
Eastern-European Journal of Enterprise Technologies ISSN 1729-3774 4/4 (82) 2016

28

 M. Solomko, L. Zubyk, P. Olshansky, V. Nazaruk, 2016

1. Introduction

Binary code is a general designation of the code, by which
messages can be transmitted in sequences that have two
characters (for example, “0” and “1”). In general, the number
of combinations (codes) of n-digit binary code is equal to the
number of locations with repetition of n elements by m

mP̂(n,m) n .= (1)

For a binary code, the number of combinations equals:

nP̂(2,n) 2 ,= (2)

where n is the digit capacity of a binary code.
The minimum possible number that can be written down

by such a binary code equals 0. The maximum possible
number that can be written down by such a binary code is
determined by the formula

nM 2 1.= − (3)

Table 1

4-bit binary codes in lexicographical order

Numeric
(literal) value

Binary code
Numeric

(literal) value
Binary code

0 0000 8 1000

1 0001 9 1001

2 0010 A 1010

3 0011 B 1011

4 0100 C 1100

5 0101 D 1101

6 0110 E 1110

7 0111 F 1111

These two numbers fully determine the range of numbers
that can be presented by a binary code (2). For example,
for an 8-digit binary without a signed integer, the range
of numbers is 0…255. For a 16-bit code, the range equals
0…65535.

The examples of binary codes are the code of Gray, Bau-
dot code, Hamming code, ASCII, etc.

35. Kondratenko, N. R. Application of Type-2 Membership Functions in Fuzzy Logic Systems [Text] / N. R. Kondratenko // Re-

search Bulletin of the National Technical University of Ukraine “Kyiv Politechnic Institute”. – 2016. – Vol. 2. – P. 43–50.

doi: 10.20535/1810-0546.2016.2.51636

36. Karnіk, N. Type-2 Fuzzy Logіc Systems [Text] / N. Karnіk, J. Mendel, Q. Lіang // IEEE Transactions on Fuzzy Systems. – 1999. –

Vol. 7, Issue 6. – P. 643–658. doi: 10.1109/91.811231

37. Kondratenko, N. R. Evolyucijnyj poshuk informatyvnykh oznak iz zaluchennyam eksperta v zadachi ocinky yakosti arteziansjkoi

vody [Text] / N. R. Kondratenko, O. O. Snihur // Visnyk Vinnycjkogho politekhnichnogho instytutu. – 2015. – Vol. 3. – P. 96–101.

38. Teoriya informatsii i ee prilozheniya (sbornik perevodov) [Text] / A. A. Harkevich (Ed.). – Мoscow: Fizmatgiz, 1959. – 328 p.

SUMMATION OF
BINARY CODES

WITHOUT CARRY
M . S o l o m k o

PhD, Associate Professor*
E-mail: doctrinas@ukr.net

L . Z u b y k
Senior Lecturer**

E-mail: labrob@ukr.net
P . O l s h a n s k y

Senior Lecturer*
E-mail: p.v.olszanski@nuwm.edu.ua

V . N a z a r u k
PhD, Senior lecturer*

Е-mail: v.d.nazaruk@nuwm.edu.ua
*Department of Computer Engineering***

Department of Computer Science*
***National University of Water and

Environmental Engineering
Soborna str., 11, Rivne, Ukraine, 33028

Розглянуто операцію додавання бінарних кодів без
перенесення. Виявлено, що метод рекурсії забезпечує син-
тез системи бінарних кодів з кільцевою структурою при
будь-якому початковому коді повної комбінаторної систе-
ми з повторенням, що й дозволяє використовувати обрану
систему бінарних кодів для операції додавання без перене-
сення. Встановлена оцінка загальної складності обчислю-
вального алгоритму суматора бінарних кодів

Ключові слова: суматор, комбінаторна система з пов-
торенням, бінарні коди, додавання бінарних кодів, каскад-
на схема, клас комбінаторних систем, екземпляр класу,
тезаурус, логарифмічна складність

Рассмотрена операция суммирования бинарных кодов
без переноса. Выявлено, что метод рекурсии обеспечивает
синтез системы бинарных кодов с кольцевой структурой
при любом начальном коде полной комбинаторной систе-
мы с повторением, что и позволяет использовать выбран-
ную систему бинарных кодов для операции суммирова-
ния без переноса. Установлена оценка общей сложности
вычислительного алгоритма сумматора бинарных кодов

Ключевые слова: сумматор, комбинаторная система
с повторением, бинарные коды, суммирование бинарных
кодов, каскадная схема, класс комбинаторных систем,
экземпляр класса, тезаурус, логарифмическая сложность

UDC 681.325
DOI: 10.15587/1729-4061.2016.75595

Mathematics and cybernetics – applied aspects

29

Development of the theory of universal and specialized
processors is closely connected with the development of a
binary number system, i.e. theoretical and numerical basis
(TNB) of Rademacher [1].

The carry of one to a higher level in the basis of
Rademacher leads to the decrease in fast performance of
identifying correct signals at the outputs Si of the one-digit
adders. The magnitude of this decline is proportional to the
digit capacity of numbers and time delay of the signals in
typical logical elements. The maximum time of the operation
of summation occurs when the carry, which appeared in the
first bit, passes through all the other bits (for example, when
compiling codes 11...11 and 00…01). Modern achievements
in the creation of high-performance processors are based on
the designs of the theory of parallel computing.

The method of parallel computing in the Rademacher
TNB, in particular, is based on the recurrent binary codes.
Extension of the apparatus of obtaining these codes is one
of the most central and practically important problems in
this theory. The [2, 3] demonstrated, accordingly, receiv-
ing recurrent binary code using cyclic shift of the original
4-digit non-zero code fragment – 1111 and the original zero
code fragment of 0000. Since the specified original code
fragments are part of a complete combinatorial system with
repetition (Table 1), the research is actual into the process
of formation of recurrent binary codes with the help of the
rest of the initial code fragments in Table 1, which allows ex-
tending the apparatus of obtaining recurrent binary codes,
controlling the selection of a code at the stage of designing
a computing device and the classification generalization of
the binary codes with the aim of simplifying the structure
of the subject area, increasing the diversity of the systems
of binary codes, in particular, for arithmetic operations with
binary numbers.

The relevance of the classification generalization of the
binary codes for arithmetic operations is also in presenting
the data of the systems of binary codes by a unified general
table of the data, and, therefore, the unified general hard-
ware costs at the level of an electronic device.

2. Literature review and problem statement

The [4] considered the design of the adder of binary
numbers with a choice of carry (Carry Select Adder), which
is one of the fast-performing versions of the parallel adder.
The feature of the Carry Select Adder is in that the adder
has linear complexity of the algorithm of the calculation,
however, within the range of 16–128 bit scheme, it shows
better efficiency of calculation compared with the scheme
of the adder with logarithmic complexity of the calculation.
The disadvantage of the Carry Select Adder is the orga-
nization of technology of selecting the carry through the
split of the structure of the adder into separate groups of
logical elements, each of which contributes to the delay of
the carry signal (more groups – larger delay), which with
increasing the digit capacity of the scheme reduces the pro-
ductivity of computing.

The [5] demonstrated better efficiency of multiplying
binary numbers for a 64-digit sign multiplier using the
technology of Carry Select Adder (CSA), compared with
the Carry Look-Ahead Adder (CLA). Thus, the results of
the paper [5] confirm the specifics of the Carry Select Adder
that were examined in the analysis of the work [4]. With

the increase in the digit capacity of a sign multiplier, more
promising is the technology of the CLA, since the latter uses
a cascading scheme [6]. The calculations organized by a cas-
cade scheme in the CLA demonstrate a significant advantage
exactly while increasing the bit capacity of a device’s scheme.

The [7] examined designing the adder of binary num-
bers with a skip in the carry (Carry Skip Adder), which is a
modification of the parallel adder with the structure of lower
hardware costs and energy consumption compared to Carry
Look-ahead Adder. The feature of the Carry Skip Adder is
in that the adder occupies a technological niche between the
Ripple Carry Adder with greater productivity of computing
and Carry Look-ahead Adder with lower hardware costs. The
disadvantage of the Carry Skip Adder is the organization of
the technology of skipping the carry through the breakdown
of the structure of the adder into separate groups of logical
elements, the half of which contributes to the delay of the
transfer signal, which limits the productivity of computing,
that is why the Carry Skip Adder technology achieves the
complexity of the algorithm of calculation not less than linear.

