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1. Introduction

Sensors of vector quantities are an important link in 
the collection of primary data for their further processing. 
In order to increase sensitivity of the sensors and, thus, the 
accuracy of measurement, as well as to reduce their dimen-
sions and, therefore, to increase density of mapping of the 
measured vector quantity, new constructive solutions for the 
sensors of vector quantities are being developed [1].

However, improving some indicators often entails the 
worsening of others. As a result, there are several sensors 
of vector quantities of a new generation whose field char-
acteristics depend on all three coordinates of the measured 
vector quantity, their squares and pairwise products [2]. 
Determining coordinates of the sought vector comes down 
in this case to solving a system of equations that describe 
surfaces of the second order (quadrics). Such a complicated 
procedure of processing measurement results leads to the 
idea of building intelligent sensors of vector quantities, 
that is, for the convenience of using sensors with non-linear 
characteristics, they are added with a “brain”, capable of per-
forming the required calculations [3–5]. A microcontroller 
that is inferior to the computer in clock frequency and the 
volume of permanent and operative memory often performs 
a role of the “brain”. Accordingly, the software of intelligent 
sensors, as well as of any embedded systems, should meet the 
requirements of economic usage of memory of programs and 
data, as well of reduced computational complexity.

Since analytical solutions can be obtained only for the 
narrow classes of systems of equations, search for the solu-
tions of equations system implies localization of the regions 
where they are located, and their further refinement. Classic 

search algorithms for the solutions of systems of equations 
of quadrics are not applicable for the implementation in the 
software of intelligent sensors due to their sensitivity to ac-
curacy of preserving results of the intermediate calculations. 
The existing algorithms, focused on the realization in the 
microprogramming software, are not sufficiently elaborated, 
and this fact necessitates conducting research aimed at im-
proving the performance indicators of these algorithms, first 
of all, accuracy, computational complexity and the volumes 
of applied permanent and operative memory.

2. Literature review and problem statement

One of the most powerful approaches to the solution of 
polynomial equations and their systems is the application 
of a Gröbner basis. In 1965 the algorithm was proposed 
that makes it possible in only a finite number of steps to 
build a Gröbner basis of the ideal [6]. The advantage of the 
Buchberger’s algorithm is universality – the algorithm is 
applicable for any system of polynomial equations. However, 
the Buchberger’s algorithm is oriented towards symbolic 
computations and it is quite slow for large systems, which 
limits its applicability in practice. A number of scientists 
conducted studies of alternative, accelerated ways of con-
structing a Gröbner basis. In 1883 an alternative algorithm 
for constructing a Gröbner basis was proposed, faster than 
Buchberger’s algorithm. Subsequently, the concept of this 
algorithm formed the basis of the F4 algorithm (1994), 
which made it possible to avoid redundant intermediate 
calculations and was subsequently implemented in Maple. 
In 2002 the F5 algorithm was proposed, which is considered 
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to be one of the fastest algorithms for constructing a Gröbner 
basis [7]. The F5 algorithm uses the sparse matrices, which, 
as is known, take up a lot of memory. The F5С algorithm, 
accelerated modification of the F5 algorithm, is proposed 
in [8]. Further improvement of the algorithm is achieved in 
[9]. In [10] proposed G2V – the next modification of F5. In 
parallel with the new algorithms, there were also conducted 
parallel computations of the classic Buchberger’s algorithm. 
An analysis of recent publications dealing with the devel-
opment of applying a Gröbner basis for solving polynomial 
equations and their systems indicates that there are studies 
in the direction of reducing the computational complexity 
of algorithms for its construction, however, without losing 
the universality of these algorithms. However, the newest 
modifications of algorithms for constructing a Gröbner basis 
are still not applicable in microprogramming software due 
to their complexity, requirements to the accuracy of saving 
intermediate results of transformations and required mem-
ory. On the other hand, the application of these universal 
algorithms is excessive when it is necessary to solve only a 
system of three equations of surfaces of the second order. 
Thus, the implementation of the algorithms for construct-
ing a Gröbner basis is contrary to the general principles of 
minimal consumption of resources in the software of the 
embedded systems.

A search for and mapping of the intersection of surfaces 
of the second order is a task that has gained importance 
with the development of computer graphics and computer 
aided design systems. In the latter, a capacity to process 
curves and surfaces appeared in the 1960s; however, the 
techniques embedded in them lacked either accuracy or 
acceptable time of realization. A number of publications are 
devoted to the problem of accurate calculation of the curves 
of intersection of surfaces and the points of intersection of 
curves. Mathematical basis was designed for computing the 
ordering of arbitrary quadrics (in particular, degenerated) in 
a three-dimensional space. To do this, the problem is reduced 
to the lesser dimension, that is, to the two-dimensional case, 
which is solved by cylindrical algebraic decomposition. An 
implementation of the latter requires a lot of computing in 
itself and there has recently been the work carried out to 
simplify this process, in particular, by means of a Gröbner 
basis [11]. In [12] solved the problem of efficient and accu-
rate parametric representation of the curve of intersection 
of two quadrics. These results led to further development in 
[13], in which an effective, accurate and complete algorithm 
was proposed for constructing the graph of contiguity of 
ordering quadrics.

