using sche-
matisation of magnetic flux paths [24]. The dependence 
of coefficients (21) in the magnetic energy expression 
(20) on generalised coordinates qr is determined by the 
dependence thereon of the resistances of air gaps between 
the poles and the rotor Rgk(x1, y1, x2, y2, z3) based on the 
formulae (14) and (18). These resistances can be found 
through using expressions for magnetic conductances of 
air gaps under four poles of the axial AMB with account 
for the height of gaps depending on the rotor spatial posi-
tion, i.e. on generalised mechanical coordinates:

where ggk are conductances of air gaps under AMB poles, 
hz3± is gap height under the elementary area of poles lo-
cated on the side of the positive and negative directions of 
axis z, respectively [24].

Analysis of results shows that, close to the rotor 
central position (±δa/2), the values of gap conductance 
obtained by using simplified expressions (depending 
only on z3) as compared to refined formulae (depending 
on x1, y1, x2, y2, z3) differ by less than 0.5 %, and can 
be considered coinciding [24]. However, the error of 
calculating these conductances as the real gap tends to 
zero can be as much as 20–40 % in some cases [24]. This 
can result in falsehood in determining magnetic resis-
tances and fluxes and, hence, the magnetic field energy 
and electromagnetic responses of the suspension. Such 
an approach introduces an error into the mathematical 
model (9), which cannot be neglected in some cases. 
Thus, for instance, failing to account for this fact when 
determining or checking the parameters of the control 
system and control algorithm with the help of numerical 
experiments can narrow the actual range of stability of 
rotor motion within AMB gaps [25].

6. Numerical and experimental research

Research was conducted for a rotor with a mass of 2.5 kg 
in a complete magnetic-electromagnetic suspension (Fig. 3), 
in which, for AMB3, a unique control method and an al-
gorithm were used, i.e. formation of uc k in (9) [26]: uc2,1= 
=(umax–2umin)z3

2/(2da
2)±umaxz3/(2da)+umin. The basic pa-

rameters have the following values: m=2.69 kg, l1=0.118 m, 
l2=0.166 m, J1=0.00997 kg×m2, J3=0.00347 kg×m2, dr=5.5× 
×10-3 m, dr=3×10-3 m, e=6×10-5 m, g=0.003 rad, umax=24 V, 
and QRqr=bqr ¶qr/¶t, where bqr=2.325 kg/s. A laboratory 
setup with such parameters was developed as a prototype 
of a complete magnetic suspension for an ECU rotor. It was 
used for experimental studying of possible nonlinear dy-
namic phenomena in the system when the angular rotational 
speed changes within 0 to 3’000 rpm.

The result of a series of experiments was the ampli-
tude-frequency response (AFR) shown in Fig. 5. It allows 
evaluating the presence of resonant modes in the area being 
investigated and the kind of rotor motion corresponding to 
different rotational speeds. Thus, the following was found:

– bifurcation of the first (~10.5 and ~12 Hz) and the 
second (~22.5 and ~33 Hz) resonances due to different PMB 
stiffness in the horizontal and vertical directions (anisotro-
py of bearings) due to different static equilibrium positions 
(x1st=x2st=0, y1st and y2st≠0) with respect to centres of bear-
ings that occur owing to the force of gravity;

– direct (~10.5 Hz) and reverse (~12 Hz) cylindrical 
precessions as well as direct (~22.5 Hz) and reverse (~35 Hz) 
conical precessions (Fig. 5 shows vibration modes corre-
sponding to these motions);

– loss of vibrations with transition from one stable mode 
to another stable mode (the dashed area in Fig. 5).

Besides, our analysis of the results detected in 
the system concerned the following: harmonic vi-
brations with an excitation (rotational) frequency, 
subharmonic and superharmonic vibrations, mul-
tiple sub and super resonances, and a link between 
radial and axial vibrations. A detailed description 
of the results is given in the following, in compari-
son with the results of numerical modelling.

