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1. Introduction

For balancing rotating rotors in motion, in the process of 
operation, passive auto-balancers (AB) are applied [1, 2]. The 
motion of the system rotor-AB is established in the course of 
time. On the so-called main (steady) motions, AB balance the 
rotor, while on the secondary ones – do not. From a mathe-
matical point of view, for the occurrence of auto-balancing at 
a definite speed of rotation of rotor, it is necessary and suffi-
cient that the main motions exist and they are steady, but the 
secondary ones do not exist or they are unstable. Therefore, 
the search for different steady motions of such systems, exam-
ination of conditions for their existence and stability occupy 
central place in the theory of AB [1–21].

The search for and analysis of stability of all steady mo-
tions of the system rotor-AB is a massive and complex math-
ematical problem. It is considerably complicated in such 
cases, relevant for practice, as: rotor balancing by AB with 
many corrector weights (CW); when applying multi-row 
ball or roller AB; rotor balancing by several AB in several 
planes of correction, etc.

Therefore, it is relevant to design effective method of 
determining conditions for the occurrence of auto-balancing 

in the system rotor-AB that would allow obtaining reliable 
analytical results at minimal labor costs.

2. Literature review and problem statement

Let us examine certain approaches, which make it possi-
ble to simplify the process of determining conditions for the 
occurrence of auto-balancing. 

Analytically, the search for and analysis of stability 
of all steady motions of the system of rotating supporting 
body-AB was conducted in many papers. Such studies were 
carried out, among others, for:

– two-ball AB, which balances a rotor that performs 
plane motion [1];

– multi-ball AB, which balances a rotor within the frame-
work of a flat model and a number of nonclassical AB, which 
balance a rotor, which performs plane-parallel motion [2];

– AB with two connected CW, which balances a rotor 
that performs plane-parallel motion [3];

– two-ball AB, which balances in one plane of correction 
a rotor that performs spatial motion [4];

– two-ball AB, which balances a CD/DVD disk [5];
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– 2-pendulum AB, which balances a rotor on flexible shaft 
on elastic supports when the rotor performs plane motion [6];

– 2-pendulum AB, which balances a rotating supporting 
body in the isolated system [7].

The obtained results enable us to conclude that if the 
main motions exist and are steady, then the secondary mo-
tions, in which CW rotate synchronously with the rotating 
body, are not steady or do not exist. This result makes it 
possible to determine conditions for the occurrence of auto- 
balancing by the results of studying the stability of the main 
motions alone. This simplified approach is widely used when 
studying the process of auto-balancing and is applied, in 
particular, in papers [8–21].

The second simplification is connected to the study of 
the process of auto-balancing for AB with two CW (balls, 
pendulums, rollers, etc). In this case, the main motions of the 
system rotor-AB are isolated. Simplification is achieved as 
the theory of stability of isolated motions is better developed 
than the theory of stability of one- and multi-parametric 
families of the steady motions.

Stability of the main motions only at rotor balancing by 
AB with two CW was examined in papers:

[8] – for a rotor that performs flat, spherical and spatial 
motion;

[9] – for a rotor on isotropic supports that performs spa-
tial motion and that is balanced in two planes of correction;

[10] – for a rotor on anisotropic supports that performs 
spatial motion and that is balanced in one plane of correction;

[11] – for an elastic rotor, balanced by N of two-ball AB 
in N planes of correction;

[12] – for a rotor on isotropic supports that performs spa-
tial motion and that is balanced in two planes of correction 
by two-ball AB with different balls;

[13] – for a rotor on flexible shaft on elastic supports 
when the rotor performs plane motion and is balanced by 
2-pendulum AB;

[14] – for a drum of a washing machine with horizontal 
loading;

[15] – for a disk, mounted onto a weightless flexible 
shaft, balanced by two two-ball AB, mounted onto the shaft 
from different sides from the disk;

[16] – for a rotating supporting body in the isolated sys-
tem, balanced in one plane of correction by 2-pendulum AB. 
Let us note that this approach does not eliminate the com-
plexity of the problem, caused by nonlinearity.

