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Copmynvosano emnipuunuii Kpumepii
HACManHsa aemodanancyeanns Ons pomo-
pa, wo 6anancyemvcsa NACUGHUMU ABMO-
oanancupamu. Kpumepiii dozeonse eusna-
yamu oianasonu weuoxocmeil odepmanns
pomopa, Ha AKUX HACMAE ABMOdANAHCYBAH-
M. Bin 3acmocoenuii 0ns scopcmiux pomo-
Ppi6é Ha niddamaueux onopax i 0N eHYUKUx
pomopie npu 0yov-akii Kinvkocmi nacus-
Hux aemobanancupie 0Yyo0v-aK020 muny.
Haseodenuii npuxaad sacmocyeéanus xpume-
P10 0151 pomopa 3 HepYxXoMo10 MoUK0H0

Kmouosi crosa: pomop, asmobdanancup,
asmobdanancyeanns, Kpumepii HACMAHHA
asmodanancy8ants, OCHOGHUI pyx, cmili-
Kicmo pyxy

T ]

Copmynuposan amnupuueckuii Kpume-
Ppuil HacmynJieHus aemodaNancuposKu 0Js
pomopa, YpasHoBeuwusaemMoz0 NACCUBHbL-
Mmu aemoodanancupamu. Kpumepuii nozeo-
Jisiem onpedensimv OUANA3OHLL CKOPOCMEN
epawenuss pomopa, Ha KOMopvlx Hacmyna-
em asmooanancuposxa. On npumenum 0ns
HCECMKUX POMOPOB HA NOOAMIUBHIX ONOPAX
u 014 2ubKuUx pomopoe npu 1odom Koauve-
cmee NAcCUBHbIX AemModaANaHcupos 100020
muna. Ilpueeden npumep npumenenus xKpu-
mepus 01 pomopa ¢ HenooBUNCHOU MOUKOU

Knioueevie cnoea: pomop, asmobanamn-
cup, asmoobanancupoexa, Kpumepuil Hacmy-
nJeHUsL A8MoGANAHCUPOBKU, OCHOBHOE 08U-
JHceHue, YcmolmueoCmo OBUNCEHUS
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1. Introduction

For balancing rotating rotors in motion, in the process of
operation, passive auto-balancers (AB) are applied [1, 2]. The
motion of the system rotor-AB is established in the course of
time. On the so-called main (steady) motions, AB balance the
rotor, while on the secondary ones — do not. From a mathe-
matical point of view, for the occurrence of auto-balancing at
a definite speed of rotation of rotor, it is necessary and suffi-
cient that the main motions exist and they are steady, but the
secondary ones do not exist or they are unstable. Therefore,
the search for different steady motions of such systems, exam-
ination of conditions for their existence and stability occupy
central place in the theory of AB [1-21].

The search for and analysis of stability of all steady mo-
tions of the system rotor-AB is a massive and complex math-
ematical problem. It is considerably complicated in such
cases, relevant for practice, as: rotor balancing by AB with
many corrector weights (CW); when applying multi-row
ball or roller AB; rotor balancing by several AB in several
plancs of correction, etc.

Therefore, it is relevant to design effective method of
determining conditions for the occurrence of auto-balancing

|DOI: 10.15587/1729—4061.2016.79970|

EMPIRICAL CRITERION

FOR THE OCCURRENCE OF

AUTO-BALANCING AND
ITS APPLICATION FOR
AXISYMMETRIC ROTOR
WITH A FIXED POINT

AND ISOTROPIC ELASTIC

SUPPORT

G. Filimonikhin

Doctor of Technical Sciences, Professor
Department of Machine Parts and Applied Mechanics**
E-mail: filimonikhin@yandex.ua

I. Filimonikhina

PhD, Associate Professor*

E-mail: fii@online.ua

K. Dumenko

Doctor of Technical Sciences, Associate Professor
Department of Operation and Repair of Machines**
E-mail: dumenkokm@gmail.com

M. Lichuk

PhD, Associate Professor*

E-mail: sfg_|@i.ua

*Department of Mathematics and Physics**
**Kirovograd National Technical University
University ave., 8, Kirovograd, Ukraine, 25006

in the system rotor-AB that would allow obtaining reliable
analytical results at minimal labor costs.

