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1. Introduction

A strategic objective of scientific-technical policy in 
the field of transportation system of the state is achiev-
ing the world level in terms of technical parameters and 
services quality that are implemented in transport. In 
this connection, the top priority for the transport sector 
is to expand scientific research into creation of progres-
sive technologies for the rational organization of cargo 
transportations, formation and functioning of efficient 
transportation system, development of fundamentally 
new management systems using modern information tech-
nologies [1, 2].

At present, Ukraine is beneficially different from other 
countries by the fact that a significant number of its cities are 
located along traditional transportation and communication 
routes of the Eurasian continent. The issue of the develop-
ment of international transport corridors by Ukraine will ac-
celerate not only achieving the strategic goals of integration 
into the European Community, but also solving such tasks as 
additional investments into development of the transporta-

tion infrastructure of the state, as well as increasing volumes 
of products for export [1].

Transport in Ukraine is a powerful communication 
system, which includes all its types (water, road, railway, 
pipeline, air). The main production funds of transport con-
stitute about 20 % of the production funds of the country 
[1]. Creating united international transport-logistic sys-
tem, geographical position of the transportation space of 
Ukraine, as well as existence of many international trans-
port corridors require the following [1, 2]: separate analysis 
of transport hubs management; provision of coordination 
and interaction of all kinds of transport; implementation of 
modern achievements in scientific and technical progress in 
the transportation operation.

Designing efficient delivery of cargos with the align-
ment of all the links of the transportation process neces-
sitated a large number of theoretical and experimental 
studies on various issues of development of transport sys- 
tems [1, 2]. 

Relevance of the research is determined by the need to 
improve efficiency of the transportation of goods in interna-

IMPROVEMENT OF 
THE METHODS FOR 

DETERMINING OPTIMAL 
CHARACTERISTICS 

OF TRANSPORTATION 
NETWORKS

G .  P r o k u d i n
Doctor of Technical Sciences, Professor,  

Нead of Department*
Е-mail: p_g_s@ukr.net

O .  С h u p a y l e n k o
PhD, Associate Professor*

Е-mail: dozentalexey@yandex.ru
O .  D u d n i k

PhD, Associate Professor*
Е-mail: Alex_DS@ukr.net

А .  D u d n i k
Assistant**

Е-mail: Dudnik_aa@ukr.net
D .  O m a r o v

Postgraduate student*
Е-mail: odiumprestig@gmail.com

*Department of international  
transportation and customs control***

**Department of transport systems  
and road safety***

***National Transport University 
Suvorova str., 1, Kyiv, Ukraine, 01010 

Досліджено процес транспортування ванта-
жів у мережевому представленні з метою удо-
сконалення існуючих методів визначення опти-
мальних характеристик транспортних мереж. 
Встановлено вплив показників структури мере-
жі, напряму руху і пропускної здатності тран-
спортних комунікацій на визначення фактичної 
щільності руху на транспортній мережі в ста-
тичному стані. Визначено механізм перетво-
рення мережевих моделей процесу вантажних 
перевезень у матричні моделі, які задаються у 
вигляді орієнтованих графів і допускають пере-
везення вантажу через проміжні транспортні 
вузли

Ключові слова: транспортна мережа, мак-
симальний транспортний потік, найкоротші 
шляхи, матрична модель

Исследован процесс транспортировки грузов 
в сетевом представлении с целью усовершен-
ствования существующих методов определе-
ния оптимальных характеристик транспорт-
ных сетей. Установлено влияние показателей 
структуры сети, направления движения и про-
пускной способности транспортных коммуни-
каций на определение фактической плотности 
движения на транспортной сети в статическом 
состоянии. Определен механизм преобразования 
сетевых моделей процесса грузовых перевозок 
в матричные модели, которые задаются в виде 
ориентированных графов и допускают перевозки 
груза через промежуточные транспортные узлы

Ключевые слова: транспортная сеть, мак-
симальный транспортный поток, кратчайшие 
пути, матричная модель

UDC 519.179.2 : 656.073
DOI: 10.15587/1729-4061.2016.85211



Control processes

55

tional traffic through the development and implementation 
of models, methods and software for the rational organiza-
tion of international freight traffic.

