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1. Introduction

The heterogeneity is a characteristic feature of virtually 
all materials used in engineering and construction. It is due 
to a number of factors, which conditionally can be divided 
into three groups:

1. Action of environment (temperature fields, radioactive 
radiation, uneven humidity, etc.).

2. Manufacturing techniques peculiarities (rolling, forg-
ing, hardening of casting and concrete etc.).

3. Project implementation plan (availability of the re-
inforcement, layers of other materials, etc.), which is an 
important source of reduction in weight, size and cost of the 
projected designs.

The improvement of calculations of machine elements, con-
structions and structures is associated with taking into account 
the impact of heterogeneity of actual materials on the stressed 
and deformed states of elastic bodies. Therefore, a relevant task 
is the search for the methods of determining the displacements 
and stresses in three-dimensional bodies of a relatively simple 
form – slabs and plates made of inhomogeneous materials.

2. Analysis of scientific literature and the problem setting

Nowadays most of the studies in this direction consider a 
fairly limited number of the types of heterogeneities, for which 

analytical solutions to the problems of elasticity theory were 
obtained [1, 2]. This is due to the fact that the difficulties 
faced during consideration of specific problems are relatively 
more complex than the similar problems of the classical theory 
of elasticity, since variable coefficients appear in its funda-
mental equations. These characteristic features offer explana-
tion to the fact that analytical solutions to a limited number 
of tasks for the bodies of the simplest geometric shapes have 
been obtained until now: rectangular [1, 5, 6] and circular 
plate [2], structure [3] and dimensions [4, 6] and elementary 
dependencies of the characteristics of materials elasticity on 
the coordinates of the points of the body [5]. 

The analysis of the above mentioned publications demon-
strated that the exact solutions to variable thickness of inho-
mogeneous rectangular plates were considered, the influence 
of heterogeneity degree, the ratios of sides [1] and the hetero-
geneous boundary conditions [4] were taken into account. 
As result of the research, it was found that the influence of 
elasticity module on the plate of (FG) and (EG) materials 
rested on the elastic foundation is produced according to the 
exponential law [5, 6], and the influence of material proper-
ties and the strength of the elastic foundation on mechanical 
properties of the plate was studied.

The bodies of the type of sphere, half-space and the 
layered system were most often studied. The bodies with 
exponential [7, 8] or degree [9, 10] Young’s law of the module 
change and stable [4], and in some cases even the variable 
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Poisson coefficient [11, 12] were considered. It was proven 
that such heterogeneities usually significantly affect both 
stressed and deformed state of bodies. The works [13, 14] are 
devoted to more complex dependencies.

Therefore, one can state that only quite a limited number 
of types of heterogeneities have been studied until now, for 
which analytical solutions to the problems of the theory of 
elasticity were obtained. At the same time, there are no ex-
act, in the sense of Saint Venant, solutions to the boundary 
problems for the plates, inhomogeneous in thickness, ex-
posed to the actions of the mass forces and the surface loads 
in a general case. Therefore, various approximate methods of 
solving the problems of mechanics of a deformed solid body 
have been developed over the recent decades, which allow 
receiving numeric solutions relatively easy.

But the vast majority of researchers feel the lack of a 
sufficient number of analytical solutions to the problems, 
which might serve as reliable test examples for approximate 
methods. Therefore, this research is devoted to searching for 
the new exact, in the sense of Saint Venant, solutions to the 
boundary problems for the plates, inhomogeneous in thick-
ness, as well as the ways of building up approximate solutions 
that have the set degrees of accuracy.

3. The aim and the tasks of the research

The purpose of the research is to build up analytical 
solutions to the boundary problems for the plates, inhomo-
geneous in thickness, exposed to the action of mass forces 
and surface loads.

To achieve this aim, the following tasks were set:
– to find the criteria, to which the distribution of the 

forces inside and on the body surface should correspond, if 
the material’s heterogeneity is described by arbitrary inte-
grated functions of one Cartesian coordinate;

– to obtain the exact, in the sense of Saint Venant, solu-
tions of boundary problems for the plates, inhomogeneous in 
thickness, that can be used in engineering calculations, as 
well as when testing the existing approximate theories; 

– to develop methods for building up approximate solu-
tions that have a specified degree of accuracy.

4. Analytical solution of the problem about the bending of 
a plate, inhomogeneous in thickness, and its discussion

Let us assume that the plate, inhomogeneous in thick-
ness, is loaded with mass forces X, Y, Z and is limited from 
the sides by the cylindrical surface Г (Fig. 1) (the load of the 
plate surface is considered as a special case).