However, an analysis of existing publications in the field 
of computational geometry reveals that the attention of sci-
entists is focused on the development of symbol-numerical 
algorithms that are inexpedient to use in micro program-
ming software. 

There are libraries, optimized for different architectures 
of microcontrollers that implement numerical methods for 
solving arbitrary equations, regardless of their nature. As 
is known, the solution of nonlinear equations by numerical 
methods include separation of roots (localization of solu-
tions) and their refinement. [14] examined influence of the 
localization of potential solutions of a system of nonlinear 
algebraic equations on the success of refinement of these 
solutions by library functions, applicable for microcontrol-
lers of the ARM architecture, that implement the known 
numerical methods (as a rule, this is a method of dichotomy, 

the Newton’s method and the method of chords). All library 
functions require an approximate solution, which in the form 
of numbers or intervals is passed to them as parameters. In 
the course of study of the specified library functions, it was 
found that their work is unstable if, as the parameter, an 
incorrectly formed interval was transmitted (not narrow 
enough or the one that contains several solutions of the 
equation) or not sufficiently approximated solution. A mul-
ti-dimensional Newton’s method allows specification of the 
approximate solution of the system of nonlinear equations; 
however, for any initial vector of initial approximations, the 
method is able to find only one solution, therefore, in order 
to search for all the solutions, it is necessary to know their 
number and regions, in which they are located. All this testi-
fies to the importance of proper localization of the solutions. 
In an ideal case, as a result of the stage of localization of 
solutions of equations system, there has to be found as many 
regions as there are solutions.

However, at present there are no ready libraries for 
the localization of solutions of polynomial equations and 
their systems. Thus, a relevant task is the development of 
algorithms and their implementations for the localization of 
solutions of polynomial equations and their systems, which 
would meet the requirements to the minimum resource con-
sumption. Moreover, in parallel with the research into devel-
opment of universal algorithms, there is a need for research 
aimed at developing quick and simple algorithms that would 
allow us at minimum expenses to solve a certain narrow class 
of problems.

[15] presents the algorithm for the separation of roots of 
polynomial functions of one variable and microprogramming 
software for the ARM family of controllers. [16] described a 
method for the localization of solutions of systems of equa-
tions of the form

+ + + + + + =2 2 2
11 22 33 14 24 34 44a x a y a z a x a y a z a 0  

using Sylvester’s matrix calculation. [14] presented an algo-
rithm for the localization of polynomial equations and their 
systems, which uses interval arithmetic. The basic idea of 
the algorithm is as follows. All the equations in the system 
are reduced to the form so that their right parts are equal to 
0. All the region of the search for solutions of the system of 
equations is divided into contiguous subregions in the form 
of the same size rectangular parallelepipeds

+£ £i i 1x x x ,  +£ £j j 1y y y ,  +£ £k k 1z z z .

Instead of the point values of x, y and z, each of the 
functions that represent the left parts of the equation, is 
substituted with intervals +  i i 1x ,x , +

  j j 1y ,y , +  k k 1z ,z . As a 
result, we obtain three intervals. If the interval contains 0,  
then there is a point in the examined region, in which func-
tion takes a 0 value, that is, this point is a solution of the 
corresponding equation in the system. Otherwise, there is no 
such a point in this region. Thus, if all the calculated inter-
vals include 0, we consider this region to potentially contain 
solutions. Otherwise, the region is neglected. The algorithm 
is simple to implement and is guaranteed to find all regions 
containing solutions, but its shortcoming is that part of the 
found regions is a “false alarm”, that is, it actually contains 
no points of quadrics intersection. Therefore, there is a need 
to search for alternative algorithms that would provide a 
higher relevancy of results.
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3. The aim and tasks of the study

The aim of this work is to improve the algorithm for 
the localization of solutions of the systems of equations of 
quadrics for intelligent sensors of vector quantities based 
on microcontrollers of the ARM Cortex-M architecture by 
relevance of the found regions with potential solutions. If 
the speed, permanent and operative memory usage of the 
algorithm, improved by this indicator, worsens, then such 
worsening should be compensated for by the increase in rel-
evance of the found regions.

To achieve the set aim, the following tasks were formu-
lated:

– to analyze and systematize mathematical apparatus 
that can serve the foundation for improving the algorithm of 
localization of the points of quadrics intersection, to develop 
and implement a new algorithm for a microcontroller based 
on the ARM Cortex-M4 architecture;

– to conduct a comparison of implementations of the 
existing and improved algorithms for the localization of the 
points of quadrics intersection by relevance of the regions, 
found by these algorithms, with potential points of intersec-
tion, as well as the time of execution, the amount of code and 
the usage of operative memory.