The [8] demonstrated better performance in multiplying
binary numbers for a 32-bit multiplier using the technology of
Carry Save Adder (CSA) compared with Carry Look-Ahead
Adder (CLA). The feature of using the CSA for the process of
the multiplication by a multiplier is in the way of performing
of addition of partial multiplications (Carry Save) and their fi-
nal summation. The technology of Ripple Carry Adder is used
only at the final stage. The multiplier with the CSA requires
fewer complete adders than the multiplier with the CLA.
Since the Carry Look-Ahead Adder uses a cascading scheme
[6], then with increasing the digit capacity of binary numbers,
the CLA becomes more promising. However, the analysis in
[8] is limited by the consideration of calculations of 32-digit
numbers while other data are not presented.

The [9] presents designing and implementation of an
8-bit Carry Look-ahead Adder with low power consumption
based on the 180 nm CMOS technology. The peculiarity
of the CLA is the lowest depth of the adder’s scheme; in
particular, for a 2048-bit scheme of the CLA, the depth is
26 logical elements. An adder has logarithmic complexity
of the calculation algorithm. Therefore, the CLA is the
main functional unit in arithmetic-logical devices due to its
high performance speed. However, the lower depth of the
adder’s scheme is achieved by increasing the complexity of
the scheme, which is a disadvantage of a Carry Look-ahead
Adder. That is why 8-bit CLA is sufficient. In the practical
context, 32-bit [8] and 64-bit CLA [5] are known.

The [10] presented a scheme of a serial adder with reverse
logic gates. Reverse logic is able to effectively dissipate heat
energy, which is the main requirement when designing VLSI
with low power consumption. Reverse serial adder [10] is
based on the serial adder of binary numbers which includes a
complete single-digit adder and a trigger. The disadvantage
of the latter adder is that it implements the technology of
Ripple Carry Adder in the worst version, since the chain of
carry consists of three logical elements, and, therefore, when
adding n-bit numbers, the chain of carry will consist of 3n
logical elements. Speeding up calculations is possible when
using a serial adder without carry. In this case, a complete
single-digit adder and a trigger will be replaced by one log-
ical element – OR or AND, which is the advantage of the
reviewed technology.

The [11] presents designing and implementation of a
16-bit Ripple Carry Adder (RCA) with low power consump-

Eastern-European Journal of Enterprise Technologies ISSN 1729-3774 4/4 (82) 2016

30

tion based on the 45 nm CMOS technology. The peculiarity
of the RCA is the least complexity of the scheme in the class
of parallel adders that provides the scheme’s performance
with minimal consumption of power and thus it becomes
possible, to certain extent, to solve primary problems in
today’s VLSI that arise due to two main reasons. One is the
continued work of a battery for servicing mobile and porta-
ble devices, and the second is due to the increase in the num-
ber of transistors on a single-chip VLSI. The disadvantage
of the RCA is the increase in the carry signal chain, which
slows down the establishment of stable values of the signals
at the Si outlets of the RCA one-digit adders.

The operation of summation of binary numbers in the
digital technologies [4, 5, 7–10], with the exception of [11],
implies a way to reduce the carry. Summation in a position-
al system without carry was first demonstrated using the
Galois field codes that are obtained by using theoretical-nu-
merical transformations over the Galois field and the initial
non-zero code fragment.

However, the codes for the operation of summation with-
out carry in a positional system can be obtained through
the initial, zero and each of non-zero blocks of complete
combinatorial system with repetition (Table 1). Generated
codes for the operation of summation are categorized only as
binary and in this case they have recurrent properties.

Assume P(2, n) is the class of combinatorial systems
with initial blocks of complete combinatorial system with
repetition (Table 1). Then P(2, 1111) – an instance of the
class P(2, n) is a combinatorial system with a 4-bit initial
block – 1111. P(2, 0000) – an instance of the class P(2, n)
is a combinatorial system with a 4-bit initial block – 0000.
P(2, bi) – an instance of the class P(2, n) is a combinatorial
system with a 4-bit initial block – bi Table 1.

Unlike [2, 3], in this paper the Galois field codes, codes
XAND are determined by the respective instances P(2, bi)
of the class P(2, n) by way of their selection on the ring struc-
ture using the original block bi Table 1. This means that the
principle of the construction of the system of binary codes by
its code-beginning (block-beginning) is located within the
range of the complete combinatorial system with repetition
(Table 1). Therefore, all the blocks in Table 1 are equal in
the principle of the synthesis of the corresponding system of
binary codes P(2, bi). In its turn, the chosen system of binary
codes (an instance of P(2, bi) in the class P(2, n)) is equal
in its use, among other systems, for example, in arithmetic
operations.

Since the use of binary codes for the operation of summa-
tion without carry is the task still unsolved, this paper demon-
strates a new standard of the synthesis of binary codes, which
comes down to that the set system of binary codes (instance
of P(2, bi) of the class P(2, n)) is selected on the ring structure
with the help of corresponding initial block of complete com-
binatorial system with repetition. Similarly selected are the
other systems of binary codes, with their blocks-beginnings,
that can be applied to carry out the operation of summation
without carry, thus expanding the apparatus of the synthesis
of recurrent binary codes for their use in digital technologies.

3. The purpose and objectives of the study

The aim of this work is to construct a scheme of a parallel
adder of binary codes without inter-digit carries and to de-
termine the quality indicators of such an adder.

To achieve the set goal, the following tasks are to be
solved:

– to determine the properties of recursive method of the
synthesis of binary codes;

– to establish the validity of the use of any block-be-
ginning of complete combinatorial system with repetition
(Table 1) for the synthesis of recurrent binary codes P(2, bi);

– to obtain an estimate of the complexity of the algo-
rithm of calculation of signals of the sum of a parallel adder
of binary codes without carry;

– to compile a protocol of computing of the operation of
summation of binary codes without carry, to conduct the
test of the synthesized adder to match the results of the op-
erations of summation of binary numbers and the compiled
protocol and to specify the range of adding the numbers of
the adder of binary codes without carry;

– to perform a comparative performance analysis of the
calculations of signals of the sum in the scheme of a paral-
lel adder of binary codes without carry to the scheme of a
parallel adder with a parallel way of the CLA carry (Carry
Look-ahead Adder).

4. Recursive method of synthesis of binary codes

The method of recursion provides for a synthesis of bina-
ry codes with the necessary properties for the operation of
summation without carry.

1. Recursion submits the next code (or a recurrent
sequence element) by using logical operation on the pre-
vious code (element). Thus all n-digit codes are the result
of a cyclic shift of the original code fragment with the key

j i n i 1x x x ,− −= ⊕ (for the case of a 4-digit code).
2. Compiled in this way, the system of codes must pos-

sess the properties of a ring, which gives, in particular, the
formation of the initial code of the system at the operation of
the shift in the last code by one bit of a recurrent sequence.

3. The set of binary codes of any instance P(2, bi) in
the class P(2, n) with the properties of a ring relative to
the operation of summation is the additive group of the
instance P(2, bi) with a ring structure that can be marked
as – P(2, bi)+.

4. The system of codes will have a ring structure only
when it contains one of the two combinations of binary num-
bers: 0000 or 1111 (for the case of 4-digit binary numbers).

5. It follows from the property 4 that, based on complete
combinatorial system with repetition (Table 1), the forma-
tion of two ring structures, one of which contains the code
0000 (4), is possible

0 0 0 0 1 0 1 0 0 1 1 0 1 1 1, (4)

and the other one contains the code 1111 (5)

1 1 1 1 0 1 0 1 1 0 0 1 0 0 0. (5)

6. In the system of codes with a ring structure, made by
using the XOR operation, the code 0000 is missing, in the
system of codes with a ring structure, formed by using the
XAND operations, the code 1111 is missing (for the case of
4-bit binary codes).

7. The order of alternation of recurrent binary codes in
a ring structure is the same for all systems of binary codes
(for all instances P(2, bi) in the class P(2, n)). For example,

Mathematics and cybernetics – applied aspects

31

for a ring structure (4), the order of alternation of codes is
as follows:

…
1000
0000
0001
…,

for a ring structure (5), the order of alternation of codes is
as follows:

…
0111
1111
1110
….

8. It follows from the property 6 that the number of re-
current binary codes in the system P(2, bi) is determined by
the number

nb 2 1,= − (6)

where n is the digit capacity of a binary code.
9. It follows from the property 8 that the range of num-

bers that can be presented by the binary recurrent codes (6)
consists of

xD+yD=<2n–2,

where n is the digit capacity of a binary code.
For example, for an 8-bit binary without a sign integer,

the range of numbers, which can be presented by binary re-
current codes is 0…254. For a 16-bit, without a sign code, the
range equals 0…65534.