Fig. 1. Scheme of the plate, inhomogeneous in thickness 
(external forces are not shown)

We will try to set the conditions that the mass forces 
should meet for the problem on stressed and deformed states 
of a studied elastic body to have the solution, exact in the 
sense of Saint Venant, i. e. the plate thickness h will be con-
sidered a relatively small magnitude.

We will formulate the ways of building up so-called 
“technical” (approximate) theories of the bending of plates.

1. To solve the problem, we will connect the body with 
the Cartesian coordinate system, the O origin of which lies 
inside the plate and the axes Ох, Оу are directed by parallel 
bordering planes z=–h1 and z=h2, that is, the plate thickness 
h=h1+h2 (position of the point O by height will be chosen 
later from the condition of the simplest recording of final for-
mulas). With this choice of axes, the material’s heterogeneity 
will be described by the functions of only one coordinate z, 
which will be considered arbitrary and integrable.

As it is shown in the paper [14], the solution for the 
problem formulated above comes down to the search for the 
solutions of two linear differential equations with variable 
coefficients, one of which is of the fourth, and the other is of 
the second order. The equations have the form:
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where 1 2 3, ,Λ Λ Λ are the special solutions for these problems:

2 2 3
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∂ ∂
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3

f f
,
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 (∆f2=X1, ∆f3=У),  (3)

In this case, i ia a (z)=  (і=1, 2, 3, 4) may be expressed 
through the material’s elasticity parameters like this:

1 2

1
a , a ,

G 1
ν

= = −
− ν

 

2

3 4 2

2 1 E
a 1 , a ,

1 E 1

 ν
= − = − − ν − ν 

 (4)

where G=G(z) is the module of the plate material’s displace-
ment; Е=E(z) is the Young module; ν=ν(z) is the Poisson ratio.

If the functions Sі(і=1, 2, 3, 4), Тj(j=1,2) are introduced 
for consideration with the help of the following dependencies:
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then for determining the displacements ux, uy, uz and the 
stresses σх, σу,…, σху, we will receive the following formulas:
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(6)

Thus, when solving any problem of the theory of elasticity 
for bodies of one-dimensional heterogeneity, it is necessary in 
general case to find the solutions for the differential equations 
(1) and (2) by the corresponding boundary conditions. In 
some cases, it is enough to examine only one of them.

2. To find the solutions for the equations (1) and (2), let 
us first proceed to the dimensionless coordinates:

x y z
, ,

l l h
ξ = η = ζ =

and designate:

2 2 2
1 2 1 2D , D , D D D ,

∂ ∂
= = = +

∂ξ ∂η

1 2 3
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l l l
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λ = λ = λ =

1 2 2 3
1 2 2 32 2

h h f fh
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l h h l l
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Here l is the characteristic plate dimension on the plan. 
Now, the dependencies (3) take the form:

4 2 22 3 2 3
1 2 3D Z, D , D ,

∂φ ∂φ ∂φ ∂φ
Λ = Λ = + Λ = −

∂ξ ∂η ∂η ∂ξ
2 2

2 3(D X, Dφ = φ = У).

The formal solution for the equations (1) and (2) will be 
searched for in the form of the series, similar to how it was 
made in the paper [15]

( ) ( )2 44
0 1 2L hl L D L D L ... , = + ε + ε + 

  (7)

( ) ( )2 43
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where Ln, Nm(m, n=0,1,…) are the functions to be defined.
Let us substitute L and N to the equations (1) and (2) 

and collect similar members by the same degrees D.ε  Then, 
equating them to zero, we will obtain two recurrent sequenc-
es of ordinary differential equations:
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We will enter the symbol here:

ij

0, i j,

1, i j.

≠
δ =  =

In these formulas, the differentiation by the coordinate .ζ
is marked with a stroke.

The boundary conditions for the functions Ln, Nn follow 
from the boundary conditions of the problem.

We agree to designate the value of any function by 

1,ζ = −κ  with the top index in the form of a degree, and the 
value 2ζ = κ is designated in the form of an asterisk.

First consider a separate case of the plate’s load.
Let us assume that the lower and the upper surfaces 

of the plate 1  ζ = −κ and 2   ζ = κ are free from the action of 
forces, and only mass forces affect the body. 