4. 1. Mathematical apparatus for the localization of 
points of quadrics intersection 

Let an intelligent sensor of vector quantity contains 
three detectors whose field characteristics are described by 
quadric equations:

+ + + + +
+ + + + − =

2 2 2
11 12 13 11 12

13 11 12 13 1

a x a y a z b xy b xz

b yz c x c y c z S 0,

+ + + + +
+ + + + − =

2 2 2
21 22 23 21 22

23 21 22 23 2

a x a y a z b xy b xz

b yz c x c y c z S 0,

+ + + + +
+ + + + − =

2 2 2
31 32 33 31 32

33 31 32 33 3

a x a y a z b xy b xz

b yz c x c y c z S 0, 	 (1)

where x, y and z are the projections of the measured vector 
quantity on the vertical axis, horizontal axis and applicate 
of certain Cartesian coordinate system, bound to the sensor 
body, aij, bij, cij ( =i 1,3,  =j 1,3) are the known coefficients 
of the field characteristics of detectors, Si are the measured 
signals of each of the three detectors. 

Let us denote through f1, f2 and f3 those functions that 
are the left parts of equations (1):

= + + + +
+ + + + + −

2 2 2
1 11 12 13 11

12 13 11 12 13 1

f a x a y a z b xy

b xz b yz c x c y c z S ,

= + + + +
+ + + + + −

2 2 2
2 21 22 23 21

22 23 21 22 23 2

f a x a y a z b xy

b xz b yz c x c y c z S ,

= + + + +
+ + + + + −

2 2 2
3 31 32 33 31

32 33 31 32 33 3

f a x a y a z b xy

b xz b yz c x c y c z S . 	 (2)

Let us consider in detail the behavior of function f1 with-
in the rectangular parallelepiped £ £a bx x x ,  £ £a by y y , 

£ £a bz z z .  If at different tops of the parallelepiped the 
function takes different signs, then, due to its continuity, 
there will be such a point within the specified rectangular 

parallelepiped in which function takes the value 0. But, if, at 
all tops of the parallelepiped, the function either positive or 
negative, we cannot conclude that in the given region there is 
no such a point where the function becomes zero, additional 
tests are required.

As is known, function acquires the maximum (and mini-
mum) value in a limited region either in the points of extremum 
or on the border. Thus, it is necessary to find the maximum 
value on the border and compare it with the values in the points 
of extremum inside the region if there are such points there. 

A border of parallelepiped is six of its edges. On each of 
these edges, one of the variables of function f1 is fixed, that 
is, we receive 6 functions from two variables that take the  
value 0 in the critical points:

+ + + + +
+ + + + − =

2 2 2
11 12 13 a 11 12 a

13 a 11 12 13 a 1

a x a y a z b xy b xz

b yz c x c y c z S 0,

+ + + + +
+ + + + − =

2 2 2
11 12 13 b 11 12 b

13 b 11 12 13 b 1

a x a y a z b xy b xz

b yz c x c y c z S 0,

+ + + + +
+ + + + − =

2 2 2
11 12 a 13 11 a 12

13 a 11 12 a 13 1

a x a y a z b xy b xz

b y z c x c y c z S 0,

+ + + + +
+ + + + − =

2 2 2
11 12 b 13 11 b 12

13 b 11 12 b 13 1

a x a y a z b xy b xz

b y z c x c y c z S 0, 

+ + + + +
+ + + + − =

2 2 2
11 a 12 13 11 a 12 a

13 11 a 12 13 1

a x a y a z b x y b x z

b yz c x c y c z S 0,

+ + + + +
+ + + + − =

2 2 2
11 b 12 13 11 b 12 b

13 11 b 12 13 1

a x a y a z b x y b x z

b yz c x c y c z S 0. 	 (3)

Each of the six functions that represent the left side of 
equations (3), in turn, takes maximum value either in critical 
points (if they are in the region, limited by the appropriate 
rectangle) or at the borders. 

The limits for functions that represent the left side of 
equations (3) are the edges of the rectangular parallelepiped 

£ £a bx x x ,  £ £a by y y ,  £ £a bz z z ::

+ + + + +

+ + + + − =

2 2 2
11 12 i 13 j 11 i 12 j

13 i j 11 12 i 13 j 1

a x a y a z b xy b xz

b y z c x c y c z S 0,

+ + + + +

+ + + + − =

2 2 2
11 k 12 13 j 11 k 12 k j

13 j 11 k 12 13 j 1

a x a y a z b x y b x z

b yz c x c y c z S 0,
 

+ + + + +
+ + + + − =

2 2 2
11 k 12 i 13 11 k i 12 k

13 i 11 k 12 i 13 1

a x a y a z b x y b x z

b y z c x c y c z S 0, 	 (4)

where { }Îk a bx x ,x ,  { }Îi a by y ,y ,  { }Îj a bz z ,z  (that is, for 
each equation there are four combinations of pairs of fixed 
variables). 