An alternative to the second simplification is the analysis 
of stability of the family of main motions by the minimal 
quantity of special parameters (generalized coordinates). 
This approach was realized for the first time in article [17] 
within the framework of a flat model of rotor with multi-ball 
AB with identical balls. Generalized coordinates of the rotor 
and special combinations of the angles, which determine 
the positions of CW relative to the rotor, were used as the 
parameters. In paper [18] the same approach is applied to 
a double-support rotor that performs spatial motion and is 
balanced by multi-ball AB. Practice simultaneously with 
paper [17], in article [2] they used a similar approach, only, 
instead of combinations of the angles, the projections of sum-
mary imbalances of the rotor and AB on the coordinate axes 
were used. During the main motions, these parameters equal 
zero and the process of auto-balancing may be examined by 
the differential equations that describe the change in these 
parameters. Subsequently, this method was substantially 
developed and it is presented in detail in paper [19]. It is 

essential that the differential equations, which describe the 
change in these parameters, are easily linearized. That is 
why the stability of the families of steady motions is investi-
gated with the application of theory of stability of systems of 
linear differential equations with constant or periodic coef-
ficients. Article [20] explores with the aid of this method the 
process of balancing an elastic rotor on two ductile supports 
by two multi-ball (multi-pendulum, multi-roller) AB, located 
near the supports.

The simplifications described above in the study of the 
process of auto-balancing are ineffective while rotor balanc-
ing: by several AB in several planes of correction, by multi-
row AB, by the so-called non-classical AB [2] because of the 
complexity of CW moving in them. It is connected to a large 
number of differential equations, which describe the process 
of auto-balancing. The second shortcoming of these simpli-
fications is the fact that the conditions for the occurrence of 
auto-balancing with their application are obtained for a par-
ticular type of AB. For another type of AB, it is necessary to 
obtain anew conditions for the occurrence of auto-balancing.

Paper [2] proposed an engineering (empirical) criterion for 
the occurrence of auto-balancing when balancing a rotor by one 
AB of any type in one plane of correction. In accordance with 
the criterion, a passive AB of any type will balance a rotor in 
the examined plane of correction when and only when, on aver-
age at one rotation of rotor, the sagging of rotor in the plane of 
correction from any elementary imbalance in this plane will be 
directed opposite to this imbalance. By applying the criterion, 
analytical conditions for the occurrence of auto-balancing were 
obtained when balancing by one AB of any type of rotor that 
performs flat, spherical, spatial motions. The obtained results 
coincided with the results, obtained in article [8] for the indi-
cated rotors at their balancing by two-ball AB.

Paper [21] proposed the empirical criterion of stability of 
the main motion in the case of rotor balancing (both elastic 
and rigid) by several AB of particular type. Its effectiveness 
was demonstrated when determining stability conditions of 
the main motions at balancing by one or two AB artificial 
Earth satellites, stabilized by rotation. This criterion is the 
most effective for the analysis of stability of the main mo-
tions and their families. But there is a caveat. In the studies, 
the type of AB is considered. That is why the studies remain 
cumbersome while the obtained results are applicable only to 
a particular type of AB.

Thus, it is relevant to modernize the empirical criterion 
of stability of the main motion for obtaining conditions for 
the occurrence of auto-balancing, suitable for any type of AB. 
Application of the new criterion and its efficiency is illustrated 
on the problem of balancing by several AB (excess number of 
AB) of a solid axisymmetric rotor with the fixed point and iso-
tropic elastic support. Such a model of rotor models extractors, 
centrifuges, separators, etc. The rotors of such machines can be 
loaded with a large amount of the treated raw material, which 
creates large imbalances. For the increase in the summary 
balancing capacitance of AB without increasing their overall 
dimensions, it is expedient to balance such rotors by several 
AB, located in parallel. The conditions for the occurrence of 
auto-balancing for this problem have not been obtained as yet.

3. Aim and tasks of the study

The purpose of this work is to formulate the empirical 
criterion for the occurrence of auto-balancing for a rotor 
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with several passive AB and to illustrate its application on 
the rotor with a fixed point.

To accomplish the set aim, it is necessary to solve the 
following tasks of the study:

– to formulate a criterion for the occurrence of auto-bal-
ancing when balancing a rigid or elastic rotor by several 
passive AB of any type;

– to establish a general sequence of applying the criteri-
on and the results, obtained with its help;

– by applying the criterion, to obtain conditions for the 
occurrence of auto-balancing when balancing a rotor with a 
fixed point by several AB of any type.