5. Recurrent binary codes

For binary, such as 4-bit codes, at logical operation
XOR, each of 2n–1 n-digit non-zero code combination of
recurrent sequence is the result of cyclic shift of any ini-
tial non-zero code fragment that belongs in complete com-
binatorial system with repetition (Table 1) with the key

j i n i 1x x x .− −= ⊕

Compiled in this way, the system of codes has a ring
structure, which provides, in particular, for the forma-
tion of initial system code at the operation of the shift
in the last code of the system by one bit of recurrent
sequence.

Table 2 presents all 4-bit initial code fragments of
complete combinatorial system with repetition (Table 1),
with the exception of zero (0000) and corresponding re-
current sequences of the code elements, formed by the key

j i 4 i 1x x x .− −= ⊕

Logical operation XAND allows obtaining recurrent
binary codes by a cyclic shift, starting at zero (0000)
initial fragment [3].

All sequences (Table 2) present 4-bit binary recurrent
codes shifted by one bit by to each other, the values of
which are given in Tables 3, 4.

Table 2

Initial 4-bit code fragments of complete combinatorial system
with repetition and corresponding recurrent sequence of

code elements

Initial code fragment Recurrent sequence
0 – –
1 0001 000111101011001
2 0010 001000111101011
3 0011 001111010110010
4 0100 010001111010110
5 0101 010110010001111
6 0110 011001000111101
7 0111 011110101100100
8 1000 100011110101100
9 1001 100100011110101

10 1010 101011001000111
11 1011 101100100011110
12 1100 110010001111010
13 1101 110101100100011
14 1110 111010110010001
15 1111 111101011001000

Table 4

Recurrent 4-bit binary codes for initial code fragments –
1011, 1001, 1000, 0101, 0100, 0110, 1010

#
Initial code fragment

1011 1001 1000 0101 0100 0110 1010
Recurrent binary code

0 1011 1001 1000 0101 0100 0110 1010
1 0110 0010 0001 1011 1000 1100 0101
2 1100 0100 0011 0110 0001 1001 1011
3 1001 1000 0111 1100 0011 0010 0110
4 0010 0001 1111 1001 0111 0100 1100
5 0100 0011 1110 0010 1111 1000 1001
6 1000 0111 1101 0100 1110 0001 0010
7 0001 1111 1010 1000 1101 0011 0100
8 0011 1110 0101 0001 1010 0111 1000
9 0111 1101 1011 0011 0101 1111 0001

10 1111 1010 0110 0111 1011 1110 0011
11 1110 0101 1100 1111 0110 1101 0111
12 1101 1011 1001 1110 1100 1010 1111
13 1010 0110 0010 1101 1001 0101 1110
14 0101 1100 0100 1010 0010 1011 1101

Table 3

Recurrent 4-bit binary codes for initial code fragments –
1111, 1110, 0001, 0011, 1101, 1100, 0010, 0111

#
Initial code fragment

1111 1110 0001 0011 1101 1100 0010 0111
Recurrent binary code

0 1111 1110 0001 0011 1101 1100 0010 0111
1 1110 1101 0011 0111 1010 1001 0100 1111
2 1101 1010 0111 1111 0101 0010 1000 1110
3 1010 0101 1111 1110 1011 0100 0001 1101
4 0101 1011 1110 1101 0110 1000 0011 1010
5 1011 0110 1101 1010 1100 0001 0111 0101
6 0110 1100 1010 0101 1001 0011 1111 1011
7 1100 1001 0101 1011 0010 0111 1110 0110
8 1001 0010 1011 0110 0100 1111 1101 1100
9 0010 0100 0110 1100 1000 1110 1010 1001

10 0100 1000 1100 1001 0001 1101 0101 0010
11 1000 0001 1001 0010 0011 1010 1011 0100
12 0001 0011 0010 0100 0111 0101 0110 1000
13 0011 0111 0100 1000 1111 1011 1100 0001
14 0111 1111 1000 0001 1110 0110 1001 0011

Eastern-European Journal of Enterprise Technologies ISSN 1729-3774 4/4 (82) 2016

32

For any given initial code fragment (Table 2), for exam-
ple, x1, x2, x3, x4 with the key

j i 4 i 1x x x ,− −= ⊕

all other representations of the bits of corresponding recur-
rent sequence (Table 2) can be obtained through the initial:

x5=x1⊕x4,

x6=x 2⊕x5=x1⊕x 2⊕x4,

x7=x3⊕x6=x1⊕x 2⊕x3⊕x4,

x8=x4⊕x7=x1⊕x2⊕x3,

x9=x5⊕x8=x2⊕x3⊕x4,

x10=x6⊕x9=x1⊕x3,

x11=x7⊕x10=x2⊕x4,

x12=x8⊕x11=x1⊕x3⊕x4,

x13=x9⊕x12=x1⊕x2,

x14=x10⊕x13=x2⊕x3,

x15=x11⊕x14=x3⊕x4,

x16=x12⊕x15=x1⊕x3⊕x4⊕x3⊕x4=x1,

x17=x13⊕x16=x1⊕x 2⊕x1=x 2,

x18=x14⊕x17=x 2⊕x3⊕x 2=x3,

x19=x15⊕x18=x 2⊕x4⊕x3=x4,

x 20=x16⊕x19=x1⊕x4. (7)

From the review of dependencies (7) we see that in the
calculations of each bit of the recurrent sequence, starting
with x5, the first four bits participate.

6. Arithmetic operation of adding binary
codes without carry

The operation of summation of binary codes А(х)
and D(x) is the recursive shift in the selected sequence
(Table 2), starting from the initial position of the code
А(х) on a number of discrete positions defined by the deci-
mal equivalent of the code D(x). Thus, the implementation
of the indicated operation of summation boils down to
simultaneous parallel mutually independent
formation of each bit of the result of the
calculation as the sum of the operation ⊕
without having to perform the operations
of inter bit carries. The calculation of each
result of the operation is carried out in one
cycle. The process of calculation is invariant
to the digit capacity of a word of data.

To perform the operation of summation,
the codes-summands are presented by using
dependencies (7).

Example 1. For the initial code fragment
1111, the dependency of the code А(х) – 0101
(410), code D(x) – 0110 (610), code of the sum
C(х) – 0100 (1010) are displayed in Table 5.

During the operation of summation, the code А(х)
(Table 5, a) is exposed to the actions defined by the de-
pendencies of the code D(x) in the recurrent sequence
(Table 2), which correspond to the value of the code D(x)

(Table 5, b). The dependencies of the code D(x) set a certain
programming procedure (vector) over the code А(х) for the
calculation of each digit of the sum C(х) (Table 5, c).

The dependencies (7) of the code of the number А(х) –
0101 (410) of the example 1 are in the 4th line of Table 8,
the vector D’(x) is in the 6th line of Table 8 (Table 6).

Table 5

Expressions for the 4-bit codes: a – А(х), b – D(x), c – C(х),
presented by dependencies (7)

А(х) – 0101 (410) D(x) – 0110 (610) C(х) – 0100 (1010)
x5 = 1 4x x⊕ x7 = 1 2 3 4x x x x⊕ ⊕ ⊕ x11 = 2 4x x⊕

x6 = 1 2 4x x x⊕ ⊕ x8 = 1 2 3x x x⊕ ⊕ x12 = 1 3 4x x x⊕ ⊕

x7 = 1 2 3 4x x x x⊕ ⊕ ⊕ x9 = 2 3 4x x x⊕ ⊕ x13 = 1 2x x⊕

x8 = 1 2 3x x x⊕ ⊕ x10 = 1 3x x⊕ x14 = 2 3x x⊕
a b c

According to the program D’(x) (the 6th line of Table 8),
for the calculation of the first digit of the sum C(х), all four
dependencies of the code А(х) (Table 5) must participate.
To calculate the sum C(х) in the second digit, the first three
dependencies of the code А(х) (Table 5) must participate.
To calculate the sum C(х) in the third digit, the dependen-
cies of the second, third and fourth bits of the code А(х)
(Table 5) must participate. To calculate the sum C(х) in the
fourth digit, the dependencies of the first and the third bits
of the code А(х) (Table 5) must participate.

The program procedure D’(x) over a 4-bit code А(х) can
be presented by a table (Table 7). In the first line of Table 7,
the dependencies of the code А(х) (Table 5) are recorded to
calculate the first digit of the sum C(х) in accordance with
program procedure D’(x) (Table 8). In the second line of
Table 7, the dependencies of the code А(х) (Table 5) are re-
corded to calculate the second digit of the sum C(х) in accor-
dance with the program procedure D’(x) (Table 8) and so on.

Indexes at x in the far left column of Table 7 must be
replaced with the corresponding indices for the sum C(х) –
x11=x2⊕x4, x12=x1⊕x3⊕x4, x13=x1⊕x2, x14= x2⊕x3.