Each of the functions that represent the left part of equa-
tions (4) takes the maximum (and minimum) value either 
in critical points (if they exist on the corresponding face of 
the examined parallelepipeds) or at the ends of the section. 
The ends of the section are the tops of the parallelepiped rep-
resented by all points ( )k i jx ,y ,z ,  { }Îk a bx x ,x ,  { }Îi a by y ,y ,  

{ }Îj a bz z ,z .
To find critical points of each of the functions that repre-

sent the left part of equations (3), we find partial derivatives 
and equal them to zero. For example, for the first of these 
functions:
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+ + + + +
+ + + + − =

2 2 2
11 12 13 a 11 12 a

13 a 11 12 13 a 1

a x a y a z b xy b xz

b yz c x c y c z S 0

critical points are determined from the system of linear al-
gebraic equations:

+ + + =11 11 12 a 112a x b y b z c 0,

+ + + =11 12 13 a 11b x 2a y b z c 0. 			   (5)

Critical points of the rest of the functions that represent 
the left side of equations (3) are determined in a similar way. 

To find the extremum points of functions that represent 
the left side of equations (4), we will take their derivatives 
and equal them to zero:

+ + + =11 11 i 12 j 112a x b y b z c 0,

+ + + =12 11 k 13 j 122a y b x b z c 0,

+ + + =13 12 k 13 i 132a z b x b y c 0. 		  (6)

Thus, each of the functions that represent the left side 
of equations (4) may have not more than one critical point 
(if it belongs to this examined face) and critical points are 
determined by formulas:

( )+ +
= − 11 i 12 j 11

11

b y b z c
x ,

2a

( )+ +
= − 11 k 13 j 12

12

b x b z c
y ,

2a

( )+ +
= − 12 k 13 i 13

13

b x b y c
z .

2a
		  (7)

Thus, if it is necessary to verify the existence of points 
of quadrics intersection in a certain region that has the 
shape of rectangular parallelepiped Î  a bx x ,x ,  Î  a by y ,y , 

Î  a bz z ,z ,  then it is sufficient to determine the signs of 
function (2) at all tops of the parallelepiped, functions that 
represent the left side of equations (4), in points (7), that 
is, on the edges of the parallelepiped, and functions that 
represent the left side of equations (3), in points that are 
the solutions of systems of linear algebraic equations of the 
form (5). If for any of the functions of group (2) we detect 
the change in sign (for example, the function is negative in 
all tops ( )k i jx ,y ,z , { }Îk a bx x ,x , { }Îi a by y ,y , { }Îj a bz z ,z , but  
it takes negative value in some of the points on the face of 
parallelepiped or its edge), then in the examined region 
there is a point, in which this function takes the value 0. If 
the change in signs is detected for each of the functions (2), 
there is a probability that in the examined region there is 
a point of quadrics intersection (1). It is not excluded that 
within this region all quadrics intersect in pairs, but not in 
one point, which is why the answer to the question about the 
existence of intersection point can be obtained only after 
the refinement of solutions by one of the known methods or 
when xb–xa, yb–ya and zb–za are so small that in the middle 
of ranges   a bx ,x ,    a by ,y ,    a bz ,z  can be considered with 
permissible error to be a solution of the system of equations 
(1). On the other hand, the absence of change in signs of at 
least one of the functions (2) indicates that in the examined 

region there are no points of quadrics intersection whatso-
ever (1).

4. 2. Procedure for determining the regions of quadrics 
intersection points

As in [14], the whole region D, in which we will search for 
solutions of the system of equations (2), we split in the same 
size rectangular parallelepipeds: take L of equidistant points 
on the Ox axis, M – on the Oy axis and N – on the Oz axis.

In contrast to the proposed by [14] approach to the local-
ization of solutions of system of three equations of surfaces 
of the second order that is based on the interval arithmetic 
and implies the allocation of memory to save the calculated 
limits of intervals of the quadrics (1), ranges of variables 

+  k k 1x ,x ,  +  i i 1y ,y ,  +
  j j 1z ,z and the intermediate results of 

computations, the approach presented in this paper, allows 
us to save only data on the signs of functions (2) in each of 
the node points and functions that represent the left parts 
of equations (3) and (4), in those their critical points, de-
termined from (5) and (7), which belong to the edges and 
edges of the current examined rectangular parallelepiped. 
To keep the sign, one bit is sufficient (hereinafter 1 encodes a 
negative value, 0 – nonnegative) that allows us to design and 
implement localization algorithm for the points of quadrics 
intersection using variables of the unsigned integer type in-
stead of variables of the valid type. In this case, in the desig-
nated variables every bit will be employed as opposed to the 
situation when in a variable part of bits is engaged with data, 
and the remaining bits are complementing zeros.

To keep the signs of function f1, in node points we will 
create array F1_Nodes the size ×M N  of the unsigned integer 
type T that contains L bits. Each element F1_Nodes[i][j] of 
this array will represent the values of function f1 in points, in  
which y=yi, z=zj, and x takes on value xk ( =k 1,L), and the 
bit with number k (in the LSB order) will correspond to 
the sign of function f1 in point ( )k i jx ,y ,z .  For example, if 
M=N=8 and T is the type that is represented by 8 bits, 
then F1_Nodes[i][j]=10010011 will mean that function f1 
in points ( )1 i jx ,y ,z ,  ( )4 i jx ,y ,z ,  ( )7 i jx ,y ,z ,  ( )8 i jx ,y ,z  takes 
negative values and in points ( )2 i jx ,y ,z , ( )3 i jx ,y ,z , ( )5 i jx ,y ,z , 
( )6 i jx ,y ,z  – nonnegative.