2. Literature review and problem statement

Many scientific papers in the field of transportation 
systems, logistics and operations studies address the solu-
tion of problems to increase efficiency of cargo transpor-
tation in international traffic. The main characteristics 
of the transport networks include: maximum flow in the 
transportation network and the shortest distances in the 
transport network. To solve the problem of optimization of 
the transportation network, it is necessary to reduce a net-
work representation of the transport problem to the matrix 
form, for which there is practical mathematical apparatus. 
An analysis of the literature data that we conducted re-
vealed the following.

The existing methods for solving the problem of max-
imum flow in the transport network are convenient to use 
only for a flat network [3]. A new presented algorithm for 
the maximum flow allows the optimization of solution to the 
problem, but it does not take into account the peculiarities of 
transport networks [4]. To solve the problem, it is necessary 
to extend the method for solving the problems on the optimi-
zation of transport networks with and without restrictions of 
the throughput capacity.

The algorithms of mathematical programming for de-
signing a transport network are developed, which allow 
finding the optimal ways [5]. But such algorithms do not 
take into account the large number of intermediate points in 
the transportation network. The proposed characteristics of 
transport in the multiplex system enable the optimization, 
but do not allow the calculation of the shortest distances in 
the case of a large number of intermediate points [6].

The transportation problem in the matrix and network 
forms is presented by definition in equivalents [7]. However, 
sometimes it is more convenient to solve a network problem 
in matrix form [8]. But we need to improve these methods 
to solve complex network transportation problems using 
directed graphs in the Excel environment.

In general, the problem of effective control over the 
international freight transportation process is in the fact 
that the existing methods do not fully take into account 
specific features of their fulfillment and, consequently, there 
is no a unified approach to determining the methods for the 
determination of optimal characteristics of transportation 
networks.

3. The aim and tasks of the study

The aim of the study is to improve the methods for 
determining the optimal characteristics of transportation 
networks.

To achieve the set aim, the following tasks were solved:
– improvement of the methods for solving the problems 

on maximum flow in a transport network;
– improvement of the methods for finding the shortest 

distances in a transport network;
– improvement of the methods for reducing the net-

work representation of the transport problem to the ma-
trix form.

4. Improvement of the methods for solving the problems 
on maximum flow and the shortest distances in a 

transportation network

4. 1. Solving the problems on maximum flow
The problem of maximum flow can be formulated as fol-

lows: two nodes are connected by a transportation network 
(TN). Each TN arc is assigned with a number that denotes 
its throughput capacity in units of transportation vehicles 
(TV) in a time unit. It is necessary to find the maximum 
flow that can pass the network from one node, called source, 
to another, called runoff. In practice, this problem appears 
when it is necessary to as quickly as possible for the maxi-
mum number of vehicles to pass between any nodes of TN, 
such as in case of natural disaster, seasonal fluctuations in 
demand for the transportation of passengers (cargos), etc. A 
throughput capacity may be full or specially selected for the 
given transportation only.

The easiest way to solve this problem is under condition 
that the network is flat, that is, when any two of its vertices 
can be connected by arc or link, without crossing other links 
at that [3, 4]. 

The problem of maximum flow is conveniently solved by 
the method of trees [5]. The solution can be extended for the 
problem with multiple sources and runoffs. This will solve 
the problems on the optimization of transport networks with 
and without restrictions in throughput capacity.

For this purpose, it is sufficient to build a fake source 
and connect it by links with the nodes of dispatch. The 
throughput capacity of these links will be the magnitude of 
possible dispatch of TV from each node. Similar actions can 
be performed at the nodes of arrival.

4. 2. Solving the shortest path problem 
Since the numbers assigned to the TN links may indicate 

distance, cost or time, it is equally easy to find the smallest 
distance, cost or time from one vertex to all others. Solving 
the transport problem in TN without limitations of through-
put capacity, when production is concentrated in one point 
while consumption – in all others, we find the shortest path 
[5]. Potentials in this case determine length of the path 
from the vertex with the potential equal to zero. There were 
proposed several algorithms for solving the problems on the 
shortest path. For the solution of the problem, it is not neces-
sary to choose the least total of the potential of the original 
vertex and evaluate all cost links, and the potentials are 
assigned to the vertices of network that are considered suc-
cessively. With such a network, one can create a tree of de-
cisions. A condition of optimality may be violated at certain 
links that do not belong to the tree. Repeated considerations 
of these vertices eliminate these violations, the tree is cor-
rected, as well as the potentials of the vertices. Despite the 
need for repeated considerations of the network, solving this 
problem is easier using computational technology. This al-
gorithm is the easiest way to compile albums of the shortest 
paths by criteria of distance (in the first place), cost or time.