6. 1. Two general tables of representation of binary codes
Character representation of the expressions of the

4-bit codes a – А(х), b – D(x), c – C(х) of the instances

Table 6

Dependencies of the code of the number А(х) and the vector
D’(x) of the example 1 in algebraic representation of Table 8

D(х)
D’(x)

1st bit 2nd bit 3rd bit 4th bit

4 0101 b1⊕b4 b1⊕b2⊕b4 b1⊕b2⊕b3⊕b4 b1⊕b2⊕b3

6 0110 b1⊕b2⊕b3⊕b4 b1⊕b2⊕b3 b2⊕b3⊕b4 b1⊕b3

Table 7

Calculations over the 4-bit code А(х), which are defined by the program
procedure D’(x)

– – x5(A) – x6(A) – x7(A) – x8(A) –
The amount

of code
x7 = 1 4(x x)⊕ ⊕ 1 2 4(x x x)⊕ ⊕ ⊕ 1 2 3 4(x x x x)⊕ ⊕ ⊕ ⊕ 1 2 3(x x x)⊕ ⊕ = 2 4x x⊕

x8 = 1 4(x x)⊕ ⊕ 1 2 4(x x x)⊕ ⊕ ⊕ 1 2 3 4(x x x x)⊕ ⊕ ⊕ – – = 1 3 4x x x⊕ ⊕

x9 = – – 1 2 4(x x x)⊕ ⊕ ⊕ 1 2 3 4(x x x x)⊕ ⊕ ⊕ ⊕ 1 2 3(x x x)⊕ ⊕ = 1 2x x⊕

x10 = 1 4(x x)⊕ – – ⊕ 1 2 3 4(x x x x)⊕ ⊕ ⊕ – – = 2 3x x⊕

Mathematics and cybernetics – applied aspects

33

P(2, bi) of the class P(2, n) allows, to all possible op-
tions of summation of binary codes, presenting the data
about the vector of the code D(x) by two general tables
(Table 8, 9).

6. 1. 1. General table of binary codes in algebraic rep-
resentation

Table 8 displays the data on the vector of the code D(x)
in algebraic representation by dependencies (7). Table 8 is a
general table of representation of codes for all combinatorial
systems P(2, bi).

For the code D(х) – 1111, for example, at the operation
of summation with any code А(х), the program procedure
(vector) D’(x) over the code А(х) in algebraic representation
will take the form:

1st bit 2nd bit 3rd bit 4th bit
D’(x)=> b1 b2 b3 b4

Table 8

Program procedure D’(x) over the 4-bit code А(х) for all
combinatorial systems P(2, bi) in algebraic representation

#
Bi-

nary
code

Digits of binary codes presented by dependencies (7),
in algebraic representation

– D(х) D’(x)

0 xxxx b1 b2 b3 b4

1 xxxx b2 b3 b4 b1⊕b4

2 xxxx b3 b4 b1⊕b4 b1⊕b2⊕b4

3 xxxx b4 b1⊕b4 b1⊕b2⊕b4
b1⊕b2⊕
⊕b3⊕4

4 xxxx b1⊕b4 b1⊕b2⊕b4 b1⊕b2⊕b3⊕4 b1⊕b2⊕b3

5 xxxx b1⊕b2⊕b4 b1⊕b2⊕b3⊕4 b1⊕b2⊕b3 b2⊕b3⊕b4

6 xxxx b1⊕b2⊕b3⊕4 b1⊕b2⊕b3 b2⊕b3⊕b4 b1⊕b3

7 xxxx b1⊕b2⊕b3 b2⊕b3⊕b4 b1⊕b3 b2⊕b4

8 xxxx b2⊕b3⊕b4 b1⊕b3 b2⊕b4 b1⊕b3⊕b4

9 xxxx b1⊕b3 b2⊕b4 b1⊕b3⊕b4 b1⊕b2

10 xxxx b2⊕b4 b1⊕b3⊕b4 b1⊕b2 b2⊕b3

11 xxxx b1⊕b3⊕b4 b1⊕b2 b2⊕b3 b3⊕b4

12 xxxx b1⊕b2 b2⊕b3 b3⊕b4 b1

13 xxxx b2⊕b3 b3⊕b4 b1 b2

14 xxxx b3⊕b4 b1 b2 b3

6. 1. 2. General table of binary codes in bitmap repre-
sentation

Table 9 displays the data on the vector of the code D(x)
by the dependencies (7) using the numeric symbols (bits).
Table 9 is a general table of representation of codes for all
combinatorial systems P(2, bi), where the presence of a
character in the dependencies (7) is indicated by one, and
the absence of a character is indicated by zero.

For the code D(х) – 1111, for example, during
the operation of summation with any code А(х),
the program procedure (vector) D’(x) over the
code А(х) in the bitmap representation will take
the form:

1st bit 2nd bit 3rd bit 4th bit
D’(x)=> 1 1 1 1

Table 9

Program procedure D’(x) over the 4-bit code А(х) for all
combinatorial systems P(2, bi) in the bitmap representation

#
Binary

code

Digits of binary codes presented by dependencies (7),
in the bitmap representation

d44 d34 d24 d14 d43 d33 d23 d13 d42 d32 d22 d12 d41 d31 d21 d11

– D(х) D’(x)

0 xxxx 1⊕0⊕0⊕0 0⊕1⊕0⊕0 0⊕0⊕1⊕0 0⊕0⊕0⊕1

1 xxxx 0⊕1⊕0⊕0 0⊕0⊕1⊕0 0⊕0⊕0⊕1 1⊕0⊕0⊕1

2 xxxx 0⊕0⊕1⊕0 0⊕0⊕0⊕1 1⊕0⊕0⊕1 1⊕1⊕0⊕1

3 xxxx 0⊕0⊕0⊕1 1⊕0⊕0⊕1 1⊕1⊕0⊕1 1⊕1⊕1⊕1

4 xxxx 1⊕0⊕0⊕1 1⊕1⊕0⊕1 1⊕1⊕1⊕1 1⊕1⊕1⊕0

5 xxxx 1⊕1⊕0⊕1 1⊕1⊕1⊕1 1⊕1⊕1⊕0 0⊕1⊕1⊕1

6 xxxx 1⊕1⊕1⊕1 1⊕1⊕1⊕0 0⊕1⊕1⊕1 1⊕0⊕1⊕0

7 xxxx 1⊕1⊕1⊕0 0⊕1⊕1⊕1 1⊕0⊕1⊕0 0⊕1⊕0⊕1

8 xxxx 0⊕1⊕1⊕1 1⊕0⊕1⊕0 0⊕1⊕0⊕1 1⊕0⊕1⊕1

9 xxxx 1⊕0⊕1⊕0 0⊕1⊕0⊕1 1⊕0⊕1⊕1 1⊕1⊕0⊕0

10 xxxx 0⊕1⊕0⊕1 1⊕0⊕1⊕1 1⊕1⊕0⊕0 0⊕1⊕1⊕0

11 xxxx 1⊕0⊕1⊕1 1⊕1⊕0⊕0 0⊕1⊕1⊕0 0⊕0⊕1⊕1

12 xxxx 1⊕1⊕0⊕0 0⊕1⊕1⊕0 0⊕0⊕1⊕1 1⊕0⊕0⊕0

13 xxxx 0⊕1⊕1⊕0 0⊕0⊕1⊕1 1⊕0⊕0⊕0 0⊕1⊕0⊕0

14 xxxx 0⊕0⊕1⊕1 1⊕0⊕0⊕0 0⊕1⊕0⊕0 0⊕0⊕1⊕0

In a shortened record of the vector D’(x), the sign of the
operation is omitted, for example:

– D(х) D’(x)
14 0111 0011 1000 0100 0010

In the end Table 9 will take a compact view.

6. 2. Adding binary codes in bitmap representation
without carry

Since arithmetic operations in electronic schemes are
carried out by using physical signals, which, in turn, are
defined by substitution, in accordance with the bits of
binary codes

1 2 k

1 2 k

i i i

i i ... i
A ,

...

= α α α

we will present binary codes of the numbers А(х), D(x), C(х)
in bits, where the presence of a character of the sequence (7)
is denoted by one, while the absence of a character is denoted
by zero. For example, the 4-bit code 1 4x x⊕ for any initial
code fragment of combinatorial systems P(2, bi), in the bit-
map representation will look like 1 0 0 1,⊕ ⊕ ⊕ the 4-bit code

1 2 3 4x x x x⊕ ⊕ ⊕ in the bitmap representation will take the
form 1 1 1 1.⊕ ⊕ ⊕

Example 2. For the initial code fragment 1111 (as for
other initial code fragments), the vector D’(x) and the code
А(х) from the example 1 can be presented in bits (Table 11).