4. Method of constructing the empirical  
criterion for the occurrence of auto-balancing for  

the case of several AB

Any passive AB are considered:
– classical – ball, roller, pendulum, circular, liquid, etc.;
– non-classical – in which CW of special form have a 

fixed point on the longitudinal axis of a rotor and the centers 
of masses of CW move not by the circles whose planes are 
perpendicular to the longitudinal axis of the rotor.

The empirical (engineering) criterion of stability of the 
main motion is being modernized. The criterion is formulat-
ed in paper [21] as follows.

Let us assume that n passive AB with solid CW of partic-
ular type are mounted on the rotor for the balancing in n dif-
ferent planes of correction. The stability of a particular main 
motion is examined (both isolated and belonging to one- or 
multi-parametric family). Let us fix the positions of CW in 
AB in this main motion. Then for its stability, it is necessary 
and sufficient that at any elementary imbalances js ,

�
 which 

are in the j-th planes of correction and applied at points j on 
the longitudinal axis of the rotor, the condition is satisfied

T n

1 n j j
j 10

1
f(s ,..., s ) s (t) r (t) dt 0,

T =

 
= ⋅ <  

∑∫
� � � �

  (1)

where t is the time; jr
�

 is the vector of deviation of the point 
j from its position in the main motion, caused by the elemen-
tary imbalances 1 ns ,..., s ;

� �
 T is the period in case the motion 

is periodic or another characteristic time interval (time of 
one or several rotations of rotor, time interval considerably 
larger than 1, etc.). 

The elementary imbalance js
�

 lies in the j-th plane of 
correction and is formed by elementary mass, located at a 
distance from the longitudinal axis of the rotor, considerably 
larger than the deviation of the point j from its position in 
the main motion.

The criterion is applicable both for the rigid and elastic 
rotors on ductile supports and elastic rotors on the rigid 
supports. 

A deficiency of the criterion lies in the fact that in it 
does not take into account the type of AB. That is why the 
computations are bulky while the obtained results have 
private character. For obtaining the most general results, 
when formulating the criterion, it is necessary to disregard 
the components, added by AB. 

The appropriate components of the theory of rotor ma-
chines are used while applying the criterion to particular 
rotors.

5. Results of constructing the empirical criterion for  
the occurrence of auto-balancing for the case of several AB

5. 1. The types of AB fit for the criterion
The criterion is built for passive AB with solid CW – 

classical and non-classical. 
The classical AB are circular, ball, roller, pendulum [1, 2]. 

Their CW have the appropriate form – Fig. 1.

																					a                 b         c           d             e

Fig.	1.	CW	of	classical	AB	with	solid	CW:	a	–	ring;		
b	–	sphere;	c – cylindrical	roller,	d	–	conical;	e	–	pendulum

The centers of masses of such CW move relative to a ro-
tor by the circles whose centers are on the longitudinal axis 
of the rotor and the planes of which are perpendicular to this 
axis (Fig. 2).

									a                 b                   c                  d                 e

Fig.	2.	Classical	AB:	a	–	circular;	b	–	ball	(roller),	single-row,	
c	–	two-row;	d	–	pendulum;	e	–	liquid

The plane, in which the centers of CW masses move, is 
the plane of correction of AB. The point j lies on the longitu-
dinal axis of the rotor and the centers of CW masses move by 
circles around this point in the plane of correction.

Classical AB include liquid AB (Fig. 2, e) [1, 2]. In con-
trast to AB with solid CW, such AB cannot fully balance the 
rotor in their plane of correction. 