Then the boundary conditions on the planes 1  ζ = −κ and 

2ζ = κ will be written down as follows:

o o o o o
z 3 zx 1 4 2 2S 0, l D S D T 0,σ = = τ = + =

o o o
zy 2 4 1 2l D S D T 0,τ = − =   (11)

* * * * *
z 3 zx 1 4 2 2S 0, l D S D T 0,σ = = τ = + =

* * *
zy 2 4 1 2l D S D T 0.τ = − =

Thus, o
4S  and o

2T , as well as 4S∗  and 2T∗ , are interrelat-
ed by the Cauchy-Riemann conditions and, therefore, are 
two-dimensional harmonic functions oω  and ∗ω , i. e.

4 1 2 2S D , T D ,= ω = ω� � � �  

4 1 2 2S D , T D∗ ∗ ∗ ∗= ω = ω 2 o,(D 0).∗ω =  

However, it is easy to prove that the influence of the 
functions oω  and ∗ω  on the stressed and deformed states 
of the plate can be taken into account by using the arbitrary 
elements in the selection of the functions 1λ , 2λ  and 3λ . So 
we put o 0.∗ω = ω =  Then the boundary conditions will take 
the form:

o o o
3 3 4 4 2 2S S S S T T 0.∗ ∗ ∗= = = = = =
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They are automatically satisfied if the condition is set:

n n n on 1L L 0, L ,∗= = = −δ λ′� � �

*
n on 1 m mL , N N 0 (n,m 0, 1, ...).∗ ∗= −δ λ = = =′ �

We will consider the following geometric characteristics 
of cross section of the plate:

1 1
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ζ ζ
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2I Sd ; F Gd
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−κ −κ
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and choose the position of the origin of the coordinate O 
from the condition S*=0. 

Then the solution of the first equation of the sequence (9) 
can be recorded as:
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Solutions of other equations are determined by the fol-
lowing recurrent dependencies:
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In this case,
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By solving equations of the sequence (10), we obtain:
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If we substitute series (7), (8) to the formulas (5) for S1, 
Т1, Т2, S2, S3, S4, we will find:
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Thus, the stress and deformations have the form of the se-
ries, the members of which grow by degrees of the operator D2. 
Therefore, if the functions X, Y, Z are polyharmonic, i. e. satisfy 
a two-dimensional equation:

( ) ( ) ( ) ( )2kD X , , , Y , , , Z , , 0 k 1,2,3...ξ η ζ ξ η ζ ξ η ζ = =

(the variable ζ  plays the role of a parameter), the functions 
Ln and Nn will be also polyharmonic. As a result, the series 
(7), (8) and (17) will break and by using the formulas (17) 
and (6) we will find the exact solution to the problem. Let 
us remind that in this case the boundary conditions on the 
planes 1  ζ = −κ and 2ζ = κ will be satisfied exactly.

3. Let us focus in more detail on the possible forms of 
setting the functions X, Y and Z in the search for the exact 
solutions to the problem on the stressed and deformed states 
of the plate.

It is easy to prove that the following features are charac-
teristic for the polyharmonic functions:

if 2mD 0,φ =  then ( )2(m 1) 2 2 2D , , 0 .+ ξ η ρ φ = ρ = ξ + η

So, if there is any polyharmonic function φ with arbitrary 
m, then the new solution Ф  of the polyharmonic equation 
with a larger m can be built up by using the formula:

kФ Р ,= φ

In this case
k

i j
k ij

i j 0

Р ( )
+ =

= α ζ ξ η∑  

or 
k

2i
k i

i 0

Р ( ) .
=

= α ζ ρ∑
Here ij( )α ζ  and i( )α ζ are the arbitrary integrable func-

tions of the coordinate z. 
We will receive additional solutions if we take:
a) linear combinations of the known solutions;
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b) the derivative of an arbitrary order by the parameter S

Ф( , , , s)
;

s
∂ ξ η ζ

∂

c) the integral by the parameter with the weight function 
dependent on it 

Ф( , , , s)f(s)ds.ξ η ζ∫
As an example, here are a few more types of polyhar-

monic functions, by which it is convenient to approximate 
volumetric loads during the solution of the problems of the 
theory of elasticity in Cartesian coordinates:

k
n i

i
i 0

sin n
Ф e ( ) ,

cos n
± η

=

ξ
= α ζ η

ξ ∑  

k
n i

i
i 0

sin n
Ф e ( ) .

cos n
± ξ

=

η
= α ζ ξ

η ∑

4. The solution in the form of (17) is built in such a way that 
the boundary conditions on the planes 1ζ = −κ  and 2ζ = κ  are 
satisfied exactly. The conditions on the lateral area D have to 
be satisfied by using arbitrariness in choosing the functions λ1, 
λ2 and λ3. The so-called “homogeneous solutions”, which deter-
mine the stressed and deformed states of the plate with the load 
of the lateral side D, correspond to this arbitrariness.