The program procedure D’(x) over the code А(х) from
the example 1 (Table 5) will look like (Table 10).

Table 10

Program procedure (vector) D’(x) over the 4-bit code А(х) – 0101 (410)
from the example 1

1st bit 2nd bit 3rd bit 4th bit

D’(x) 11⊕12⊕13⊕14 11⊕12⊕13⊕04 01⊕12⊕13⊕14 11⊕02⊕13⊕04

Eastern-European Journal of Enterprise Technologies ISSN 1729-3774 4/4 (82) 2016

34

Table 11

Calculations defined by the program procedure D’(x)
(the 6th line of Table 8) over the 4-bit code А(х) from

the example 1 (Table 5), presented in bits

– – x5(A) – x6(A) – x7(A) – x8(A) – Sum of codes

x7 = 0 ⊕ 1 ⊕ 0 ⊕ 1 = 0

x8 = 0 ⊕ 1 ⊕ 0 ⊕ 0 = 1

x9 = 0 ⊕ 1 ⊕ 0 ⊕ 1 = 0

x10 = 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0

The obtained values of bits in the lines of Table 11 x7=0,
x8=1, x9=0, x10=0 correspond to the bits of the code of the
sum C(х). Indices at x must be replaced with the correspond-
ing indices for the sum C(х) – x11=0, x12=1, x13=0,x14=0.

Dependencies (7) are used to construct the vector D’(x),
so in general one can consider missing the character of the
vector D’(x), which is denoted by 0D. The vector D’(x) with
regard to the missing characters will look like (Table 12).

Table 12

Vector D’(x) (the 6th line of Table 8) with regard to
the missing characters

D(х)
D’(x)

1st bit 2nd bit 3rd bit 4th bit

4 0101 0 1 0 1

6 0110
b1⊕b2⊕
⊕b3⊕b4

b1⊕b2⊕
⊕b3⊕0D

0D⊕b2⊕
⊕b3⊕b4

b1⊕0D⊕
⊕b3⊕0D

The calculations in Table 11 will be written down by
equations (8), each of which is formed by substituting the
bits of the code А(х) in the structure of the corresponding
digit of the vector D’(x), given the missing character 0D. For
another option of adding codes it is necessary to perform
another substitution of the А(х) code bits in the structure of
the corresponding digit of the vector D’(x) and to repeat the
considered order of arithmetic operation.

x7=0A⊕1A⊕0A⊕1A=0,

x8=0A⊕1A⊕0A⊕0D=1,

x9=0D⊕1A⊕0A⊕1A=0,

x10=0A⊕0D⊕0A⊕0D=0. (8)

The obtained values of the equations x7=0, x8=1, x9=0,
x10=0 correspond to the bits of the code of the sum C(х).
Indices at x must be replaced with the corresponding indices
for the sum C(х) – x11=0, x12=1, x13=0,x14=0.

Substitution at the level of the scheme requires a process
of logical operation, which for the missing characters of the
vector D’(x) gives the following options matching the wild-
card characters:

0A˄0D,

1A˄0D.

The last option of the substitution inverts one into
zero (excludes the bit-unit of the code A from logical pro-
cess), which requires a logical element I for the scheme.
Substitution with the present characters of the vector

D’(x) gives other variants of the logical substitution of
the variables:

0A˄1D,

1A˄1D,

that is, zero becomes zero, one becomes one.
The process of the substitution with the specified logic

is represented by the equations (9), in which the A code is
written down by the initial values of the bits –0101 (410):

x7=(0A˄1D)⊕(1A˄1D)⊕(0A˄1D)⊕(1A˄1D)=0,

x8=(0A˄1D)⊕(1A˄1D)⊕(0A˄1D)⊕(1A˄0D)=1,

x9=(0A˄0D)⊕(1A˄1D)⊕(0A˄1D)⊕(1A˄1D)=0,

x10=(0A˄1D)⊕(1A˄0D)⊕(0A˄1D)⊕(1A˄0D)=0. (9)

The obtained values of the equations x7=1, x8=0, x9=1,
x10=1 correspond to the bits of the code of the sum C(х).
Indices at x must be replaced with the corresponding indices
for the sum C(х) – x11=1, x12=0, x13=1, x14=1.

6. 3. Scheme of the adder of binary codes without carry
By the equations (9) a combination scheme of the 4-bit

adder of binary codes is synthesized. For the first digit of the
code of the sum C(х) x11 such a scheme, which is built based on
the adder of the Galois field codes [12] is presented in Fig. 1.

a

b
Fig. 1. 4-digit adder of binary codes for the first bit of the
sum C(х): a – combination scheme of the first digit of the

adder; b – scheme of the adder of the first bit presented by
complex logic

Similarly to the scheme in Fig. 1, the schemes of other digits
of the adder of binary codes are built, for the synthesis of which
the appropriate logical equations are used similar to (9).

Fig. 2 presents the scheme of the first digit of the 8-bit
adder of binary codes without carry on the logical elements
AND and XOR.

Fig. 3 presents the scheme of the first digit of the 16-bit
adder of binary codes without carry on the logical elements
OR and XAND [3].

Mathematics and cybernetics – applied aspects

35

6. 4. Other examples of adding binary codes without
carry

Example 3. For the codes with the original code fragment
1000, А(х) – 1111 (410), D(x) – 1101 (610), the code of the
sum C(х) – 0110 (1010) (Table 4), to conduct the operation
of summation in the bitmap representation.

Table 13

Calculations defined by the program procedure D’(x)
(the 6th line of Table 9) over the 4-bit code А(х) – 1111 (410)

of the initial code fragment 1000 represented in bits

– – x5(A) – x6(A) – x7(A) – x8(A) – Sum of codes

x7 = 1 ⊕ 1 ⊕ 1 ⊕ 1 = 0

x8 = 1 ⊕ 1 ⊕ 1 ⊕ 0 = 1

x9 = 0 ⊕ 1 ⊕ 1 ⊕ 1 = 1

x10 = 1 ⊕ 0 ⊕ 1 ⊕ 0 = 0

The obtained values of bits in the lines of Table 13
x7=0, x8=1, x9=1, x10=0 correspond to the digits of the
code of the sum C(х). Indices at x must be replaced with
the corresponding indices for the sum C(х) – x11=0, x12=1,
x13=1, x14=0.

Example 4. For the codes with the original code fragment
1011, А(х) – 1100 (210), D(x) – 0001 (710), the code of the
sum C(х) – 0111 (910) (Table 4), to conduct the operation of
summation in the bitmap representation.

Table 14

Vector D’(x) (7th line of Table 9) with regard to
the missing characters

D(х)
D’(x)

1st bit 2nd bit 3rd bit 4th bit

2 1100 1 1 0 0

7 0001
11⊕12⊕
⊕13⊕04

01⊕12⊕
⊕13⊕14

11⊕02⊕
⊕13⊕04

01⊕12⊕
⊕03⊕14

Table 15

Calculations defined by the program procedure D’(x)
(7th line of Table 8) over the 4-bit code А(х) – 1100 (210) of

the initial code fragment 1011, presented in bits

– – x3(A) – x4(A) – x5(A) – x6(A) – Sum of codes

x8 = 1 ⊕ 1 ⊕ 0 ⊕ 0 = 0

x9 = 0 ⊕ 1 ⊕ 0 ⊕ 0 = 1

x10 = 1 ⊕ 0 ⊕ 0 ⊕ 0 = 1

x11 = 0 ⊕ 1 ⊕ 0 ⊕ 0 = 1

The obtained values of the digits in the rlines of Table
15 x8=0, x9=1, x10=1, x11=1 correspond to the digits of the
code of the sum C(х). Indices at x must be replaced with
the corresponding indices for the sum C(х) – x10=0, x11=1,
x12=1, x13=1.

Fig. 2. Scheme of the first digit of the 8-bit adder of binary codes without carry on the logical elements AND and XOR

Fig. 3. Scheme of the first digit of the 16-bit adder of binary codes without carry on the logical elements OR and XAND

Eastern-European Journal of Enterprise Technologies ISSN 1729-3774 4/4 (82) 2016

36

7. The structure of functional connection of the control
output of a decoder with a string of intermediate

coefficients dji of the logical vector D’(x) in the scheme
of the adder of binary codes

The calculation of the 4-bit code of the sum C(х) requires
submitting to one of the input of the adder 16 (2k, where k
is the digit capacity of the adder) of the bits of intermediate
coefficients dji of the logical vector D’(x). For this, one needs
a functional connection of the control output of the decoder
with a string of intermediate coefficients dji of the vector
D’(x) belonging to the code D(x). One of the devices that can
provide such a functional connection is a memory device. An-
other solution might be a multiplexer, which, however, gives
a linear total complexity of computing in the adder’s scheme.