While solving the problem of finding the shortest path, 
in addition to the value of the shortest distance from the 
selected vertex to all others, we receive the shortest route, 
namely, a list of nodes that it passes through. In this case, 
one can use the effect of imposition of flows on the networks. 
Possessing a matrix of correspondences of freight traffic 
from each vertex to all others, we build a tree of the shortest 
paths. Returning from each point of unloading by the short-
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est route, we summarize flows on the arcs of the network. 
Passing from a vertex to another vertex, we obtain density 
of traffic in the network without limitation of throughput ca-
pacity. This technique may be used to determine the actual 
density of traffic in the network in the static state.

When the network has a throughput capacity limitation, 
imposing flows on the network is a bit complicated. In this 
case, it is necessary to subtract each elementary flow from 
the existing throughput capacity of the arc, on which it is 
imposed. Once a throughput capacity of the arc is filled, it is 
removed from the network. New trees of the shortest paths 
are built and the imposition is assigned to another tree, etc., 
The plan built in this way is not optimal, but if there are no 
many arcs with the limitations of throughput capacity, then 
the potentials of the vertices one can correct manually.

4. 3. Improvement of the methods for reducing net-
work representation of the transport problem to the 
matrix form

The transport problem in the matrix and network forms 
of representation are equivalent by definition. However, 
sometimes it is more convenient to solve the network prob-
lem in the matrix form. There are two main ways to reduce a 
network problem to the matrix form [6, 7].

We propose to solve the network transport problems in 
the Excel environment. A directed graph is called a network, 
where the following are determined:

– node-source that has only the output arcs (denoted by 
letter s from “source”);

– node-runoff that has only the input arcs (denoted by 
letter t, from “terminal” – final destination);

– all other nodes – intermediate (transit), interconnect-
ed by arcs, which include the input and output arcs.

Directed arcs in the network are marked with arrows, 
non-directed arc is replaced with two arrows facing each 
other. Arc with arrow and a certain value of the appropriate 
parameter specifies universal concept – flow that moves 
from the initial node of the arc to the final node. The objects 
of flows in practical problems are the cargos, gas, passengers, 
vehicles, communication signals, fluids, etc.

Most of the optimizing problems in networks are the 
problems on flows in the networks (network flow problems) 
[7, 8]. For the network optimization problems, a fundamental 
principle is the principle of maintaining the flow at any node, 
particularly, the total of flows Fex(х) at the node output is 
equal to the total of flows at its input Fent(х) + potential 
p(x) of node (+ proposal/–demand), for example:

– node-source s: Fex(s =0+р(s)=Р, where P is the mag-
nitude of total flow along the network; potential p(s)=+P;

– node-runoff t: Fex(t)=Р+р(t)=0 because potential 
р(t)=–Р;

– intermediate node x: Fex(х)=Fent(х)±р(х).
A flow in each node of the network is function that satis-

fies linear equations and inequalities, where each arc (хi, хj) 
of the network is in line with one or more positive numbers. 
For example, magnitude d(хi, хj) in the problem on maxi-
mum flow is the throughput capacity of the arc (maximum 
amount of product that can be delivered with node хi to node 
хj along this arc per unit of time); in the transport problem, 
this is the distance or the cost of transportation. Hence the 
magnitude of flow along arc (хi, хj) does not exceed through-
put capacity of this arc d(хi, хj) if it is set.

The purpose of the study is the reduction of network 
representation of the transport problem to the matrix form 

that will allow us in future to solve the problems of cargo 
transportation optimization. Fig. 1 displays TN without li- 
mitation for the throughput capacity, Fig. 2 presents TN 
with limitations for the throughput capacity.

Fig. 1. Example of TN without limitation in the throughput 
capacity

Fig. 1, 2 display networks with 7 vertices and 11 links. 
Next to the corresponding vertex in parentheses is the num-
ber with a plus sign that indicates the volume of production 
while the volume of consumption is, respectively, denoted by 
the number with a minus sign. The cost of cargo transporta-
tion is written down in each arc, where the denominator of 
fraction demonstrates throughput capacity of separate links 
in the network. Fig. 1, 2 presents distributions of cargo flows 
and potentials.