To save data on the signs of functions f2 and f3 in the 
same node points, we need two other arrays (F2_Nodes[i][j] 
and F3_Nodes[i][j]) of the same size and the same type. All 
three of these arrays will use × ×3L M N / 8  bytes.

To track the existence of critical points and signs of de-
rivative of each of three functions (2), let us create 6 arrays: 
F 1_PosExtremums, F1_NegExtremums, F2_PosExtremums, 
F2_NegExtremums, F3_PosExtremums and F3_NegExtrem-
ums. For each combination of x and y, x and z, and y and 
z, we find those common values of z, y and x, respective-
ly, for which equations (4) are converted to equalities. 
Next, we determine to which ranges +

  j j 1z ,z  ( = −j 1,N 1)  
( = −i 1,M 1) +  k k 1x ,x  ( = −k 1,L 1) the found values of z, 
y and x, respectively, belong. It is enough to remember 
only the beginning of each of the specified ranges (be-
cause the length of each range is known). Each face (and 
critical point on it) may belong to four or two contiguous 
parallelepipeds or to only one parallelepiped. In the bit 
with number K of the element of array F1_PosExtrem-
ums[i][j] we will store 1, if at least on one of the 12 edges 
of parallelepiped, one of the tops of which is the point 
( )k i jx ,y ,z  and this particular top is closest to the origin 
of coordinates, there is a critical point where the function 



Eastern-European Journal of Enterprise Technologies ISSN 1729-3774	 6/4 ( 84 ) 2016

40

that represents the left side of the first equation from the 
system of equations (4) takes a negative value. The pur-
pose of array F1_NegExtremums is similar, the difference 
being that in it we save 1 in the case when function takes 
negative value in at least one critical point on the edges 
of parallelepiped with the top ( )k i jx ,y ,z .  Zeros in the bits 
of elements of these arrays will encode a lack of critical 
points in the corresponding parallelepipeds. Four other 
arrays are needed to save similar data on critical points of 
functions f2 and f3 on the edges of parallelepipeds.

Thus, when we find critical point ( )i jx,y ,z ,  +Î  k k 1x x ,x  
of the function that represents the left side of the first equa-
tion of the system of equations (4), one should perform the 
following steps:

– assign the sign of function to it;
– in array F1_NegExtremums or F1_PosExtremums 

(depending on the sign of function), to assign the following 
bits to 1;

– bit with number k of the element with indexes i and j;
– bit with number k of the element with indexes (i–1) 

and j, if condition i>0 and i<M–1 is valid;
– bit with number k of the element with indexes i and 

(j–1), if condition j>0 and j<N–1 is valid;
– bit with number k of the element with indexes (i–1) 

and (j–1), if conditions (i>0 and i<M–1) and (j>0 and 
j<N–1) are valid.

For critical points that are located on the edges, parallel 
to the Oy axis and the Oz axis, the approach remains the 
same, only the analyzed indices change. 

Next, one should determine the sign of maximum/min-
imum value of each of functions (2) on the edges of paral-
lelepipeds. For this purpose, we will find the solution to the 
system of linear algebraic equations of the form (5) with two 
unknowns for each of functions (2) and each value of xk, yi 
and zj ( =k 1,L,  =i 1,M,  =j 1,N). Unlike critical points on 
the edges, for critical points on the sides it is necessary to 
determine the ranges, to which a pair of the found values 
belongs – y and z for planes x=xk, x and z for planes y=yi  
and x and y for planes z=zj.

Each side may belong only to one or two contiguous 
parallelepipeds. That is why, by analogy with critical points 
(7), we attribute the found critical points to the parallelepi-
peds, in each of which the top with the least coordinates is 
one of the node points. To keep the signs of functions on the 
sides of parallelepipeds, it is possible to use existing arrays, 
determined earlier for the signs of functions in critical 
points (7). If a critical point belongs to the parallelepiped 
for which point xk, yi and zj ( = −k 1,L 1,  = −i 1,M 1,  = −j 1,N 1)  
is the top with the least coordinates, namely, its edges, per-
pendicular to the Ox axis, then the following steps should 
be taken:

– determine the sign of function in critical point;
– into one of the arrays (ХХ_PosExtremums or ХХ_

NegExtremums), depending on the sign of function, assign 
the bits to 1; 

– bit with number k of the element with indexes i and j;
– bit with number k of the element with indexes (i–1) 

and j, if condition i>0 and i<M–1 is valid.
For the planes, perpendicular to the Oy and Oz axes, the 

approach remains the same (only the indices change). 
The total amount of memory for arrays F1_PosExtrem-

ums, F1_NegExtremums, F2_PosExtremums, F2_NegEx-
tremums, F3_PosExtremums and F3_NegExtremums is 

× ×6L M N / 8  bytes.