Functional connection of the adder with a string of in-
termediate coefficients dji of the logical vector D’(x) uses the
decryption of the k-digit code D(x) into a 2k-digit unitary
code, in which one determines current vector D’(x) in the
line of Table 9.

For the operation of summation of binary codes, con-
trolling output of the decoder (one in unitary code) connects
with the corresponding line in Table 9, after which all 2k bits
of the line are submitted onto 2k inputs d11, d12, d13, d14 … d41,
d42, d43, d44 of the adder (Fig. 4).

The structure of the functional connection of the adder
with a string of intermediate coefficients dji of the logical
vector D’(x) consists of the circuit of a memory device, a de-
coder and the scheme of the adder of binary codes of 4 digits.
To the inputs d1, d2, d3, d4 of the structure, the bits of the
code D(x) are submitted; to the inputs a1, a2, a3, a4 the bits of
the code А(х) are submitted. The bits of the code of the sum
C(х) receive the adder S1, S2, S3,S4 at the outputs.

With increasing digit capacity of an adder, the principle
of constructing the structure of the functional connection
of the control output of the decoder with a string of inter-
mediate coefficients dji of the logical vector D’(x) does not
change.

8. Computation protocol of the 4-bit adder of
binary codes

The range of adding numbers of an adder of binary codes
without carry is:

xD+yD=<2n–2,

where n is the digit capacity of a number. A number of
options to add a multi digit parallel adder of binary codes
without carry is:

n2 1
n

k 0

b 2 k 1
−

=

= − −∑

or

n2 1

k 1

b k,
−

=

= ∑

where n is the digit capacity of a number.
Having computed the values b, we determine the number

of strings of the computation protocol of the 4-bit parallel
adder of binary codes without carry, which is 120 lines
(Table 16).

Fig. 4. Structure of the functional connection of the control output of the decoder with a string of intermediate coefficients dji
of the logical vector D’(x) using the multiplexer in the scheme of the 4-bit adder of binary codes

Mathematics and cybernetics – applied aspects

37

Table 16

Computation protocol of the 4-bit adder of binary codes without carry for the initial code fragment – 1111

#
input output

a1 a2 a3 a4 d1 d2 d3 d4 g1 g2 g3 g4

1 2 3 4 5 6 7 8 9 10 11 12 13
1 1 1 1 1 1 1 1 1 1 1 1 1
2 1 1 1 1 1 1 1 0 1 1 1 0
3 1 1 1 1 1 1 0 1 1 1 0 1
4 1 1 1 1 1 0 1 0 1 0 1 0
5 1 1 1 1 0 1 0 1 0 1 0 1
6 1 1 1 1 1 0 1 1 1 0 1 1
7 1 1 1 1 0 1 1 0 0 1 1 0
8 1 1 1 1 1 1 0 0 1 1 0 0
9 1 1 1 1 1 0 0 1 1 0 0 1

10 1 1 1 1 0 0 1 0 0 0 1 0
11 1 1 1 1 0 1 0 0 0 1 0 0
12 1 1 1 1 1 0 0 0 1 0 0 0
13 1 1 1 1 0 0 0 1 0 0 0 1
14 1 1 1 1 0 0 1 1 0 0 1 1
15 1 1 1 1 0 1 1 1 0 1 1 1
16 1 1 1 0 1 1 1 1 1 1 1 0
17 1 1 1 0 1 1 1 0 1 1 0 1
18 1 1 1 0 1 1 0 1 1 0 1 0
19 1 1 1 0 1 0 1 0 0 1 0 1
20 1 1 1 0 0 1 0 1 1 0 1 1
21 1 1 1 0 1 0 1 1 0 1 1 0
22 1 1 1 0 0 1 1 0 1 1 0 0
23 1 1 1 0 1 1 0 0 1 0 0 1
24 1 1 1 0 1 0 0 1 0 0 1 0
25 1 1 1 0 0 0 1 0 0 1 0 0
26 1 1 1 0 0 1 0 0 1 0 0 0
27 1 1 1 0 1 0 0 0 0 0 0 1
28 1 1 1 0 0 0 0 1 0 0 1 1
29 1 1 1 0 0 0 1 1 0 1 1 1
30 1 1 0 1 1 1 1 1 1 1 0 1
31 1 1 0 1 1 1 1 0 1 0 1 0
32 1 1 0 1 1 1 0 1 0 1 0 1
33 1 1 0 1 1 0 1 0 1 0 1 1
34 1 1 0 1 0 1 0 1 0 1 1 0
35 1 1 0 1 1 0 1 1 1 1 0 0
36 1 1 0 1 0 1 1 0 1 0 0 1
37 1 1 0 1 1 1 0 0 0 0 1 0
38 1 1 0 1 1 0 0 1 0 1 0 0
39 1 1 0 1 0 0 1 0 1 0 0 0
40 1 1 0 1 0 1 0 0 0 0 0 1
41 1 1 0 1 1 0 0 0 0 0 1 1
42 1 1 0 1 0 0 0 1 0 1 1 1
43 1 0 1 0 1 1 1 1 1 0 1 0
44 1 0 1 0 1 1 1 0 0 1 0 1
45 1 0 1 0 1 1 0 1 1 0 1 1
46 1 0 1 0 1 0 1 0 0 1 1 0
47 1 0 1 0 0 1 0 1 1 1 0 0
48 1 0 1 0 1 0 1 1 1 0 0 1
49 1 0 1 0 0 1 1 0 0 0 1 0
50 1 0 1 0 1 1 0 0 0 1 0 0
51 1 0 1 0 1 0 0 1 1 0 0 0
52 1 0 1 0 0 0 1 0 0 0 0 1
53 1 0 1 0 0 1 0 0 0 0 1 1
54 1 0 1 0 1 0 0 0 0 1 1 1
55 0 1 0 1 1 1 1 1 0 1 0 1
56 0 1 0 1 1 1 1 0 1 0 1 1
57 0 1 0 1 1 1 0 1 0 1 1 0
58 0 1 0 1 1 0 1 0 1 1 0 0
59 0 1 0 1 0 1 0 1 1 0 0 1

Eastern-European Journal of Enterprise Technologies ISSN 1729-3774 4/4 (82) 2016

38

1 2 3 4 5 6 7 8 9 10 11 12 13
60 0 1 0 1 1 0 1 1 0 0 1 0
61 0 1 0 1 0 1 1 0 0 1 0 0
62 0 1 0 1 1 1 0 0 1 0 0 0
63 0 1 0 1 1 0 0 1 0 0 0 1
64 0 1 0 1 0 0 1 0 0 0 1 1
65 0 1 0 1 0 1 0 0 0 1 1 1
66 1 0 1 1 1 1 1 1 1 0 1 1
67 1 0 1 1 1 1 1 0 0 1 1 0
68 1 0 1 1 1 1 0 1 1 1 0 0
69 1 0 1 1 1 0 1 0 1 0 0 1
70 1 0 1 1 0 1 0 1 0 0 1 0
71 1 0 1 1 1 0 1 1 0 1 0 0
72 1 0 1 1 0 1 1 0 1 0 0 0
73 1 0 1 1 1 1 0 0 0 0 0 1
74 1 0 1 1 1 0 0 1 0 0 1 1
75 1 0 1 1 0 0 1 0 0 1 1 1
76 0 1 1 0 1 1 1 1 0 1 1 0
77 0 1 1 0 1 1 1 0 1 1 0 0
78 0 1 1 0 1 1 0 1 1 0 0 1
79 0 1 1 0 1 0 1 0 0 0 1 0
80 0 1 1 0 0 1 0 1 0 1 0 0
81 0 1 1 0 1 0 1 1 1 0 0 0
82 0 1 1 0 0 1 1 0 0 0 0 1
83 0 1 1 0 1 1 0 0 0 0 1 1
84 0 1 1 0 1 0 0 1 0 1 1 1
85 1 1 0 0 1 1 1 1 1 1 0 0
86 1 1 0 0 1 1 1 0 1 0 0 1
87 1 1 0 0 1 1 0 1 0 0 1 0
88 1 1 0 0 1 0 1 0 0 1 0 0
89 1 1 0 0 0 1 0 1 1 0 0 0
90 1 1 0 0 1 0 1 1 0 0 0 1
91 1 1 0 0 0 1 1 0 0 0 1 1
92 1 1 0 0 1 1 0 0 0 1 1 1
93 1 0 0 1 1 1 1 1 1 0 0 1
94 1 0 0 1 1 1 1 0 0 0 1 0
95 1 0 0 1 1 1 0 1 0 1 0 0
96 1 0 0 1 1 0 1 0 1 0 0 0
97 1 0 0 1 0 1 0 1 0 0 0 1
98 1 0 0 1 1 0 1 1 0 0 1 1
99 1 0 0 1 0 1 1 0 0 1 1 1