2. Literature review and problem statement

Let us examine certain approaches, which make it possi-
ble to simplify the process of determining conditions for the
occurrence of auto-balancing.

Analytically, the search for and analysis of stability
of all steady motions of the system of rotating supporting
body-AB was conducted in many papers. Such studies were
carried out, among others, for:

— two-ball AB, which balances a rotor that performs
plane motion [1];

— multi-ball AB, which balances a rotor within the frame-
work of a flat model and a number of nonclassical AB, which
balance a rotor, which performs plane-parallel motion [2];

— AB with two connected CW, which balances a rotor
that performs plane-parallel motion [3];

— two-ball AB, which balances in one plane of correction
a rotor that performs spatial motion [4];

— two-ball AB, which balances a CD/DVD disk [5];




— 2-pendulum AB, which balances a rotor on flexible shaft
on elastic supports when the rotor performs plane motion [6];

— 2-pendulum AB, which balances a rotating supporting
body in the isolated system [7].

The obtained results enable us to conclude that if the
main motions exist and are steady, then the secondary mo-
tions, in which CW rotate synchronously with the rotating
body, are not steady or do not exist. This result makes it
possible to determine conditions for the occurrence of auto-
balancing by the results of studying the stability of the main
motions alone. This simplified approach is widely used when
studying the process of auto-balancing and is applied, in
particular, in papers [8—21].

The second simplification is connected to the study of
the process of auto-balancing for AB with two CW (balls,
pendulums, rollers, etc). In this case, the main motions of the
system rotor-AB are isolated. Simplification is achieved as
the theory of stability of isolated motions is better developed
than the theory of stability of one- and multi-parametric
families of the steady motions.

Stability of the main motions only at rotor balancing by
AB with two CW was examined in papers:

[8] — for a rotor that performs flat, spherical and spatial
motion;

[9] - for a rotor on isotropic supports that performs spa-
tial motion and that is balanced in two planes of correction;

[10] — for a rotor on anisotropic supports that performs
spatial motion and that is balanced in one plane of correction;

[11] — for an elastic rotor, balanced by N of two-ball AB
in N planes of correction;

[12] — for a rotor on isotropic supports that performs spa-
tial motion and that is balanced in two planes of correction
by two-ball AB with different balls;

[13] = for a rotor on flexible shaft on elastic supports
when the rotor performs plane motion and is balanced by
2-pendulum AB;

[14] — for a drum of a washing machine with horizontal
loading;

[15] — for a disk, mounted onto a weightless flexible
shaft, balanced by two two-ball AB, mounted onto the shaft
from different sides from the disk;

[16] — for a rotating supporting body in the isolated sys-
tem, balanced in one plane of correction by 2-pendulum AB.
Let us note that this approach does not eliminate the com-
plexity of the problem, caused by nonlinearity.

An alternative to the second simplification is the analysis
of stability of the family of main motions by the minimal
quantity of special parameters (generalized coordinates).
This approach was realized for the first time in article [17]
within the framework of a flat model of rotor with multi-ball
AB with identical balls. Generalized coordinates of the rotor
and special combinations of the angles, which determine
the positions of CW relative to the rotor, were used as the
parameters. In paper [18] the same approach is applied to
a double-support rotor that performs spatial motion and is
balanced by multi-ball AB. Practice simultaneously with
paper [17], in article [2] they used a similar approach, only,
instead of combinations of the angles, the projections of sum-
mary imbalances of the rotor and AB on the coordinate axes
were used. During the main motions, these parameters equal
zero and the process of auto-balancing may be examined by
the differential equations that describe the change in these
parameters. Subsequently, this method was substantially
developed and it is presented in detail in paper [19]. It is

essential that the differential equations, which describe the
change in these parameters, are easily linearized. That is
why the stability of the families of steady motions is investi-
gated with the application of theory of stability of systems of
linear differential equations with constant or periodic coef-
ficients. Article [20] explores with the aid of this method the
process of balancing an elastic rotor on two ductile supports
by two multi-ball (multi-pendulum, multi-roller) AB, located
near the supports.