Fig. 2. Example of TN with limitation in the throughput 
capacity

Production volume is equal to the throughput capacity 
of the arc, that is

=i ija d .     (1)

For the arcs whose throughput capacity is unlimited, in 
particular for arcs 3–7 and 7–3, it will correspond to the 
known big number. 

The volume of consumption for producing vertices of the 
network is determined by formula:

≠

= -∑j ij
j i

b d a(x).     (2)

For the vertices that consume cargo – by formula:

≠

= +∑j ij
j i

b d b(x).     (3)

For transit vertices, by formula:

≠

= ∑j ij
j i

b d .      (4)
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4. 4. Improvement of the methods of searching for the 
shortest distances in the transportation network

Often, when solving practical problems, there is a need 
to show the links between certain objects. Directed and 
non-directed graphs, which are referred to in the scientific 
literature as networks, are a natural model for the implemen-
tation of such links [7, 8].

Let us consider the problem of searching for the best route 
in terms of the smallest distance. This problem is naturally 
modeled using networks, that is, we have connected network 
G, in which positive weight of each edge is equal to its length. 
Length of the path in such a network is equal to the sum of 
lengths of the edges that form this path. In the terms of net-
works, the problem is reduced to finding the shortest path 
between two set vertices of graph G [7, 8].

The problems on the shortest paths belong to fundamen-
tal problems of combinatorial optimization, because many of 
them can be reduced to finding the shortest path in a net-
work. There are different types of problems on the shortest 
path: (1) between two given vertices, (2) between a given 
vertex and all others, (3) between each pair of vertices in the 
network, (4) between two given vertices to the paths that 
pass through one or more of the specified vertices; (5) the 
first, second, third, etc. shortest path in a network. Of all the 
described types, the most interesting for solving the network 
transport problems are the first three. In this case, the first 
two of them are realized using the Dijkstra’s algorithm vari-
eties [4], and the third one by using the Floyd algorithm [5].

Let us assume there is directed graph G=(V, Е) whose all 
arcs have positive marks (arcs costs). It is possible to repre-
sent graph G in the form of map of route flights from one city 
to another, where each vertex corresponds to a city, and arc 
v→w to the shuttle route from city v to city w (Fig. 3). The 
mark of arc v→w is the flight time from city v to city w. In 
this case, one can assume that in this case the model matches 
a non-directed graph because the marks of arcs v→w and 
w→v may coincide. But the flight time is mostly different in 
opposite directions between two cities. In addition, assump-
tion about coincidence of the marks of arcs v→w and w→v 
does not affect essentially the solution of the set problem. In 
this case, the solution of the problem on finding the shortest 
path will be minimum time of flights between different cities.

Fig. 3. Directed graph with marked arcs

Method of graphs. Our initial data for this method 
are the known specified directed graph G(V, E), shown 
in Fig. 3. In this case, the whole set of its vertices V is 
divided into two subsets. The first subset includes the 
cities of departures (m of cities), and the second subset 
includes the cities of airplanes landing (n of cities).

To resolve this problem, existing algorithms may not be 
applied because the Dijkstra’s algorithm is insufficient (ac-

cording to it, we find only one line from the matrix of the 
shortest distances), and the Floyd algorithm is excessive 
(it generates matrix of the shortest distances between any 
a/p, that is, m+n to m+n).

It is necessary to find the shortest routes for flights 
between the airports (a/p) of departures and landings, in-
cluding landings at intermediate a/p (they can be both a/p of 
departures and a/p of landings of airplanes). In other words, 
we must receive the matrix of the shortest distances between 
the a/p of departures and the a/p of landings (Table 1).