100 0 0 1 0 1 1 1 1 0 0 1 0
101 0 0 1 0 1 1 1 0 0 1 0 0
102 0 0 1 0 1 1 0 1 1 0 0 0
103 0 0 1 0 1 0 1 0 0 0 0 1
104 0 0 1 0 0 1 0 1 0 0 1 1
105 0 0 1 0 1 0 1 1 0 1 1 1
106 0 1 0 0 1 1 1 1 0 1 0 0
107 0 1 0 0 1 1 1 0 1 0 0 0
108 0 1 0 0 1 1 0 1 0 0 0 1
109 0 1 0 0 1 0 1 0 0 0 1 1
110 0 1 0 0 0 1 0 1 0 1 1 1
111 1 0 0 0 1 1 1 1 1 0 0 0
112 1 0 0 0 1 1 1 0 0 0 0 1
113 1 0 0 0 1 1 0 1 0 0 1 1
114 1 0 0 0 1 0 1 0 0 1 1 1
115 0 0 0 1 1 1 1 1 0 0 0 1
116 0 0 0 1 1 1 1 0 0 0 1 1
117 0 0 0 1 1 1 0 1 0 1 1 1
118 0 0 1 1 1 1 1 1 0 0 1 1
119 0 0 1 1 1 1 1 0 0 1 1 1
120 0 1 1 1 1 1 1 1 0 1 1 1

Ccontinuation of Table 16

Mathematics and cybernetics – applied aspects

39

The logic of the work of the adder of binary codes
(Fig. 4) corresponds to the computation protocol of the
adder for the initial code fragment – 1111 (Table 16). For
other initial code fragments, the codes in the computation
protocol will have different location, corresponding to the
initial block of the chosen system of binary codes.

9. The complexity of the algorithm of calculation of the
adder of binary codes without carry

The schemes in Fig. 2, 3 represent a structure that imple-
ments multi operand summation [13, 14], when at the same
time the neighboring pairs of terms are added, and then their
sums (Table 17).

Table 17

The algorithm for pairing (n=23=8)

Steps e1 e2 e3 e4 e5 e6 e7 e8

1 e1+e2 e3+e4 e5+e6 e7+e8

2 e1+e2+e3+e4 e5+e6+e7+e8

3 e1+e2+e3+e4+e5+e6+e7+e8

If n=2k, where n is the number of terms, then the algo-
rithm for pairing consists of k steps (cycles): the first step
includes n/2 addition, the second – n/4, ..., the last –one ad-
dition. The number of steps k is determined by the formula:

2k log n.= (10)

This variant of multi operand addition is implemented by

a cascade scheme (“pyramid”) [13–16], and it has logarith-
mic complexity.

Assume as one computing step the calculation on one
logical element, in the serial connection of the elements of
the scheme. Given the fact that the logical XOR elements in
the scheme in Fig. 2, 3 are connected by a cascade scheme,
the complexity of the algorithm of calculation of signals of
the sum will look like

O(log2n+1), (11)

where n is the digit capacity of binary codes, which equals
the number of terms in the cascade scheme of the summa-
tion. In the (11), log2n reflects a cascade connection of
XOR logic elements; one displays the logical item I, includ-
ed sequentially.

The adder of binary codes (Fig. 4) includes a decoder, a
memory device and the circuit of summing of the coefficients
dji with bits of the code of the number A.

The connection of multi-pass logic elements AND (Fig. 5)
of the decoder can also be organized according to the cas-
cade scheme.

Fig. 5. Multi-pass logic element AND

Then the complexity of calculating of the decoder can be
presented by the estimation (11), in which one reflects the

Invertor, connected in series (Fig. 4). The estimation of the
total complexity of calculation by logical elements XOR and
the decoder will look like

O(log2n+1+log2n+1)=O(2log2n+2). (12)

For quick selection of bits of intermediate coefficients
dji of the logical vector D’(x) from the string in Table 9, one
requires a device of constant memory, the cells of which will
store the values of the bits of the logical vector D’(x) after
their recording. These requirements are met by, for example,
static memory. Fig. 6 presents a cell of static memory, in
which the key of the cell is modeled by a trigger.

Fig. 6. Cell of static memory

We see in Fig. 6 that the unit of the unitary code of a
decoder chooses recorded bit of the vector D’(x) (Table 9)
by using the chain of the depth in eight (including Invertor
on the elements AND) logical elements, connected in series.
This number of logical elements does not depend on the digit
capacity of the adder of binary numbers. That is why the
estimation (12) will increase by 8 elements more, connected
in series and, therefore, will manifest the overall complexity
of the algorithm of calculation in the parallel adder of binary
codes without carry.

O(2log2n+10)=O(log n). (13)

The estimation (13) specifies the logarithmic growth of
the complexity of the algorithm of the calculation – doubling
the digit capacity of the adder n increases the time of deter-
mining correct signals of the sum by a stable value.

10. Comparison of the structures of parallel adder
without inter digit carry and parallel adder with a parallel

way of carry

Table 18 presents the dynamics of increasing the depth
of the scheme of parallel adder with a parallel way of carry
CLA (Carry Look-ahead Adder), the synthesis of which is
based on the model of calculation of the adder in the form of
oriented acyclic graph that represents a binary tree [6]. Since
the acyclic graph provides a cascading scheme, then, therefore,
the number of computational steps of the graph optimizes

Eastern-European Journal of Enterprise Technologies ISSN 1729-3774 4/4 (82) 2016

40

(indicates the minimum sufficient) number of carries for the
operation of addition of multi digit binary numbers in the
scheme of the parallel adder with a parallel way of carry CLA.

Table 18

Dynamics of increasing the depth of the scheme of parallel
adder with a parallel way of carry with increase in the digit

capacity of the adder

n 8 16 32 64 128 256 512 1014 2048

CLA 10 12 14 16 18 20 22 24 26

The estimation of the complexity of computing in the
scheme of the adder with increasing dynamics of the depth of
the scheme of the adder in Table 15, with increasing the digit
capacity of the adder looks like

O(2log2n+4). (14)

Fig. 7 presents the dynamics of increasing the depth of the
scheme of the parallel adder without inter digit carry (AWC)
and the parallel adder with a parallel way of carry CLA.

Given the Fig. 7, we see that the complexity of the
algorithm of the calculation of both adders obeys the log-
arithmic law.

11. Discussion of the results of the study of the operation
of summation without inter digit carry for binary codes

The studies of this work demonstrate that:
1. The codes known in the literature for the operation of

summation – for example, Galois field codes [2, 4], XAND
codes [3], are determined by the combinatorial systems with
initial blocks of complete combinatorial system with repeti-
tion P(2, n) (Table 1). In its turn, the combinatorial systems
(instances P(2, bi) of the class P(2, n)) are the systems of bi-
nary codes and therefore belong in the same object. Thus, the
only basis of the specified binary codes indicates the useful-
ness of their classification generalization, within the range
of operation of summation, on the basis of a single criteri-
on – an object of binary codes. And appropriateness here is
the necessity, so the usefulness of this study lies in the fact
that they predetermine generalization of classification of
binary codes, in order to simplify the structure of the subject
area and to increase the diversity of binary codes, in particu-
lar, for arithmetic operations with binary numbers.

2. The data about the vector of the code D(x) that are
presented by dependencies (7) in algebraic or bitmap view
are general representation of binary codes for all combina-
torial systems P(2, bi) that allows changing the system of

binary codes using a single universal table of the data on the
vector of the code D(x).

Thus, the studies of this work may become a component
of the technology of designing electronic computing sys-
tems, because:

– they expand the apparatus of obtaining recurrent bina-
ry codes for their application in the information technology;

– they provide a possibility to control the selection of the
code at the stage of designing a computing device;

– they help predict the impact of the implementation of
the selected code in the solution of problems of the informa-
tion systems;

– they minimize hardware costs associated with the se-
lection of the system of binary code for the calculation.

Reduction of thesaurus of parallel adder of binary codes
without inter digit carry

An instance P(2, bi) of the class P(2, n) is selected on
a ring structure using original block bi of complete com-
binatorial system with repetition (Table 1). This means
that the principle of setting up the system of binary codes
with its code-beginning is within the range of complete
combinatorial system with repetition (Table 1). Since the

location of the principle of obtaining
binary codes is defined, the thesaurus of
parallel adder of binary codes without
carry is necessary to rewrite (Table 19).