The simplifications described above in the study of the
process of auto-balancing are ineffective while rotor balanc-
ing: by several AB in several planes of correction, by multi-
row AB, by the so-called non-classical AB [2] because of the
complexity of CW moving in them. It is connected to a large
number of differential equations, which describe the process
of auto-balancing. The second shortcoming of these simpli-
fications is the fact that the conditions for the occurrence of
auto-balancing with their application are obtained for a par-
ticular type of AB. For another type of AB, it is necessary to
obtain anew conditions for the occurrence of auto-balancing.

Paper [2] proposed an engineering (empirical) criterion for
the occurrence of auto-balancing when balancing a rotor by one
AB of any type in one plane of correction. In accordance with
the criterion, a passive AB of any type will balance a rotor in
the examined plane of correction when and only when, on aver-
age at one rotation of rotor, the sagging of rotor in the plane of
correction from any elementary imbalance in this plane will be
directed opposite to this imbalance. By applying the criterion,
analytical conditions for the occurrence of auto-balancing were
obtained when balancing by one AB of any type of rotor that
performs flat, spherical, spatial motions. The obtained results
coincided with the results, obtained in article [8] for the indi-
cated rotors at their balancing by two-ball AB.

Paper [21] proposed the empirical criterion of stability of
the main motion in the case of rotor balancing (both elastic
and rigid) by several AB of particular type. Its effectiveness
was demonstrated when determining stability conditions of
the main motions at balancing by one or two AB artificial
Earth satellites, stabilized by rotation. This criterion is the
most effective for the analysis of stability of the main mo-
tions and their families. But there is a caveat. In the studies,
the type of AB is considered. That is why the studies remain
cumbersome while the obtained results are applicable only to
a particular type of AB.

Thus, it is relevant to modernize the empirical criterion
of stability of the main motion for obtaining conditions for
the occurrence of auto-balancing, suitable for any type of AB.
Application of the new criterion and its efficiency is illustrated
on the problem of balancing by several AB (excess number of
AB) of a solid axisymmetric rotor with the fixed point and iso-
tropic elastic support. Such a model of rotor models extractors,
centrifuges, separators, etc. The rotors of such machines can be
loaded with a large amount of the treated raw material, which
creates large imbalances. For the increase in the summary
balancing capacitance of AB without increasing their overall
dimensions, it is expedient to balance such rotors by several
AB, located in parallel. The conditions for the occurrence of
auto-balancing for this problem have not been obtained as yet.

3. Aim and tasks of the study

The purpose of this work is to formulate the empirical
criterion for the occurrence of auto-balancing for a rotor



with several passive AB and to illustrate its application on
the rotor with a fixed point.

To accomplish the set aim, it is necessary to solve the
following tasks of the study:

— to formulate a criterion for the occurrence of auto-bal-
ancing when balancing a rigid or elastic rotor by several
passive AB of any type;

— to establish a general sequence of applying the criteri-
on and the results, obtained with its help;

— by applying the criterion, to obtain conditions for the
occurrence of auto-balancing when balancing a rotor with a
fixed point by several AB of any type.

4. Method of constructing the empirical
criterion for the occurrence of auto-balancing for
the case of several AB

Any passive AB are considered:

— classical — ball, roller, pendulum, circular, liquid, etc.;

—non-classical — in which CW of special form have a
fixed point on the longitudinal axis of a rotor and the centers
of masses of CW move not by the circles whose planes are
perpendicular to the longitudinal axis of the rotor.

The empirical (engineering) criterion of stability of the
main motion is being modernized. The criterion is formulat-
ed in paper [21] as follows.

Let us assume that n passive AB with solid CW of partic-
ular type are mounted on the rotor for the balancing in n dif-
ferent planes of correction. The stability of a particular main
motion is examined (both isolated and belonging to one- or
multi-parametric family). Let us fix the positions of CW in
AB in this main motion. Then for its stability, it is necessary
and sufficient that at any elementary imbalances s;, which
are in the j-th planes of correction and applied at points j on
the longitudinal axis of the rotor, the condition is satisfied

f(§1,...,§n)=;f{igj(t)-fj(t)Jdt <0, 1)

where t is the time; T is the vector of deviation of the point
j from its position in the main motion, caused by the elemen-
tary imbalances S,,..,S,; T is the period in case the motion
is periodic or another characteristic time interval (time of
one or several rotations of rotor, time interval considerably
larger than 1, etc.).