Table 1

Matrix of the shortest distances between departures and 
landings

Indicators A/p of landings

A/p of departures

No. 1 2 . . . n

1 C11 C12 . . . C1n

2 C21 C22 . . . C2n

. . . . . . . . . . . . . . .

m Cm1 Cm2 . . . Cmn

That is why we consider a fundamentally new algorithm, 
shown in the listing of program from a pseudo code, which is 
presented below and in which:

– array D is the resulting matrix of the shortest dis-
tances, and at every step element D[i, v] contains length of 
the current shortest path from vertex i to vertex v;

– array C specifies distances of the flights, where ele-
ment C[i, j] is equal to the cost of arc i→j. If arc i→j does 
not exist, then C[i, j] equals ∞  (infinity), that is, larger 
than any actual cost of arcs;

– element of array Р[i, v] contains the number of ver-
tex, preceding vertex v in the shortest path from vertex i;

– set S means the same as in the Dijkstra’s algorithm, 
namely a sequence of vertices of the “special” shortest path:

procedure New( var D: array[1 .. m, l .. (m + n)] of real;
 C: array[1 .. (m + n), l .. (m + n)] of real;
 P: array[1 .. m, l .. (m + n)] of integer);
begin
(1) for i := 1 to m do
 begin
 S := {i}; {selecting the next vertex from the subset of 

a/p of departures}
 for j := 1 to (m + n) do
 begin
 D[i, j] := C[i, j]; { D initialization }
 P[i, j] := i
 end
(2) for j := 1 to (m + n –1) do
 begin
 selecting such vertex w from set V\S that value D[i, w] 
 minimal;
 add w to set S;
 for each vertex v from set V\S do
 begin
 if (D[i, w) + C[w, v] < D[i, v] then 
 P[i, j] := w;
 D[i, v] := min(D[i, v], D([i, w] + C[w, v] );
 end
(3) end
(4) end
 end; { New }

10

1

5

20

50

100

70
2

3 4

10 60

30

 



Eastern-European Journal of Enterprise Technologies ISSN 1729-3774 6/3 ( 84 ) 2016

58

In the external loop (lines 1–4), we sequentially select 
all a/p of departures, and in the internal one (lines 2–3) 
we find the shortest routes from these a/p to all others, 
and if, along this route, the intermediate vertices are 
available, they are remembered. 

An analysis of the commonly known network algo-
rithms for constructing the shortest paths between the 
vertices of directed graph reveals that the proposed new 
method for constructing the shortest paths between 
specified sets of vertices in the network has the following 
advantages:

– it fully solves the set problem that could not funda-
mentally be solved using the Dijkstra’s algorithm, due to 
the lack of obtained results;

– it solves the problem of finding the shortest paths 
between the given infinities of vertices in the network 
more effectively, that is, easier and faster, compared to, 
though adequate but redundant, results, that we receive, 
using the Floyd algorithm.

The new algorithm for constructing the shortest paths 
between specified sets of vertices in the network was imple-
mented in the form of software package, which was verified 
at a large number of examples, thus proving its reliability and 
universality in the network TVs of large dimensions.

The matrix method. First, we compile adjacency matrix 
S of the known graph G=(V, Е) shown in Fig. 3. The lines 
of matrix S correspond to vertices Vi =(i 1,5),  columns –  
vertices Vj =(j 1,5) . Element Sij, which is located at the 
intersection of the i-th line and the j-th column, is assigned 
equal to the value that is set on the corresponding arc Eij 
between vertices Vi and Vj and 0 – in the absence of direct 
link between them (Table 2).

Table 2

Matrix S

No. 1 2 3 4 5

1 0 10 0 30 100

2 0 0 50 0 0

3 70 0 0 0 10

4 0 0 20 0 0

5 0 0 0 60 0

Next we determine matrix S2=S+S by the following rule 
of adding elements of matrices S:

 ( )
=

 
= + 

 
∑

n
2
ij ik kj

k 1

S min S S ,

provided

× ≠ = =ik kj((S S ) 0)(i 1,n ; j 1,n).    (5) 

Upon completion of the formation of all matrices Sm, 
we define matrix D – resulting matrix of the shortest 
paths between vertices Vi and Vj of graph G whose ele-
ments are calculated by the following formula:

{ }= ≠ 1 m 1 m
ij ij ij ij ijD min S S , at S S 0.    (6)

Described new method for finding the shortest paths 
on directed weighted graph by its functional capabilities 
is fully comparable to the Floyd method. It should also be 
noted that the new method described, similar to the Dijks-

tra’s algorithm with its various modifications and the Floyd 
algorithm, may also be used when processing the network 
models of representation of cargo transportation in TN of 
various structure [8, 9]. 