When all arrays are formed, it is possible to start to ana-
lyze the signs of functions in all node and critical points. To 
save the results, it is expedient to create array RootsLocalized 
of the same dimensions as that of each of the array defined 
previously. Each element of this array is determined as fol-
lows: we compare the signs of function f1 in every top of par-
allelepiped ( )k i jx ,y ,z  with the signs of the same function in 
the neighbouring tops ( )+k 1 i jx ,y ,z ,  ( )+k i 1 jx ,y ,z , ( )+k i j 1x ,y ,z ,  
( )+ +k 1 i 1 jx ,y ,z , ( )+ +k 1 i j 1x ,y ,z , ( )+ +k i 1 j 1x ,y ,z , ( )+ + +k 1 i 1 j 1x ,y ,z . This 
condition takes the following form:

V1 = (F1_Nodes[i][j] XOR F1_Nodes[i][j]<<1) OR 
(F1_Nodes[i][j] XOR F1_Nodes[i+1][j]) OR

(F1_Nodes[i][j] XOR F1_Nodes[i][j+1]) OR (F1_
Nodes[i][j] XOR F1_Nodes[i+1][j<<1) OR

(F1_Nodes[i][j] XOR F1_Nodes[i][j+1]<<1) OR (F1_
Nodes[i][j] XOR F1_Nodes[i+1][j+1])

(F1_Nodes[i][j] XOR F1_Nodes[i+1][j+1]<<1). 	 (8)

If among eight tops there are those where the function 
takes on different signs, then the result of this expression 
will be 1, otherwise – 0. The result of comparison (NOT 
(F1_Nodes[i][j])) AND F1_NegExtremums[i][j] will be 1 of 
only the zero bits in the element of array F1_Nodes[i][j], that 
is, of those from L described by this element tops, in which the 
function has an integral sign (and, accordingly, the change 
in signs is found). The result of comparison (F1_Nodes[i][j] 
AND F1_PosExtremums[i][j]) will be 1 only for those bits 
F1_Nodes[i][j] that represent the tops where the function 
takes negative values, while unity in the corresponding bits 
of array F1_PosExtremums[i][j] means a negative sign of the 
function. A general condition of change in the sign of function 
in the tops or critical points will take the form:

V1 = V1 OR ((NOT(F1_Nodes[i][j])) 
AND F1_NegExtremums[i][j]) OR
(F1_Nodes[i][j]) AND F1_PosExtremums[i][j]). 	 (9)

It is important that every bit in array F1_Nodes sets 
only one top of parallelepiped, not all eight, since if among 
eight tops there are tops with a different sign, value of the 
expression will be 1; otherwise – all tops have the same sign 
and it does not matter, the sign of which of them we compare. 

Similarly, we form values V2 and V3. Parallelepiped can 
contain points of quadrics intersection (1), if 

V1 AND V2 AND V3				    (10)

is valid. 

4. 3. Algorithm for the localization of the intersection 
points of three quadrics

1. Define closed region D, in which we will look for the 
solutions. In a general case, the base for selection can be the 
knowledge about the measurement range. In this case, D will 
have the shape of cube because each coordinate of the vector 
quantity can intersect any values from zero to the module of 
searched vector quantity (but, without loss of generality, we 
will deal with a rectangular parallelepiped). For example, if 
module of the measured quantity may be in the range from 
Vmin to Vmax, then we will search for each of the coordinates 
in the region from – Vmin to Vmax. If, among the preset 
quadrics, there are limited surfaces (e. g., ellipsoids), region 
D can be determined by determining to which of 17 types 
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of quadrics each of the quadrics (1) belongs, and reducing 
quadric equation to canonical form.

2. Set L, M and N points, by which the Ox, Oy and Oz 
coordinate axes are split, respectively. For convenience of 
work with bits and arrays of elements of the scalar types, 
each of these numbers should not exceed the number of 
bits in the unsigned integer type of data (for reasons out-
lined above).

3. Create arrays F1_Nodes, F2_Nodes, F3_Nodes, F1_
PosExtremums, F1_NegExtremums, F2_PosExtremums, 
F2_NegExtremums, F3_PosExtremums, F3_NegExtrem-
ums and RootsLocalized and initialize them with zeros.

4. For each combination of values xk, yi and zj ( =k 1,L, 
=i 1,M,  =j 1,N), using the three cycles, it is necessary to:

4. 1. find value of each of functions (2) and assign bit 
with number k with indices i and j to the appropriate array 
(F1_Nodes, F2_Nodes or F3_Nodes) if the function is neg-
ative in the point, otherwise – 0;

4. 2. calculate by formulas (7) such values of x, y and z for 
each of three functions so that in points ( )i jx,y ,z ,  ( )k jx ,y,z  
and ( )k ix ,y ,z  equations (4) are converted to equalities, as 
well as to compute the signs of functions (2) in these points;

4. 3. find such values k1, i1, j1 so that +Î  k1 k1 1x x ,x , 

+Î  i1 i1 1y y ,y  and +
 Î j1 j1 1z z ,z ,  that is, determine to which 

edges of parallelepipeds the points of extremum, calculated 
in step 4. 2, belong;