The elementary imbalance §; lies in the j-th plane of
correction and is formed by elementary mass, located at a
distance from the longitudinal axis of the rotor, considerably
larger than the deviation of the point j from its position in
the main motion.

The criterion is applicable both for the rigid and elastic
rotors on ductile supports and elastic rotors on the rigid
supports.

A deficiency of the criterion lies in the fact that in it
does not take into account the type of AB. That is why the
computations are bulky while the obtained results have
private character. For obtaining the most general results,
when formulating the criterion, it is necessary to disregard
the components, added by AB.

The appropriate components of the theory of rotor ma-
chines are used while applying the criterion to particular
rotors.

5. Results of constructing the empirical criterion for
the occurrence of auto-balancing for the case of several AB

5. 1. The types of AB fit for the criterion

The criterion is built for passive AB with solid CW —
classical and non-classical.

The classical AB are circular, ball, roller, pendulum [1, 2].
Their CW have the appropriate form — Fig. 1.
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Fig. 1. CW of classical AB with solid CW: a — ring;
b — sphere; ¢ — cylindrical roller, d — conical; e — pendulum

The centers of masses of such CW move relative to a ro-
tor by the circles whose centers are on the longitudinal axis
of the rotor and the planes of which are perpendicular to this
axis (Fig. 2).

Fig. 2. Classical AB: a — circular; b — ball (roller), single-row,
¢ — two-row; d — pendulum; e — liquid

The plane, in which the centers of CW masses move, is
the plane of correction of AB. The point j lies on the longitu-
dinal axis of the rotor and the centers of CW masses move by
circles around this point in the plane of correction.

Classical AB include liquid AB (Fig. 2, ¢) [1, 2]. In con-
trast to AB with solid CW, such AB cannot fully balance the
rotor in their plane of correction.

In non-classical AB [2], CW have a special form (Fig. 3).

Fig. 3. Non-classical CW — for which the axial
moments of inertia relative to the principal axes, passing
through the suspension point j, are such as:

a, b— =2 ¢, d— =)=y

They perform particular motion around the point j on
the longitudinal axis w of the rotor, which is not the rotation
around this axis (Fig. 4).

Fig. 4. Non-classical AB — in which CW rotate around:
a — transverse axes of rotor; b — longitudinal (w) and
transverse axes of rotor; ¢ — two axes that are not longitudinal;
d— point (j) on the longitudinal axis (w) of the rotor



It is assumed that a rotor is balanced in n planes of cor-
rection by n passive AB of any type, both with solid CW and
liquid AB.

5. 2. Empirical criterion for the occurrence of auto-
balancing

We will assume that the masses of AB and CW are con-
siderably less than the mass of a rotor. Then AB and CW
change insignificantly the mass-inertia characteristics of a
rotor. Taking this into account, let us formulate the follow-
ing empirical criterion for the occurrence of auto-balancing.

Assume that for the balancing, n passive AB of any type
in n different planes of corrections are mounted onto a rotor.
Then, for the occurrence of auto-balancing, it is necessary
and sufficient that at any elementary imbalances §;, which
are in the j-th planes of correction and applied at the ap-
propriate points j on the longitudinal axis of the rotor, the
condition is satisfied

f(§1,...,§“)=ﬂ(§"“ §j(t)-?j(t))dt <0, 2)

=1

where t is the time; T, is the vector of deviation of the point j
from its position in a motionless rotor, caused by the elemen-
tary imbalances §,,...,5,; T is the period in case the motion
is periodic or another characteristic time interval (time of
one or several rotations of rotor, time interval considerably
larger than 1, etc.).

Let us note that a mathematical record of the empirical
criterion for the occurrence of auto-balancing (2) complete-
ly coincides with the mathematical record of the empirical
criterion of stability of the main motion (1). The difference
between the criteria consists in the method of determining
the vectors T, of deviations of the points j.