In non-classical AB [2], CW have a special form (Fig. 3).

																						a                    b                 c               d

Fig.	3.	Non-classical	CW	–	for	which	the	axial		
moments	of	inertia	relative	to	the	principal	axes,	passing	

through	the	suspension	point	j,	are	such	as:		
a, b	–	Jv=Jw≠Ju;	c, d	–	Ju=Jv=Jw

 
They perform particular motion around the point j on 

the longitudinal axis w of the rotor, which is not the rotation 
around this axis (Fig. 4).

               a                    b                   c                        d
Fig.	4.	Non-classical	AB	–	in	which	CW	rotate	around:		

a	–	transverse	axes	of	rotor;	b	–	longitudinal	(w)	and	
transverse	axes	of	rotor;	c	–	two	axes	that	are	not	longitudinal;	

d	–	point	(j)	on	the	longitudinal	axis	(w)	of	the	rotor
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It is assumed that a rotor is balanced in n planes of cor-
rection by n passive AB of any type, both with solid CW and 
liquid AB.

5. 2. Empirical criterion for the occurrence of auto- 
balancing

We will assume that the masses of AB and CW are con-
siderably less than the mass of a rotor. Then AB and CW 
change insignificantly the mass-inertia characteristics of a 
rotor. Taking this into account, let us formulate the follow-
ing empirical criterion for the occurrence of auto-balancing. 

Assume that for the balancing, n passive AB of any type 
in n different planes of corrections are mounted onto a rotor. 
Then, for the occurrence of auto-balancing, it is necessary 
and sufficient that at any elementary imbalances js ,

�
 which 

are in the j-th planes of correction and applied at the ap-
propriate points j on the longitudinal axis of the rotor, the 
condition is satisfied

T n

1 n j j
j 10

1
f(s ,..., s ) s (t) r (t) dt 0,

T =

 
= ⋅ <  

∑∫
� � � �

  (2)

where t is the time; jr
�

 is the vector of deviation of the point j 
from its position in a motionless rotor, caused by the elemen-
tary imbalances 1 ns ,..., s ;

� �
 T is the period in case the motion 

is periodic or another characteristic time interval (time of 
one or several rotations of rotor, time interval considerably 
larger than 1, etc.). 

Let us note that a mathematical record of the empirical 
criterion for the occurrence of auto-balancing (2) complete-
ly coincides with the mathematical record of the empirical 
criterion of stability of the main motion (1). The difference 
between the criteria consists in the method of determining 
the vectors jr

�
 of deviations of the points j.

5. 3. The order of application of the criterion and ob-
tained results

The criterion is intended to answer the question – is it 
possible in principle, and under what conditions, to auto-
matically balance a particular rotor n by passive AB of any 
type in n planes of correction. The criterion is applied in the 
following sequence:

1) a physical-mechanical model of a rotor with elemen-
tary imbalances, applied in the future suspension points of 
AB, is described;

2) differential equations of motion of the unbalanced 
rotor are derived;

3) steady motion of a rotor, which corresponds to the ap-
plied elementary imbalances, is searched for as a particular 
solution of the heterogeneous system of equations of motion;

4) a functional of the criterion for the occurrence of au-
to-balancing is built;

5) conditions for the occurrence of auto-balancing are 
determined from the condition of negativity of the func-
tional.

Let us note that, as a rule, the functional of the criterion 
is quadratic form from the elementary imbalances. The neg-
ative certainty of this form can be investigated by using the 
Sylvester criterion. The result is the conditions of two types. 
The first ones assign limitations to the mass-inertia charac-
teristics of a rotor. The second ones are the range of angular 
rates of rotation of the rotor, on which auto-balancing will 
occur provided the first conditions are satisfied.

5. 4. Example of application of the criterion to a rotor 
with a fixed point

5. 4. 1. Description of physical-mechanical model of 
the rotor

Fig. 5, a demonstrates a schematic of the rotor with 
the points of application of elementary imbalances to lon-
gitudinal axis of the rotor. Fig. 5, b displays kinematics of 
motion of the rotor. Fig. 5, d presents kinematics of motion 
of the elementary imbalance js

�
, which is in the j-th plane of 

correction.

a

b 

                                   c                              d

Fig.	5.	Model	of	unbalanced	rotor	with	a	fixed	point:	
a	–	schematic	of	rotor	with	the	points	of	application	of	
elementary	imbalances	to	longitudinal	axis	of	the	rotor;	
b	–	turnings	of	rotor	around	the	point	O	by	the	Resal’s	

angles	a,	β;	c	–	turning	of	rotor	around	longitudinal	axis	by	
the	angle	ωt;	d	–	kinematics	of	motion	of	the	elementary	

imbalance	 js
�

In Fig. 5, a, the Oxyz axes are motionless, axis z is direct-
ed along longitudinal axis of the rotor in the absence of its 
displacement, and axes x, y – in such a way that the coordi-
nate system is right-hand.