We see from Table 17 that the num-
ber of concepts of thesaurus of the adder
of binary codes is less in comparison with
the number of concepts of thesaurus of
the adder of the Galois field codes, which,
however, does not affect the quality of
the construction of the adder of binary
codes without carry and reliability of the
computational results in this adder.

Table 19

Comparison of the thesaurus of the Galois field codes and
the adder of binary codes

#
Thesaurus of the Galois field

codes adder
Thesaurus of the adder of

binary codes

1 Galois field combinatorial system

2 irreducible polynomial –

3 generating vector –

4 initial code fragment initial code

5 key key

6 recursion recursion

7 logic operation XOR, XAND logic operation XOR, XAND

The prospect of further review of the operation of summa-
tion of binary codes without carry is to use it in other digital
technologies, in particular, in the methods of cryptography.

12. Conclusions

1. It was established that the properties of recursive
method of the synthesis of binary codes allow focusing the
principle of building codes in the range of complete combina-
torial system with repetition, which ensures reduction of the
thesaurus of the parallel adder of binary codes without carry.

2. It was found that the system of binary codes, formed by
means of any initial code of complete combinatorial system with

8 16 32 64 128 256 512 1024 2048
CWA 16 18 20 22 24 26 28 30 32
CLA 10 12 14 16 18 20 22 24 26

0
5

10
15
20
25
30
35

A
dd

er
's

sc
he

m
e

de
pt

h
(d

t)

The digit capasity of adder (n)

Fig. 7. Dynamics of increasing the depth of the scheme of the parallel adder
without inter digit carry (AWC) and parallel adder with a parallel way of carry CLA

Mathematics and cybernetics – applied aspects

41

repetition, has a ring structure, which allows using any system
of binary codes in the operation of adding codes without carry.

3. We discovered that the calculation of the signals of
the sum in the scheme of a parallel adder of binary codes
without carry is performed by the script of the algorithm of
pairing. Thus, the complexity of the algorithm of calculation
of the signals of the sum of a parallel adder of binary codes
without carry is O(log n) and it is logarithmic – the time of
algorithm realization increases by the logarithmic law with
the increase in the digit capacity of numbers n.

4. It was established that the logic of the work of the
adder of binary codes without carry corresponds to the
computation protocol of the parallel adder without carry. A
number of options of adding b of multi digit parallel adder of
 binary codes without carry is

n2 1

k 1

b k,
−

=

= ∑ where n is the digit

capacity of a number.

5. It was established that the range of adding of numbers
of the adder of binary codes without carry is:

xD+yD=<2n–2,

where n is the digit capacity of a number.
6. It was established that the productivity of computing

of signals of the sum by the parallel adder of binary codes
without carry and by the parallel adder with a parallel way of
carry CLA (Carry Look-ahead Adder) is approximately the
same. Thus, the complexity of the algorithm of calculation
of signals of the sum and the carry of the CLA adder is also
subject to the logarithmic law. And since the adders of binary
codes have no hardware costs for the carries between the
digits, obvious is reduction in energy consumption, decrease
in the heat release by a computing device (integrated circuit)
based on such adders.

Referenсes

1. Nikolaichuk, Y. M. Teorіya djerel informatsii [Text]: monograph / Y. M. Nikolaichuk. – 2-nd ed., cor. – Ternopil: TzOv Terno-Graf,

2010. – 534 p.

2. Nikolaichuk, Y. M. Theoretical foundations and principles of arithmetic logic unit vertically through information technology

[Text] / Y. M. Nikolaichuk, O. M. Zastavna, P. V. Gumen // News of Khmelnytsky natіonal unіversity. – 2012. – Issue 2. –

P. 190–196. – Available at: http://www.nbuv.gov.ua/old_jrn/natural/Vchnu_tekh/2012_2/49nic.pdf

3. Solomko, M. Parallel adder carry no transfer in logic elements XAND [Text] / M. Solomko, B. Krulikovskyi, Y. M. Nikolaichuk //

Proceedings of the National University «Lviv Polytechnic» Computer systems and networks. – 2015. – Issue 830. – P. 145–158. –

Available at: http://ena.lp.edu.ua:8080/xmlui/bitstream/handle/ntb/32480/21-145-158.pdf?sequence=4&isAllowed=y

4. Gopinath, B. Design and Implementation of High Speed Carry Select Adder [Text] / B. Gopinath, N. Sangeetha, S. Jenifer nancy,

T. Umarani // International Journal of Engineering Research & Technology (IJERT). – 2015. – Vol. 4, Issue 02. – P. 419–422. –

Available at: https://zenodo.org/record/33085/files/Design_and_Implementation_of_High_Speed_Carry_Select_Adder.pdf

5. Deepthi, E. Performance Analysis of a 64-bit signed Multiplier with a Carry Select Adder Using VHDL [Text] / E. Deepthi,

V. M. Rani, K. Manasa // IJCSNS International Journal of Computer Science and Network Security. – 2015. – Vol. 15, Issue 11. –

P. 91–94. – Available at: http://paper.ijcsns.org/07_book/201511/20151118.pdf

6. Solomko, M. Study of carry optimization while adding binary numbers in the rademacher number-theoretic basis [Text] /

M. Solomko, B. Krulikovskyi // Eastern-European Journal of Enterprise Technologies. – 2016. – Vol. 3, Issue 4 (81). – P. 56–63.

doi: 10.15587/1729-4061.2016.70355

7. Maity, S. Design and Implementation of Low-Power High-Performance Carry Skip Adder [Text] / S. Maity, B. Prasad De,

A. Kr. Singh // International Journal of Engineering and Advanced Technology (IJEAT). – 2012. – Vol. 1, Issue 4. – P. 212–218. –

Availabnle at: http://202.120.43.103/Downloads4/20150616101558803.pdf

8. Singh, R. P. P. Performance Analysis of 32-Bit Array Multiplier with a Carry Save Adder and with a Carry-Look-Ahead Adder

[Text] / R. P. P. Singh, P. Kumar, B. Singh // International Journal of Recent Trends in Engineering. – 2009. – Vol. 2, Issue 6. –

P. 83–86. – Available at: http://searchdl.org/public/journals/2009/IJRTET/2/6/307.pdf

9. Sajid, A. Design and Implementation of Low Power 8-bit Carry-look Ahead Adder Using Static CMOS Logic and Adiabatic Logic

[Text] / A. Sajid, A. Nafees, S. Rahman // International Journal of Information Technology and Computer Science. – 2013. –

Vol. 5, Issue 11. – P. 78–92. doi: 10.5815/ijitcs.2013.11.09

10. Srinivasa Rao, N. Serial Adder using Reversible Gates [Text] / N. Srinivasa Rao, P. Satyanarayana // International Journal of

Advanced Research in Computer and Communication Engineering. – 2015. – Vol. 4, Issue 5. – P. 498–501. – Available at: http://

www.ijarcce.com/upload/2015/may-15/IJARCCE%20105.pdf

11. Joshi, D. D. Design and Implementation of 16-bit Ripple Carry Adder for Low Power in 45nm CMOS Technology [Text] / D. D. Jo-

shi, J. K. Singh // International Journal of Emerging Technology and Advanced Engineering. – 2014. – Vol. 4, Issue 1. – P. 216–220.

12. Nykolajchuk, Ja. M. Kody polja Galua: teorija ta zastosuvannja [Text]: monografija / Ja. M. Nykolajchuk. – Ternopil’: TzOV Ter-

no-Graf, 2012. – 576 p.

13. Martynjuk, T. B. Rekursyvni algorytmy bagatooperandnoi’ obrobky informacii’ [Text]: monografija / T. B. Martynjuk. – Vinnycja:

«UNIVERSUM-Vinnycja», 2000. – 216 p.

14. Martynjuk, T. B. Metody ta zasoby paralel’nyh peretvoren’ vektornyh masyviv danyh [Text]: monografija / T. B. Martynjuk,

V. V. Homjuk. – Vinnycja: «UNIVERSUM-Vinnycja», 2005. – 202 p.

15. Hamaiun, V. P. On the development of computational structures mnogooperandnyh [Text] / V. P. Hamaiun // Control systems and

machines. – 1990. – Vol. 4. – P. 31–33.

16. Hamaiun, V. P. Theoretical bases, algorithms and structures in operational processing [Text]: author. dis. … dr. tehn. Sciences /

V. P. Hamaiun; National Academy of Sciences of Ukraine. Institute of Cybernetics named after. V. М. Hlushkova. – Кiev, 1999. – 33 p.