5. 3. The order of application of the criterion and ob-
tained results

The criterion is intended to answer the question — is it
possible in principle, and under what conditions, to auto-
matically balance a particular rotor n by passive AB of any
type in n planes of correction. The criterion is applied in the
following sequence:

1) a physical-mechanical model of a rotor with elemen-
tary imbalances, applied in the future suspension points of
AB, is described;

2) differential equations of motion of the unbalanced
rotor are derived;

3) steady motion of a rotor, which corresponds to the ap-
plied elementary imbalances, is searched for as a particular
solution of the heterogeneous system of equations of motion;

4) a functional of the criterion for the occurrence of au-
to-balancing is built;

5) conditions for the occurrence of auto-balancing are
determined from the condition of negativity of the func-
tional.

Let us note that, as a rule, the functional of the criterion
is quadratic form from the elementary imbalances. The neg-
ative certainty of this form can be investigated by using the
Sylvester criterion. The result is the conditions of two types.
The first ones assign limitations to the mass-inertia charac-
teristics of a rotor. The second ones are the range of angular
rates of rotation of the rotor, on which auto-balancing will
occur provided the first conditions are satisfied.

5. 4. Example of application of the criterion to a rotor
with a fixed point

5. 4.1. Description of physical-mechanical model of
the rotor

Fig. 5, a demonstrates a schematic of the rotor with
the points of application of elementary imbalances to lon-
gitudinal axis of the rotor. Fig. 5, b displays kinematics of
motion of the rotor. Fig. 5, d presents kinematics of motion
of the elementary imbalance §;, which is in the j-th plane of
correction.
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Fig. 5. Model of unbalanced rotor with a fixed point:
a — schematic of rotor with the points of application of
elementary imbalances to longitudinal axis of the rotor;

b — turnings of rotor around the point O by the Resal’s
angles a, B; ¢ — turning of rotor around longitudinal axis by
the angle ot; d — kinematics of motion of the elementary
imbalance s

In Fig. 5, a, the Oxyz axes are motionless, axis z is direct-
ed along longitudinal axis of the rotor in the absence of its
displacement, and axes x, y — in such a way that the coordi-
nate system is right-hand.

The O&nL axes originally coincide with the motionless
axes Oxyz. In the process of motion, rotor at first is turned
by two Resal’s angles o, B (Fig. 5, b). In this case

Oxyz—*—>0x'y’z’ —2 - O&nl.

Then the rotor is turned around its longitudinal axis
(Fig. 5, ¢) by the angle ot, where ® is the constant angular
rate of rotation of rotor around the axis . In this case, the
O&nC axes pass into the Ouvw axes, rigidly connected with
the rotor.



It is assumed that the rotor is axisymmetric. Then the
axial moments of inertia of the rotor relative to the principal
central axes &g, Mg, {g, which are parallel to the axes &, 1, {
(and the axes ug, v, Wi, which are parallel to the u, v, w
axes) are equal to A, A, C, respectively.

Angular velocity vector of rotation of the rotor

=®+0+p. 3)
In the projections onto the coordinate axes O&ng:
Q, = dcosp, QH:B, Q. =o+dsinf.

With an accuracy to magnitudes of first-order of small-
ness inclusively

Q. =6 Q=B Q=o 4)

According to Huygens theorem, the axial moments of
inertia of rotor relative to the O&n( axes:

C,=C, A, =A, =A+ML, ®)

where L is the distance from the center of masses of the rotor
to the axes &, n. Here symmetry of the rotor is taken into
account, due to which rotation of the rotor around the axis
does not change the axial moments of inertia AL A,

5. 4. 2. Differential equations of motion of the rotor

For the Resal’s small angles, kinetic moment of the rotor
relative to the point O, decomposed into components, direct-
ed along the coordinate axes O&ng, takes the form [2]:

K =iA.6+jAB+kCo, (6)

where 1, 3, k are the unit vectors, directed along the co-
ordinate axes &, 1, , respectively. Then the theorem on the
change in the moment of amount of material system relative
to the motionless point O takes the form [2]:

d’ K
m — 4+ Qo

XK, =M§™, @)
where d’(-) /dt is the local time derivative in the rotating
coordinate system O&Eng; ME™ is the main moment of ex-
ternal forces, which act on the rotor, found relative to the
point O

Qe = (61, B, 0); ®)

— angular rate of rotation of the coordinate system O&ng,
found in the projections onto the &, 1, { axes.