The Oξhz axes originally coincide with the motionless 
axes Oxyz. In the process of motion, rotor at first is turned 
by two Resal’s angles a, β (Fig. 5, b). In this case

Oxyz Ox y z O .βα→ → ξηζ′ ′ ′  

Then the rotor is turned around its longitudinal axis z 
(Fig. 5, c) by the angle ωt, where ω is the constant angular 
rate of rotation of rotor around the axis z. In this case, the 
Oξhz axes pass into the Ouvw axes, rigidly connected with 
the rotor. 
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It is assumed that the rotor is axisymmetric. Then the 
axial moments of inertia of the rotor relative to the principal 
central axes ξG, hG, zG, which are parallel to the axes ξ, h, z 
(and the axes uG, vG, wG, which are parallel to the u, v, w 
axes) are equal to A, A, C, respectively.

Angular velocity vector of rotation of the rotor

.Ω = ω + α + β
�� � � ��   (3)

In the projections onto the coordinate axes Oξhz:

cos , , sin .ξ η ζΩ = α β Ω = β Ω = ω + α β�� �

With an accuracy to magnitudes of first-order of small-
ness inclusively

, , .ξ η ζΩ ≈ α Ω ≈ β Ω ≈ ω��   (4)

According to Huygens theorem, the axial moments of 
inertia of rotor relative to the Oξhz axes:

2C C, A A A ML ,ζ ξ η= = = +   (5)

where L is the distance from the center of masses of the rotor 
to the axes ξ, h. Here symmetry of the rotor is taken into 
account, due to which rotation of the rotor around the axis z 
does not change the axial moments of inertia A , A .ξ η

5. 4. 2. Differential equations of motion of the rotor
For the Resal’s small angles, kinetic moment of the rotor 

relative to the point O, decomposed into components, direct-
ed along the coordinate axes Oξhz, takes the form [2]:

CK iA jA kC ,ξ ξ= α + β + ω
�� � � ��   (6)

where i , j, k
�� �

 are the unit vectors, directed along the co-
ordinate axes ξ, h, z, respectively. Then the theorem on the 
change in the moment of amount of material system relative 
to the motionless point O takes the form [2]:

(ext)C
O C O

d K
K M ,

dt ξηζ
′

+ Ω × =
�

� ��   (7)

where d ( ) / dt⋅′  is the local time derivative in the rotating 
coordinate system Oξhz; (ext)

OM
�

 is the main moment of ex-
ternal forces, which act on the rotor, found relative to the 
point O

T
O ( , , 0) ,ξηζΩ ≈ α β
� ��   (8)

– angular rate of rotation of the coordinate system Oξhz, 
found in the projections onto the ξ, h, z axes.

With accuracy to magnitudes of first-order of smallness, 
in the projections onto the axes ξ, h, theorem (7) gives the 
following two differential equations of motion of the rotor:

(ext)A C M ,ξ ξα + ωβ =���
 

 (ext)A C M ,ξ ηβ − ωα =�� �   (9)

where (ext) (ext)M , Mξ η  are the main moments of external forces, 
which act on the rotor, found relative to the ξ, h axes. Be-
cause of smallness of the imbalances, we consider that they 
do not influence the mass and axial moments of inertia of 

the rotor. We consider that their action is manifested only 
through centrifugal forces of inertia. 

The external forces and moments, which act on the rotor, 
are formed by elastic forces and centrifugal forces from the 
imbalances. At the Resal’s small angles, the projections onto 
the moving axes ξ, h of the forces and moments, caused by 
imbalances, are approximately determined as follows:

(s) 2
j j jF s cos( t ),ξ = ω ω + φ

(s) 2
j j jF s sin( t ),η = ω ω + φ

(s) (s) 2
j j j j j jM F z s z sin( t ),ξ η= − = − ω ω + φ  

(s) (s) 2
j j j j j jM F z s z cos( t ).η ξ= = ω ω + φ   (10)

At the Resal’s small angles, the projections onto the 
moving axes ξ, h of the forces and moments, caused by elastic 
forces, are approximately determined as follows:

(k) (k)
B BF kb , F kb ,ξ η= − β = α

(k) 2 (k) 2M kb , M kb .ξ η= − α = − β   (11)

From which we find

n(ext) (s) (k)
jj 1

n 2 2
j j jj 1

M M M

s z sin( t ) kb ;

ξ ξ ξ=

=

= + =

= − ω ω + φ − α

∑
∑

n(ext) (s) (k)
jj 1

n 2 2
j j jj 1

M M M

s z cos( t ) kb .