4. 4. set to 1 bit with number k1 of the element with in-
dices i and j, bit with number k of the element with indices 
i1 and j and bit with number k of the element with indices i 
and j1 in the appropriate array (one of F1_PosExtremums,  
F1_NegExtremums, F2_PosExtremums, F2_NegExtrem-
ums, F3_PosExtremums and F3_NegExtremums, depend-
ing on the analyzed function and its sign);

4. 5. set the bits for all the “neighbors” (parallelepipeds, 
which also contain the found edges); there may be 9, 3 or 0, 
in accordance with the above stated considerations;

4. 6. find such combinations of values y1 and z1, x1 and 
z2, x2 and y2 for each function so that in points ( )k 1 1x ,y ,z , 
( )1 i 2x ,y ,z  and ( )2 2 jx ,y ,z  equations (5) are converted to 
equalities;

4. 7. find such values i1 and j1, k1 and j2 і k2 and i2 so 
that +Î  1 i1 i1 1y y ,y  and +

 Î 1 j1 j1 1z z ,z ,  +Î  1 k1 k1 1x x ,x  and 

+
 Î 2 j2 j2 1z z ,z ,  +Î  2 k2 k2 1x x ,x  and +Î  2 i2 i2 1y y ,y .  Find the 

signs of functions (2) in the points found in step 4. 6 and set 
unities in the corresponding bits of arrays to track the signs 
of functions in the points of extremum by the technique, 
similar to the one described in step 4. 4;

4. 8. set the bits for parallelepipeds with the sides defined 
in step 4. 7 (there may be 3 or 0 of such parallelepipeds).

5. Form element RootsLocalized[i][j] using (8)–(10) for 
each combination of indices i and j.

6. Compute critical points of functions (2), identify 
intervals to which they belong, and complement generated 
array RootsLocalized with data on the signs of functions (2) 
in critical points.

7. The algorithm is finalized.

5. Results of comparative analysis of the proposed 
algorithm to the algorithm based on interval arithmetic 

To determine the appropriateness of the proposed al-
gorithm, we conducted a series of numerical experiments 

of implementations of two algorithms – the one proposed 
in this work and an algorithm based on interval arithme-
tic [14].

The algorithm was implemented in the language C in 
the Keil uVision 5 environment; its verification was per-
formed at the STM32F407VG microcontroller (as part of 
the evaluation board STM32F4Discovery), built on the base 
of the ARM Cortex-M4 architecture. The algorithm based 
on interval arithmetic [14] is realized in the same language 
using the same compiler and the same microcontroller, which 
means a possibility of correct comparison of these two algo-
rithms.

A comparison of implementations of the algorithms was 
carried out by the following attributes: share of the regions 
that were found as a result of work of the algorithm but they 
did not actually contain the points of quadrics intersection, 
time of execution, volume of machine code and the use of 
operative memory.

As the test sets, we took 48 systems of three quadric 
equations whose points of intersection are known. Manual 
testing revealed that none of the solutions of the systems of 
equations was “overlooked” – for each of the test systems 
of quadric equations among the results of the algorithm’s 
work there were regions (rectangular parallelepipeds), 
which contained the points of quadrics intersection. How-
ever, similar to the case with the algorithm described in 
[14], some of the found regions happened to be a “false 
alarm” – in fact, they did not contain solutions for the test 
systems of equations.

Initially we tested the simplest variants for the sys-
tems of equations, for which it was easy to find analytical 
solutions – systems of canonical equations of quadrics 
(without non-linear carry and rotation of the axes). In such 
equations, part of coefficients in the variables, their squares 
and pairwise products are equal to zero, which allowed us 
to test the branches of code associated with dividing by 
zero. A comparison of the regions found in the course of 
work of the two algorithms was performed at the similar 
test sets with the same node points (otherwise, results of 
the comparison would not be considered valid). Results are 
grouped in Table 1.

Next, rotation of axes and linear carry were applied to 
the same systems of equations. 

Since each quadric equation in the system underwent 
the same conversion, the number of intersection points 
remained – only their coordinates in the “old” coordinate 
system changed. For each of 12 test systems of equations 
represented in Table 1, the rotation was performed at three 
different combinations of angles. Test results appeared to be 
about the same as in Table 1, with possible differences not 
exceeding a few unities.

Asymptotic estimation of complexity of both algorithms 
in the notation “O large” is the same, but the nature of in-
structions is different, that is, the set of machine instructions 
is substantially different, thus the actual execution time may 
vary significantly. 