A new method for constructing the shortest paths be-
tween different sets of vertices on a graph, which we exam-
ined, is also implemented as a software package.

5. Results of research into improvement of the methods 
for finding the shortest distances in a transportation 

network

5. 1. Improvement of the method for maximum flow
Improvement of the method for maximum flow is conve-

niently resolved by the method of trees [10, 11]. Let us ex-
plore this method on the example of TN with a node-source 
and a node-runoff (Fig. 4). 

It is necessary to find maximum flow from point 1 to 
point 6.

Let the links of the network experience permissible two-
way motion and their throughput capacity in both directions 
of motion is the same. The entire network is divided arbitrarily 
into two trees. One is point 1 (source) and the other one is 
point 6 (runoff). In Fig. 6, a, one tree consists of four edges 
1–2, 1–3, 1–4 and 3–5; the second one is from one vertex 6.

Fig. 4. Transport network with node-source (1) and  
node-runoff (6)

First, let the flow between vertices 1 and 6 equals zero. 
Then the trees are connected by arc shown in dotted li- 
ne 5–6 (Fig. 5). In this regard, from vertex 1 to vertex 6, 
flow Q1 may pass, equal to the minimum throughput capaci-
ty of one of the arcs. In Fig. 5, there are 2 links with minimal 
throughput capacity – 3–5 and 5–6. Let the flow equal to  
1 pass along route 1–3–5–6. Next, one of the links (we se-
lect, for example, 5–6) is eliminated from the network, and 
we marking this action with a cross in Fig. 6.

The network is again split into two trees. The first one in-
cludes vertices 1, 2, 3, 4, 5, and the second one – vertex 6. Let 
us connect them by link 4–6 (Fig. 6), along which additional 
flow Q2 may pass. Its size, due to the minimal throughput 
capacity of links of route 1–4–6, is equal to 2. Let this flow 
pass and then exclude in subsequent transformations link 
4–6 from the network.

By continuing the same transformations over TN links, 
we receive at the last step 7 in Fig. 7 the maximum flow in 
the network, equal to 8. The crossed out links determine 
minimum section in the network that separates source (ver-
tex 1) and runoff (vertex 6) and whose throughput capacity 
equals the maximum flow. 

The solution may be applied to the problem with multiple 
sources and runoffs. For this purpose, it is sufficient to build 
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a fake source and connect it by links with nodes of dispatch. 
A throughput capacity of these links will be the magnitude 
of possible dispatch of a vehicle from each node. Similar ac-
tions can be performed with the nodes of arrival.

Fig. 5. Step 1 of finding maximum flow in TN by  
the tree method 

Fig. 6. Step 2 of finding maximum flow in TN by  
the tree method

Fig. 7. Step 7 of finding maximum flow in TN by  
the tree method

5. 2. Improvement of the methods for reducing a 
network representation of the transport problem to the 
matrix form

The first way is the improvement of the method Orde-
na [10, 11], shown in Table 3. Every vertex of the network 
shown in Fig. 1 is assigned with a line and a column. Thus, in 
our case, the table consists of seven lines and seven columns. 
It should always be square. In the cells of the main diagonal 
in Table 3, the cost of transportation is equal to 0, because 
the output and, at the same time, input arcs to the same ver-
tex cannot exist.

For the vertices, interconnected by a link, in the cells 
of the table at the crossing of the corresponding lines and 
columns is the cost of transportation by this link. Other cells 
are blocked by the numbers that are larger than the costs of 
transportation (in Table 3, it is 99). 

Table 3

Reducing a network transport problem to the matrix form by 
method Ordena

No. 1 2 3 4 5 6 7 ∑

1
0 4 6 3

99 99 99 16
9 2 1 4

2 4
0

99 2
3

99 99 9
7 2

3 6 99
0

4 99 12 10 9
9

4 3 2 4
0

99
3

99 11
5 6

5 99 3 99 99
0

5 99 9
9

6 99 99 12 3 5
0 5

9
3 6

7 99 99 10 99 99 5
0

9
9

∑ 9 9 10 9 11 9 15 72

For convenience of the calculation, the value of production 
(consumption) volume at each vertex is added with any posi-
tive number. In Table 3, it is number 9. Thus, the volume of pro-
duction in vertex 1 will equal 7+9=16; in transit vertex 2 – 9, 
similar to the volume of consumption; the volume of consump-
tion in vertex 3 will equal 1+9=10, etc. Then the transport 
problem is solved by any known tabular method, for example, 
the method of potentials. In Table 3, values of the optimal plan 
of cargo transportation are in italics, in Fig. 1 – arrows.