η η η=

=

= + =

= ω ω + φ − β

∑
∑  (12)

Substituting this to (9), we obtain the following differen-
tial equations of motion of the unbalanced rotor

n2 2
j j jj 1

A C kb s z sin( t ),ξ =
α + ωβ + α = −ω ω + φ∑���

n2 2
j j jj 1

A C kb s z cos( t ).ξ =
β − ωα + β = ω ω + φ∑�� �  (13)

Let us introduce comprehensive variable

i .ψ = α + β   (14)

Let us multiply the second equation in (13) by the imag-
inary unit i and add to the first one. We will obtain the 
following differential equation of motion of the rotor in the 
complex form

j
n i2 2 i t

j jj 1
A iC kb i e s z e .φω

ξ =
ψ − ωψ + ψ = ω ∑�� �

Let us denote

j
n i

j jj 1
I s z e .φ

=
= ∑   (15)

Then differential equation of motion of the rotor will 
take the form

2 2 i tA iC kb i Ie .ω
ξψ − ωψ + ψ = ω�� �   (16)

Let us note

n

uw j j jj 1
I ReI s z cos ,

=
= = φ∑

;
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n

vw j j jj 1
I ReI s z sin

=
= = φ∑   (17)

– product of inertia of the rotor, which determine its 
moment imbalance.

5. 4. 3. Steady motion of the rotor, which corresponds 
to the applied elementary imbalances

We search for a particular solution of differential equa-
tion (16) in the form

i tDe .ωψ =   (18)

Substitution (18) into (16), after reductions by i te ,ω  
will produce the following algebraic equation for deter-
mining D:

2 2 2[kb (A C) ]D iI .ξ− − ω = ω  (19)

Solution of equation (19) takes the form

2 2 2D iI /[kb (A C) ].ξ= ω − − ω   (20)

Then the particular solution (18) of differential equation 
(16) takes the form

2 i t 2 2iI e /[kb (A C) ].ω
ξψ = ω − − ω   (21)

5. 4. 4. Construction of functional of the criterion
Displacements of the points j in the planes of correction 

assign coordinates:

j jx z ,= β  j jy z .= −α   (22)

Let us introduce comprehensive displacements of the 
points j

j j j j j j j

2 i t 2 2
j

x iy z i z iz ( i ) iz

z I e /[kb (A C) ].ω
ξ

= + = β − α = − α + β = − ψ =

= ω − − ω

r   
(23)

Projections onto the axes x, y of vector of the j-th elemen-
tary imbalance:

jx j j jy j js s cos( t ), s s sin( t ).= ω + φ = ω + φ   (24)

Let us introduce comprehensive representation of the 
imbalance

j

j jx jy j j

i( t )
j j j

s is s cos( t )

is sin( t ) s e .ω +φ

= + = ω + φ +

+ ω + φ =

s   
(25)

The integrand expression of functional (2) will take the 
form:

j j

j j

n n

j j j j j j
j 1 j 1

2 n
i( t ) i( t )i t i t

j j j j2 2
j 1

2 n n
i i

j j j j2 2
j 1 j 1

2 2 22
uw vw

2 2 2

s (t) r (t) ( )/2

[s e Iz e s e Iz e ]/2
kb (A C)

1
I s z e I s z e

2 kb (A C)

(I I )
II

kb (A C) kb (A C)

= =

ω +φ − ω +φ− ω ω

=ξ

φ − φ

= =ξ

ξ ξ

⋅ = + =

ω
= + =

− − ω

 ω
= ⋅ + = − − ω   

ω +ω
= =

− − ω − −

∑ ∑

∑

∑ ∑

s r s r
� �

2 .
ω

                                                                                       (26)

Then the functional and the criterion of the occurrence 
of auto-balancing (2) will take the form:

2 / n

1 n j j
i 10

2 2 2
uw vw

2 2

f( ,..., ) (t) (t) dt
2

(I I )
0,

kb (A C)

π ω

=

ξ

 ω
= ⋅ = π  

ω +
= <

− − ω

∑∫s s s r

  

(27)

where the time of one rotation of the rotor ( )T 2 / .= π ω  is 
accepted as the characteristic time interval.