With accuracy to magnitudes of first-order of smallness,
in the projections onto the axes &, 1, theorem (7) gives the
following two differential equations of motion of the rotor:

.. 2\ g(ext)

Aioc +Cop= M,
Af-Coc =M, 9)
where Méc’“), M are the main moments of external forces,
which act on the rotor, found relative to the &, n axes. Be-

cause of smallness of the imbalances, we consider that they
do not influence the mass and axial moments of inertia of

the rotor. We consider that their action is manifested only
through centrifugal forces of inertia.

The external forces and moments, which act on the rotor,
are formed by elastic forces and centrifugal forces from the
imbalances. At the Resal’s small angles, the projections onto
the moving axes &, 1 of the forces and moments, caused by
imbalances, are approximately determined as follows:

FY =50’ cos(t+9,),
FY =50’ sin(ot+9,),

M® =

O =—Fz,=-sz0’sin(ot+9,),

) TGy — o’
Mjn —Fjé Z;=SZ,00 cos((ot+q)j).

(10)

At the Resal’s small angles, the projections onto the
moving axes &, of the forces and moments, caused by elastic
forces, are approximately determined as follows:

F =—kbB, Fi¥ = kba,

MY = —kb’a,, M = —kb’B. (11)
From which we find
M(ext) 2 M(*) +M(k)

= _Zj:1 sz’ sin(ot +¢,)-kb’a;

(ext) _ N (s) (k) _
Mn ' _2j=1MJH +Mn -
=Y 52,0 cos(t+9,)~kb’B. (12)

Substituting this to (9), we obtain the following differen-
tial equations of motion of the unbalanced rotor

A+ CoB+kb’a=-w

2\ " :
z:)_:1sjzj sin(wt+0,),

AP-Coa+kbB=w"Y sz cos(@t+9). (13)
Let us introduce comprehensive variable
y=o+ip. (14)

Let us multiply the second equation in (13) by the imag-
inary unit i and add to the first one. We will obtain the
following differential equation of motion of the rotor in the
complex form

Ay —iCoy +kb*y = in’e “’“2 sze®

=1 1)

Let us denote

1= z 1stJe

Then differential equation of motion of the rotor will
take the form

(15)

Ay —iCoy+kbiy =iw’le™. (16)

Let us note

+=Rel= 2 _SiZ;C08 P,



I, =Rel= z;sjzj sing;;

a7

— product of inertia of the rotor, which determine its
moment imbalance.

5. 4. 3. Steady motion of the rotor, which corresponds
to the applied elementary imbalances

We search for a particular solution of differential equa-
tion (16) in the form

v =De. 18)
Substitution (18) into (16), after reductions by e,

will produce the following algebraic equation for deter-
mining D:

[kb = (A, —C)o’ D = ile. 19)
Solution of equation (19) takes the form
D=ilw’ /[kb*-(A, -C)o’]. (20)

Then the particular solution (18) of differential equation
(16) takes the form

y=ilo®e™ /[kb? —(A, -C)o’]. (21)

5. 4. 4. Construction of functional of the criterion
Displacements of the points j in the planes of correction
assign coordinates:

x;=Pz;, y;=-0z,. (22)

Let us introduce comprehensive displacements of the
points j

r=X,;+iy; =Pz,

= 210%™ /[kb’ - (A, -C)’].