Homogeneous solutions are easy to find if you put 
X=Y=Z=0. Then the above mentioned formulas imply that 
λ1, λ2 and λ3 are biharmonic functions. 

Now, if we find nL ,  and mN from the dependencies (15) 
and (16) and substitute them to the formulas (17), we will 
find functions iS ,  and jT :
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1 1 1

1 1 1

21
2 1

�

2 1 2
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∫ ∫ ∫

∫ ∫ ∫
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2 22 2
2 1 2 *

1� �

S
1 D a d D a d ,

l F

ζ ζ

κ κ

  Ψ
= − ε ζ ζ Ψ − ε ζ 

  
∫ ∫

3S 0,=  ( )24 1
1 2*

1

S F
D S ,

l F

 
= − ε Ψ − Ψ  

  (18)

( )
1

21 2 3
*
2

T F
1 D d ,

lh G F

ζ

−κ

  Ψ
= − − ε ζ 

  
∫  ( )22 2

3*
2

T F
D .

l F
= ε Ψ

Here symbols 1,2,3Ψ  designate the two-dimensional bi-
harmonic functions. Between the two of them 2− Ψ  and 

3Ψ , there is a link: 2
2D Ψ  and 2

3D Ψ  are adjoint harmonic 
functions.

Now using the dependencies (6), it is easy to find the 
formulas for determining the displacements and stresses in 
the plate. They, along with (18), allow receiving the solution 
to the problem on the balance of the plate, inhomogeneous 
in thickness, loaded with mass forces of polyharmonic type. 
Note that the boundary conditions may be satisfied exactly 
on the planes 1ζ = −κ  and 2,ζ = κ  and on the lateral side Г, 
they are “softened” in the sense of Saint Venant. 

We will note that the problem of searching for the “ho-
mogeneous” solutions for a non-homogeneous plate, but from 
the electro elastic material, was studied earlier in [16].

5. The solution to the problem on the balance of the plate 
subject to the actions of the surface polyharmonic loads may 
be obtained from the solution given above. 

Without limiting the studies generality, we will demon-
strate this with the example of loading the upper surface 

2ζ = κ  with the normal efforts *
z ( , ).σ = σ ξ η

Put

2Z ( ) ( , ),= δ ζ − κ σ ξ η   (19)

In this case, 2( )δ ζ − κ is the asymmetric impulse func-
tion [17], and we will first obtain the solution to the problem 
in the case when the plate is exposed to the mass forces Z 
in the form (19), that is, we might consider that the load is 
applied inside the plate under the surface 2.ζ = κ

We have the equation for defining the functions λ1, λ2 
and λ3:

4
1 2D ( ) ( , ),λ = δ ζ − κ σ ξ η  2

2 1 2 2 3D D D ,λ = φ + φ

2
3 2 2 1 3D D D ,λ = φ − φ  2

2D 0,φ =  2
3D 0.φ =  (20)

Obviously, it is sufficient to find any special solutions to 
these equations, whereas the general homogeneous solutions, 
corresponding to them, are included in the formulas (18). So 
we take:

1 2( )F( , ),λ = δ ζ − κ ξ η  4
2 3 0 (D F ).λ = λ = = σ

From the formulas (13), (14) and (16) we have:

0 1 2L e( ) F( , ),= ψ − ζ − κ ξ η   0N 0,=

where

2
2

2

0, < ,
e( )

1, .

ζ κ
ζ − κ =  ζ = κ

Hence, using the recurrent dependency (15), it is easy to 
find the required number of functions Ln (according to (16), 
Nm=0 for all m), and when substituting them to the formulas 
(5) and (6), one can find components of the displacement 
vector and the stress tensor. 

In this case, the boundary conditions on the planes 

1z = −κ  and 2ζ = κ  of the plate will have the form (11). Now, 
to proceed to the problem of the influence of the surface 
forces, it is necessary to exclude the boundary area 2ζ = κ  
from the area belonging to the plate, and thereby, to “bring” 
the load ( , )σ ξ η  onto the surface 2.ζ = κ

In this case, for example, the function L0 will take the 
form:

0 1L F( , ).= ψ ξ η

If now we use the homogeneous solutions in the form of 
(18), then it is possible in principle to satisfy the “softened” 
boundary conditions on the surface Г and by so doing, to 
solve exactly in the sense of Saint Venant the problem of 
balance of a non-homogeneous plate under the action of the 
surface load σ on it. 