5. 4. 5. Determining conditions for the occurrence of 
auto-balancing

Let us introduce resonance speed into examination

2
1 kb / (A C).ξω = −   (28)

This speed exists only in the case of a long rotor, relative 
to the point O

A C.ξ >  (29)

Condition (27) will be satisfied (and auto-balancing will 
occur) only in the case of a long rotor, relative to the point O, 
at critical resonant speeds of rotation of the rotor 

1.ω > ω   (30)

Analogous result for the case of rotor balancing with a 
fixed point by one two-ball AB was obtained in paper [8] 
by the composition of differential equations of motion of the 
system rotor-AB, by defining the main motion, exploration 
of its stability.

6. Discussion of the obtained criterion and  
conditions for the occurrence of auto-balancing for  

a rotor with a fixed point

The empirical criterion for the occurrence of auto-balancing 
makes it possible to obtain universal conditions for the occur-
rence of auto-balancing, applicable for any type of AB. In this 
case, to answer the question about possibility of auto-balancing 
of a rotor by passive AB, the existing mathematical model of 
a rotor without AB is sufficient. This considerably simplifies 
computations and reduces the labor intensity of studies. 

The empirical criterion for the occurrence of auto-balanc-
ing enables us to solve the problem of determining conditions 
for the occurrence of auto-balancing in “zero approximation”. 
It is due to the fact that the formulation of the criterion does 
not take into account the types and masses of AB. That is why, 
in “zero approximation”, the possibility of applying passive AB 
for rotor balancing is determined not by the types of AB, but 
by rotor itself.

It is obvious that the more precise conditions for the occur-
rence of auto-balancing (in the “first approximation”) may be 
obtained by the empirical criterion of stability of the main mo-
tion, formulated in paper [21]. This criterion takes into account 
both the type and masses of AB and the position of CW, in the 
considered main motion. In this case, the higher accuracy of 
solution of the problem is achieved by the larger labor intensity 
of mathematical calculations and transformations. 

;
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In the case of rotor with a motionless point and isotropic 
elastic support, auto-balancing is possible only in the case of a 
long rotor, relative to the point O. There may be any number of 
AB (planes of correction). Auto-balancing starts at the speeds, 
which exceed the only resonance speed of rotation of the rotor. 
This is the first result, obtained for the case of AB excess.

In future it is planned to obtain, with the help of the 
developed empirical criterion, conditions for the occurrence 
of auto-balancing for a rotor that performs spatial motion 
and for elastic rotor, balanced by several AB of any type in 
several planes of correction. We plan to compare results, 
obtained with the use of the empirical criterion, with the 
known results, obtained by other methods.

7. Conclusions

1. In accordance with the empirical criterion for the 
occurrence of auto-balancing, the possibility of applying 

passive AB for rotor balancing (in “zero approximation”) 
is determined not by the type of AB, but by rotor itself. In 
this case, reaction of rotor to the elementary imbalances, 
applied in the required planes of correction, is essential. 
That is why the criterion makes it possible to obtain uni-
versal conditions for the occurrence of auto-balancing, 
applied for any types of AB.

2. The conditions obtained with the help of the criteri-
on are divided into two groups:

– conditions, assigned on the mass-inertia character-
istics of rotor;

– ranges of angular speeds of rotation of rotor, at 
which auto-balancing will occur provided the first group 
of conditions is met.

3. In the case of axisymmetric rotor with a fixed point 
and isotropic elastic support, auto-balancing will occur only 
in the case of a long rotor, relative to the point O, indepen-
dent of the number of AB (planes of correction) at speeds 
that exceed the only resonance speed of rotor rotation.
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