The second way is improving the Wagner method [11]. It 
is more convenient for the networks with throughput capac-
ity limitations. Such a network is depicted in Fig. 2, where 
an optimal plan of transportation is also presented. Table 4 
demonstrates reducing this network to the matrix form.

Table 4

Reducing a network problem to the matrix form by  
the Wagner method

No. 1 2 3 4 5 6 7 ∑

1–2 0
4

99 99 99 99 99 1
1

2–1 4
0

99 99 99 99 99 1
1

1–3
0

99
6

99 99 99 99 2
1 1

… … … … … … … … …

6–5 99 99 99 99 5
0

99 2
2

6–7 99 99 99 99 99
0 5

7
1 6

7–6 99 99 99 99 99 5
0

7
7

∑ 1 9 107 17 7 18 113 72

Arcs here are in lines, the vertices are in columns. In the 
upper-left corner of the table cell is the cost of transportation 
along the arc. The cells that contain no digits are supposed 
to be blocked by the numbers that are larger than the costs 
of transportation (in Table 4, it is 99). 
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Production volume is equal to the arc’s throughput ca-
pacity (1). For the arcs whose throughput capacity is unlim-
ited, in particular, arcs 3–7 and 7–3, it corresponds (in our 
example) to a number of 100.

Consumption volumes for the production vertices of the 
network are determined by formula (2), for the vertices that 
consume the goods – by formula (3), and for the transit ver-
tices – by formula (4). 

Thus, for vertex 1, the volume of consumption is equal 
to 1+5+2–7=1, for vertex 7 – 7+100+6=113, and for ver-
tex 2 – 1+5+3=9.

Table 4 also shows the final result of solving the prob-
lem – the optimal plan for the transportation of cargo, 
which is represented in the form of italicized values that 
correspond to the flows in Fig. 2.

5. 3. Improvement of the methods for finding the short- 
est distances in the transportation network

The method of graphs. Tables 5–7 present matrices C, D 
and P, respectively, obtained by using a new algorithm for 
directed graph, shown in Fig. 3, which mean the following:

– array C assigns distances of flights;
– array D is the resulting matrix of the shortest dis-

tances;
– element of array Р[i, v] contains the number of the 

vertex, preceding vertex v along the shortest path from 
vertex i.

Table 5

Matrix С

Indicators A/p of departures and landings

A/p of departures 
and landings

No. 1 2 3 4 5

1 ∞ 10 ∞ 30 100

2 ∞ ∞ 50 ∞ ∞
3 70 ∞ ∞ ∞ 10

4 ∞ ∞ 20 ∞ ∞
5 ∞ ∞ ∞ 60 ∞

Table 6

Matrix D

Indicators A/p of departures and landings

A/p of departures 

No. 1 2 3 4 5

1 ∞ 10 50 30 60

2 120 ∞ 50 120 60

Table 7

Matrix P

Indicators A/p of departures and landings

A/p of departures

No. 1 2 3 4 5

1 ∞ 10 ∞ 30 100

2 ∞ ∞ 50 ∞ ∞

Using data from matrix P, it is possible to build the 
routes of flights from each a/p of departures (1 and 2) to 
each of the a/p of landings (3, 4 and 5):

The matrix method. Using formula (5), we determine 
matrices S2=S+S, S3=S+S2 and so on, until the last resulting 
matrix does not contain any zero (Tables 8, 9).

Table 8

Matrix S2

No. 1 2 3 4 5

1 0 0 50 160 0

2 120 0 0 0 60

3 0 80 0 70 170

4 90 0 0 0 30

5 0 0 80 0 0

Table 9

Matrix S10

No. 1 2 3 4 5

1 430 310 520 300 370

2 620 470 320 460 560

3 340 580 430 570 280

4 590 440 290 430 530

5 490 340 580 330 430

Elements of matrix m
ijS  determine length of the short-

est path between vertices Vi and Vj that contains m links 
(arcs). 