Hence, if the external forces are represented by the poly-
harmonic functions with the variables x, h, then the problem 

.
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of balance of a non-homogeneous plate may be solved exactly 
in the sense of Saint Venant. 

The thinner the plate, the more exact the solution is. All 
the series introduced for consideration, break, and the result 
contains the finite number of members.

6. It follows from the formulas (17) that the order of each 
successive summand is proportional to the value ε2 relative 
to the previous one. Therefore, if ε is small, it is possible in 
the series (17) to be limited by taking into consideration only 
the first few members, while the others may be discarded; an 
excessive precision of formulas in the theory, which permits 
using the principle of Saint-Venant, is hardly appropriate.

If the external loads are not polyharmonic functions, 
they may be in a sense approximated by such functions and, 
thereby, a solution may be found. Moreover, if ε<<1, then the 
precision, sufficient for practical purposes, can be obtained 
by leaving only one summand in the obtained formulas for 
calculating stresses and displacements.

However, a similar result may be found when the loads 
are not approximated by the polyharmonic functions. It is 
only necessary to break the series in the formulas.

The elementary «technical» theory of the bending of 
non–homogeneous plates may be obtained by leaving only 
one summand in the series. So, if Х=Y=0, it is easy to find

x 1 y 2 zu D w, u D w, u w,= −εζ = −εζ =

2 2
x 1 2

2 G
(D D )w,

l(1 )
εζ

σ = − + ν
− ν

 2 2
y 1 2

2 G
( D D )w,

l(1 )
εζ

σ = − ν +
− ν

2

1 1

z *

I
h Zd Zd ,

I

κ ζ

−κ −κ

 
σ = ζ − ζ 

 
∫ ∫ xy 1 2

2
GD D w,

l
ε

τ = − ζ

2
2

zx 1SD D w,
l

ε
τ = −

2
2

zy 2SD D w.
l

ε
τ = −

Here w is the solution to a biharmonic equation

2

1

4
4

2 *

l
D w q, q Zd .

h I

κ

−κ

= = ζ∫

To simplify these dependencies, it makes sense to proceed 
from the dimensionless coordinates to the ordinary ones.

In a separate case when the material is homogeneous, the 
above given formulas will in fact coincide with those used in 
the theory of bending thin plates. The classical theory does 
not take into account only the stress σz.

If we leave only two summands in the series for ux, uy, uz, 
we will obtain a more precise method of calculation of the 
bending of non-homogeneous plates.

4
2

x 1 10 2

l
u D w ( D) U ,

h

 
= −ε ζ − ε 

 

4
2

y 2 10 2

l
u D w ( D) U ,

h

 
= −ε ζ − ε 

 
4

2
z 1 2

l
u w ( D) W .

h
= + ε

We will note that it follows from the obtained results 
that the results, exact in the Saint Venant approximation, 
may be obtained in the case when the functions describing 
the distribution of loads inside the plate and on its surface 
satisfy two-dimensional polyharmonic equations (harmonic, 
biharmonic, etc.). This somehow limits the class of functions, 
which the real loads in a plate can correspond to, but allows 
receiving analytical solutions, exact in the Saint Venant 
approximation, which makes it possible, for example, to test 
numerical methods of solving the problems of mechanics of a 
deformed solid body.

5. Conclusions

A three-dimensional problem of bending the plate, in 
which the parameters of elasticity of the material vary by 
thickness and are arbitrary integrable functions, was exam-
ined. And the plate itself is exposed to the action of mass 
forces while the action of the surface loads is studied as a 
separate case:

1. We obtained analytical solution to the boundary 
problem by the operator methods in a case when the bound-
ary conditions are satisfied exactly on the flat surfaces of 
the plates, and on the lateral surface – in the Saint Venant 
approximation.

2. It was theoretically proved that the exact, in the sense 
of Saint Venant, analytical solutions may be obtained if the 
plate is exposed to the action of mass and surface forces, 
distributed on the plate and on its surface by the two-dimen-
sional polyharmonic law. In this case, the thinner the plate, 
the more exact the solution will be, since the corresponding 
solutions represent the series that contain a finite number of 
members. 

3. The obtained solutions allow using them as an 
approximate, “technical” theory for engineering calcula-
tions of the stressed and deformed state of non-homoge-
neous plates.

4. It was demonstrated that the obtained formulas for 
the calculation of the bending of thin plates in the case of 
homogeneous material, transfer to the classic formulas of the 
theory of bending thin plates.
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