—ioz; =—iz(a+if)=—iz,y =
(23)

Projections onto the axes x, y of vector of the j-th elemen-
tary imbalance:

S =s;cos(0t+9;), s;, =s;sin(ot+9,). (24)

Let us introduce comprehensive representation of the
imbalance

§;=s;, +is;, =s;cos(wt+0,)+

+is,sin(wt +6¢,)=s ", (25)
The integrand expression of functional (2) will take the
form:

Zs () (t)= 2(5 T+sr)/2=

1(03t+¢1)7 —iot —i(ot+o;) ot _
Ize™ +se Ize*]/2=

(A C)oo2 z

_1 7(02 sze“’J+IZSze'J =
2 kKb'—(A,—C)o’| &

o’ - (L )

- 1= .
2 (A, -C)o? kbz—(Aé—C)wz

(26)

Then the functional and the criterion of the occurrence
of auto-balancing (2) will take the form:

2n/m

f(s1,...,s“)=% | (isj(t)-rj(t)Jdt -

o’ +1I2)
- uw W 0, 27
Kb — (A, —C)o” @D

where the time of one rotation of the rotor (T=211; / w) is
accepted as the characteristic time interval.

5. 4. 5. Determining conditions for the occurrence of
auto-balancing
Let us introduce resonance speed into examination

= Jkb? / (A, ~C).

This speed exists only in the case of a long rotor, relative
to the point O

(28)

A,>C. (29)

Condition (27) will be satisfied (and auto-balancing will
occur) only in the case of a long rotor, relative to the point O,
at critical resonant speeds of rotation of the rotor

0>, (30)

Analogous result for the case of rotor balancing with a
fixed point by one two-ball AB was obtained in paper [8]
by the composition of differential equations of motion of the
system rotor-AB, by defining the main motion, exploration
of its stability.

6. Discussion of the obtained criterion and
conditions for the occurrence of auto-balancing for
a rotor with a fixed point

The empirical criterion for the occurrence of auto-balancing
makes it possible to obtain universal conditions for the occur-
rence of auto-balancing, applicable for any type of AB. In this
case, to answer the question about possibility of auto-balancing
of a rotor by passive AB, the existing mathematical model of
a rotor without AB is sufficient. This considerably simplifies
computations and reduces the labor intensity of studies.

The empirical criterion for the occurrence of auto-balanc-
ing enables us to solve the problem of determining conditions
for the occurrence of auto-balancing in “zero approximation”.
It is due to the fact that the formulation of the criterion does
not take into account the types and masses of AB. That is why,
in “zero approximation”, the possibility of applying passive AB
for rotor balancing is determined not by the types of AB, but
by rotor itself.

It is obvious that the more precise conditions for the occur-
rence of auto-balancing (in the “first approximation”) may be
obtained by the empirical criterion of stability of the main mo-
tion, formulated in paper [21]. This criterion takes into account
both the type and masses of AB and the position of CW, in the
considered main motion. In this case, the higher accuracy of
solution of the problem is achieved by the larger labor intensity
of mathematical calculations and transformations.



In the case of rotor with a motionless point and isotropic
elastic support, auto-balancing is possible only in the case of a
long rotor, relative to the point O. There may be any number of
AB (planes of correction). Auto-balancing starts at the speeds,
which exceed the only resonance speed of rotation of the rotor.
This is the first result, obtained for the case of AB excess.

In future it is planned to obtain, with the help of the
developed empirical criterion, conditions for the occurrence
of auto-balancing for a rotor that performs spatial motion
and for elastic rotor, balanced by several AB of any type in
several planes of correction. We plan to compare results,
obtained with the use of the empirical criterion, with the
known results, obtained by other methods.

7. Conclusions

1. In accordance with the empirical criterion for the
occurrence of auto-balancing, the possibility of applying

passive AB for rotor balancing (in “zero approximation”)
is determined not by the type of AB, but by rotor itself. In
this case, reaction of rotor to the elementary imbalances,
applied in the required planes of correction, is essential.
That is why the criterion makes it possible to obtain uni-
versal conditions for the occurrence of auto-balancing,
applied for any types of AB.

2. The conditions obtained with the help of the criteri-
on are divided into two groups:

— conditions, assigned on the mass-inertia character-
istics of rotor;

—ranges of angular speeds of rotation of rotor, at
which auto-balancing will occur provided the first group
of conditions is met.

3.1In the case of axisymmetric rotor with a fixed point
and isotropic elastic support, auto-balancing will occur only
in the case of a long rotor, relative to the point O, indepen-
dent of the number of AB (planes of correction) at speeds
that exceed the only resonance speed of rotor rotation.
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