During numerical modelling, the system of equations 
(9) was solved with the 4th–5th-order Runge-Kutta method 
for discrete angular speed values. The many-valuedness of 
the solution was checked and excluded by multiple compu-
tations for each frequency and different initial conditions. 
In doing so, stationary areas were searched for, whereas 
time intervals corresponding to transient processes were 
excluded from consideration. Hence, the results of the 
numerical analysis of forced vibrations are solutions for 
stationary areas and generalised coordinates x1, y1, x2, and 
y2 in the angular speed range of 0–100π rad/s. They are 
shown in Fig. 6 as harmonics amplitudes A obtained by 
using the fast Fourier transform versus the driving force 
angular frequency ω0 caused by the rotor’s own unbalance. 
This frequency relates to the rotor angular speed as ω0=ω. 
The following notations are used in Fig. 6: A(1) is the first 
harmonic amplitude (Fig. 6), A(1/n) is the subharmonic am-
plitude (Fig. 6, a, c) and A(n) is the superharmonic ampli-
tude (Fig. 6, b, d), where the number in parentheses is the 
multiplicity of the harmonic frequency with respect to the 
fundamental frequency ω0, with the dashed lines showing 
the skeleton curves.

w 3 out 3

in 3 w 3

w 3 out 3

in 3 w 3

d /2 D /22 2

g1 0 g2 0
z3 z30 D /2 0 D /2g k

g k d /2 D /22 2

g3 0 g4 0
z3 z30 D /2 0 D /2

d d d d
g , g ,1 h ( , ) h ( , )R ,

g (22)
d d d d(k 1..4) g , g ,

h ( , ) h ( , )

p p

+ +

p p

− −

ρ ρ α ρ ρ α
= µ = µ

ρ α ρ α=

ρ ρ α ρ ρ α= = µ = µ
ρ α ρ α

∫ ∫ ∫ ∫

∫ ∫ ∫ ∫



Прикладная физика

11

 
 
 
 
 
 
 
 
 
 
 
a 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b 

Fig. 5. Experimental amplitude-frequency response of the 
rotor and amplitude vs. rotational frequency response:  

a – subharmonics; b – superharmonics

The natural frequencies of a nonrotating rotor that were 
calculated by using a linearized system of equations without 
account for damping [2p rad/s] are as follows: p1x=10.39; 
p1y=11.72; p2x=25.03; p2y=27.66. The curves in Fig. 6 show 
the dynamic behaviour of a rotor in the investigated range 
and, in essence, are the projections of 3-dimensional spectra 
on the coordinate planes OωA. Thereat, the dependence of 
the amplitude of the first harmonic of forced vibrations А(1) 
on the frequency of the harmonic driving force is the ampli-
tude-frequency response, and the graphic representation of 
this dependence (Fig. 6) is the resonance curve. Analysis of 
these responses has shown that the first resonant mode (ω1z) 
corresponds to axial vibrations (Fig. 6).

Next, analysis of the results (Fig. 6) has demonstrated the 
following: superharmonic vibrations in the area of the second 
resonant mode (I); bifurcation of the second resonance due 
to anisotropy of PMB rigidity in the horizontal and vertical 
directions when at ω<ω1x and ω>ω1y the rotor’s motion is 
of the direct cylindrical precession type, and in the range 
between these critical speeds ω1x<ω<ω1y the motion is of the 
reverse cylindrical precession type (II); super-resonant vi-
brations ω2x(2), which coincide also with the inner resonance 
ω2x(2)=ω1y (III); bifurcation of the third resonance due to 
anisotropy of PMB rigidity when at ω<ω2x and ω>ω2y rotor 
motion is of the direct cylindrical precession type, and in the 
range between these critical speeds (ω2x<ω<ω2y) when the 
motion is of the reverse conical precession type (IV); subres-
onant vibrations ω1y(1/4), which are enhanced by inner res-
onance ω1y(1/4)=4ω1y=4ω2x(2) (Fig. 6, a, b), with these sub-
harmonic vibrations occurring at relatively high excitation 
frequencies, and their amplitudes significantly exceeding 
the amplitudes of the first harmonic (V); the form of reso-
nance curves in the area of the third resonant mode (ω2x and 
ω2y) is specific to systems with rigid characteristics of the 

restoring force, which is true for PMB (VI); the 
third resonant mode is more dangerous than the 
second one because it is accompanied by a signif-
icant amplitude increase as during motion of the 
conical precession type (angular vibrations) the 
flatness of gaps in the axial AMB is disturbed, 
resulting in a moment coinciding in the direction 
with the angular deflection of the rotor (VII); 
in the area of frequencies, wherein two stable 
forced vibration modes with two different am-
plitudes are possible, a failure of vibrations is ob- 
served (VIII); the fundamental and the super- 
harmonic resonant vibrations in the axial di-
rection are excited by a load acting in the radial 
direction (by the rotor’s own unbalance), with 
the peaks of super-resonant axial vibrations coin-
ciding with the peaks of the fundamental radial 
vibrations (Fig. 6, a–d), which is the result of 
accounting for the interrelation between radial 
and axial generalised coordinates with nonlinear 
terms in the equations of motion (9) (IX).