In the process of forming matrices Sm, we obtain matrix 
P whose elements are the quantities of arcs that make up 
the shortest paths between vertices Vi and Vj of graph G 
(Table 10).

Table 10

Matrix P

No. 1 2 3 4 5

1 3 1 2 1 3

2 2 3 1 3 2

3 1 2 3 2 1

4 2 3 1 3 2

5 3 4 2 1 3

Upon completion of the formation of all matrices Sm, 
we define matrix D (Table 11) – the resulting matrix of the 
shortest paths between vertices Vi and Vj of graph G, whose 
elements are calculated by formula (6).

Table 11

Matrix D

No. 1 2 3 4 5

1 120 10 50 30 60

2 120 130 50 120 60

3 70 80 90 70 10

4 90 100 20 90 30

5 150 160 80 60 90

In the end, by analyzing the contents of Tables  
S…Sm, P and D, we build routes for the shortest paths 
between all vertices Vi and Vj of graph G.

→ → = 5030 20
1 4 3 → = 5050

2 3

→ = 3030
1 4 → → → = 12050 10 60

2 3 5 4

→ → → = 6030 20 10
1 4 3 5 → → = 6050 10

2 3 5  
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6. Discussion of results of the research into the impact of 
indicators of transportation network on the solution of 

the problems on maximum flow and the shortest paths in 
transportation network

Improvement of the method for maximum flow is con-
veniently resolved by the method of trees. The solution can 
be applied to the problem with multiple sources and runoffs. 
This will solve problems for the optimization of transporta-
tion networks with and without limitations of their through-
put capacity. 

For this purpose, it is sufficient to build a fake source and 
connect it by links with the nodes of dispatch. A throughput 
capacity of these links will be the magnitude of possible 
dispatch from each node. Similarly, these actions can be per-
formed with the nodes of arrival.

The improvement of the method for the shortest paths is 
resolved by using the modified Dijkstra’s algorithm. Solving 
the problem on finding the shortest path, in addition to the 
value of the shortest distance from a given vertex to all others, 
we obtain the shortest route, in particular, a list of vertices 
that it passes. It might be used for imposing flows on the net-
works. By having matrix of correspondences of freight traffic 
from each vertex to all others, we build a tree of the shortest 
paths and then, returning from each point of unloading by the 
shortest route, we summarize flows at the arcs of the network. 
Going from one vertex to another vertex, we receive density 
of traffic in the network without limitation in the throughput 
capacity. This technique might be used to determine actual 
density of traffic in the network in the static state.

When a network has throughput capacity limitations, 
imposing a flow on the network is a bit complicated. In this 
case, it is necessary to subtract each elementary flow from 
the existing throughput capacity of the arc, on which it is 
imposed. Once the capacity of the arc is filled, it is removed 
from the network, new trees of the shortest paths are built 
and the imposition is applied to another tree, and so on. The 
plan built in this way is not optimal, but, if there are no many 

arcs with limitations in throughput capacity, then, after a 
machine imposes flows on the network, it is possible to de-
termine bandwidth capabilities and potentials of the vertices 
and adjust the flows manually.

The improvement of the methods for reducing a network 
representation of the transport problem to the matrix form 
is carried out by the more effective modified Dijkstra’s 
method that has algorithmic and software provision of its 
implementation. 

Studies we conducted were performed within the frame-
work of implementation of applied work by requests from 
motor transport enterprises of the Association of Interna-
tional Automobile Carriers of Ukraine. The results might be 
used to optimize the routes of transportation of cargoes and 
the optimization of carriers’ loading. Further studies may 
be extended in the direction of optimization of multimodal 
transportation of goods by different types of transport.

7. Conclusions

1. It is proposed to improve the method for maximum 
flow in the transportation network through the use of the 
method of trees. The solution can be applied to a problem 
with multiple sources and runoffs. This will solve the prob-
lems on the optimization of transportation networks with 
and without limitations in throughput capacity.

2. We proposed an improved method for building the 
shortest paths in a transport network between different 
sets of vertices on the graph, namely, sets of providers 
and consumers. The method is implemented in the form 
of software package that might be used for the transport 
problems of large dimensionality.

3. We defined a conversion mechanism for the network 
models of the process of cargo transportation in the matrix 
model, which are set in the form of directed graphs and 
which allow the transportation of cargo through intermedi-
ate transportation nodes.
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