The same resonant modes and phenomena 
were found in the system also during experimen-
tal research. The adequacy of the mathematical 
model representing a system of nonlinear com-
pletely mutually coupled by generalised mechan-
ical coordinates x1,...,z3 and flux linkages Ψc1 
and Ψc2 equations (with account for the control 
law, i. e. voltages u1,2 also dependent on x1,...,z3) 
can be judged by the results of comparing the 

 
 

 

   
 

   
 

a                                                         b 
 
 
 
 
 
 
 
 
 
 
 
 

                                                          
c                                                         d 

Fig. 6. Amplitudes of fundamental, sub- and superharmonics vs. driving 
force frequency: a, b – x1, y1, x2, y2; c, d – z3
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calculated data (Fig. 6) with experimentally obtained am-
plitude-frequency responses (Fig. 5) and dependencies of 
harmonic amplitudes that differ from the fundamental one 
by the driving force frequency. Thus, comparative analysis 
of the results has shown an identity for both qualitative 
representation of processes in the system and quantitative 
determination of their parameters: for the amplitude, the 
difference is within 2–3 %, and for the values of resonant 
frequencies, the difference is within 0.2–0.5 %.

7. Discussion of the findings on the dynamics of a rotor in 
magnetic bearings

The result of this research, which is a follow-up of a 
large variety of studies, is the development and practical 
implementation of the method of mathematical descrip-
tion of linear and nonlinear rotor dynamics phenomena in 
systems with magnetic bearings of different types, which 
affect the vibration activity of power rotor machinery. The 
advantage of the approach suggested is that the interrela-
tionship of electric, magnetic and mechanical stationary and 
nonstationary processes can be accounted for as shown by 
the example of a laboratory setup. Applying this approach 
to modelling the dynamics of rotor systems with magnetic 
bearings improves the dynamic parameters of a whole class 
of rotor machinery due to a more correct description of dy-
namic processes and phenomena occurring therein. In turn, 
this has the effect of cutting the cost of development activ-
ities at the design and commissioning stages, and reducing 
operational and power resources costs.

8. Conclusions

1. It is known that analysis based on linearized models 
allows judging only the stability of equilibrium states 
with small deflections. The negligible nonlinear equa-
tion terms in this case, when investigating motion with 

increasing deflection, allow expanding the information 
content of the mathematical model about nonlinear effects 
occurring in the system. Therefore, the study has suggest-
ed an analytical model that accounts for the nonlinear 
interrelation of mechanical and electromagnetic processes 
in the “rotor in magnetic bearings” system. Its adequacy 
and feasibility for studying the dynamics of rigid rotors 
in magnetic bearings of different types has been proved 
experimentally.

2. The main distinctive feature of the model implement-
ed, among other things, by using the analytical method of 
analysing electromagnetic circuits of active magnetic bear-
ings, is being able to account for the following:

– a nonlinear dependence of magnetic forces on gaps 
between movable and stationary parts in PMBs and AMBs, 
and on currents in the windings of AMB electromagnets;

– a current delay in the windings of AMB electromag-
nets, i. e. nonlinearity linked to the inductance of the coils;

– geometric links between the electromagnets of one 
AMB and links between all AMB of one rotor, which results 
in coupling of processes in orthogonal directions;

– practically any AMB control law;
– limitations on the control current caused by physical 

constraints in the control system controller;
– delays in the control system controller;
– dissipation fluxes as well as magnetic resistances of 

AMB magnetic core sections, making the mathematical 
model insensitive as regards origination of “nonzero” gaps 
and currents.

3. The developed imitation of the mathematical model 
built around the suggested mathematical modelling method 
has been used for numerical research into a complete magnetic 
suspension in a laboratory setup. The study has shown how 
the model can be used for investigating the mechanisms of ex-
citation of spatial vibrations in rotating rigid rotors in an MB, 
finding out the conditions of existence of different resonant 
modes (including super, sub and inner resonances), super- and 
subharmonic, and combined vibrations, and also testing con-
trol algorithms and selecting optimal suspension parameters.
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