An evaluation of execution time of implementations of 
two algorithms at the same number of node points (that is, 
at the identical sets of numbers L, M and N) was performed 
by practical way only – using measurements of time of reali-
zation of each of the algorithms (at the same clock frequency) 
at the same test sets. The algorithm proposed in this paper 
proved to be slower on average by 12 %.
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Table 1

Numbers of regions of the points of quadrics intersection, localized by the implementations of two algorithms

No. System of quadrics equations Solutions 

Quantity of regions found 
using the algorithm of interval 

arithmetic

Quantity of regions found 
using the proposed algorithm 

=L 8  
=M 8  

=N 8  
(343 regions)

=L 16  
=M 16  

=N 16  
(3375 regions)

=L 8  
=M 8  

=N 8  
(343 regions)

=L 16  
=M 16  

=N 16  
(3375 regions)

1

 + − =


+ − =
 + + − =

2 2

2 2

2 2 2

x y 1 0

x z 1 0

x y z 1 0

( )−1,0,0 ,
 ( )1,0,0 42 56 8 26

2

 + + − =


+ + − =
− + + − =

2 2 2

2 2 2

2 2 2

x y z 2 0

x 0.05y z 2 0

x y 2z 4 0

( )−0,0, 2 ,
 
( )0,0, 2 40 58 24 32

3

 + + − =


+ + − =
− + + + =

2 2 2

2 2 2

2 2 2

x y z 2 0

x 0.05y z 2 0

x y 2z 4 0

( )− 2,0,0 ,
 
( )2,0,0 40 58 24 32

4

 + + − =


+ + − =
 − + − =

2 2 2

2 2 2

2 2 2

x y z 2 0

x 0.05y z 2 0

x 2y z 2 0

a set of all points ( )x, 0, z ,   
so that + =2 2x y 2

142 182 64 64

5

 + + − =


+ + − =
 + + + =

2 2 2

2 2 2

2 2

x y z 2 0

x 0.05y z 2 0

x z 4x 3 0

 
− − 

 
5 7

,0, ,
4 4

 
− 

 
5 7

,0,
4 4

36 52 24 32

6

 + + − =


+ + − =
 + + − =

2 2 2

2 2 2

2 2 2

x 0.05y z 2 0

x y z 2 0

x z y 1 0

no intersection points 28 46 8 8

7

 + + − =


+ + − =
 + + − =

2 2 2

2 2 2

2 2 2

x 0.05y z 4 0

x y z 4 0

x y z 2x 0

( )2,0,0 42 50 24 32

8

 + + − =


+ + − =
 + + + =

2 2 2

2 2 2

2 2 2

x 0.05y z 4 0

x y z 4 0

x y z 2x 0

( )−2,0,0 42 50 24 32

9

 + − =


+ + − − =
 + − + =

2 2

2 2 2

2 2

x y 2z 0

x y z 2z 4 0

x z 4z 3 0

( )− −1, 3,2 , ( )−1, 3,2 ,

( )−1, 3,2 ,
 
( )1, 3,2

46 54 24 24

10

 + − =


+ + − − =
 + − + =

2 2

2 2 2

2 2

x y 2z 0

x y z 2z 4 0

y z 4z 4 0

( )−2,0,2 ,
 ( )2,0,2 44 54 24 24

11

 + − =


+ + − − =
 + − + =

2 2

2 2 2

2 2

x y 2z 0

x y z 2z 4 0

y z 4z 2 0

( )− −2, 2,2 ,
 
( )−2, 2,2 ,

 

( )− 2, 2,2 ,
 
( )2, 2,2

46 58 24 24

12

 + + − =


− + =
 + − =

2 2 2

2 2 2

2 2 2

x y z 4 0

x y z 0

x y z 0

( )− −0, 2, 2 ,
 
( )−0, 2, 2 ,

 

( )−0, 2, 2 ,
 
( )0, 2, 2

46 58 16 16
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The volume of machine code and engaged operative 
memory was estimated by data taken from map-file gener-
ated by the Keil uVision environment after compiling and 
linking. The amount of permanent memory, used by the algo-
rithm proposed in this work, appeared to be 20 % larger than 
the analogous indicator for the algorithm based on interval 
arithmetic. Instead, the volume of the engaged operative 
memory was 15 % less.

Appropriateness of the use of the algorithm based on 
interval arithmetic as an intermediate link in the process 
of solving the systems of polynomial equations has already 
been proven in [14]. Test sets for verification of the algo-
rithm proposed in this work included the majority of the 
systems of quadrics equations, by which the algorithm in 
[14] was tested, and the test was carried out particularly 
in the same region of the search for solutions and in the 
same node points. For this reason, the role of the proposed 
algorithm in refining the solutions was not examined in 
this work.

6. Discussion of results of comparative analysis of the 
proposed algorithm to the algorithm based on interval 

arithmetic 

Results of testing implementations of the two com-
pared algorithms allow us to state that the new algorithm 
achieved a reduction in the quantity of irrelevant regions 
with potential points of intersection of three quadrics by 
approximately 2.2 times. It should be noted, however, that 
the number of regions depends on ranges   a bx ,x ,   a by ,y , 
  a bz ,z , in this case, the narrowing of ranges does not  
always lead to an increase (or, conversely, decrease) in the 
number of regions. In addition, the number of “parasite” 
regions appeared to be different for different test sets. A de-
pendence of the “parasite” regions on the system of quadrics 
equations is explained by the principle of the algorithm’s 
work – it is guaranteed to “reject” only those regions in 
which at least one pair of quadrics has no intersection points. 
That is, all regions containing the points of intersection of 
each pair of quadrics definitely belong to the list of regions 
that could potentially contain the sought solutions for the 
systems of quadrics equations. However, it is quite possible 
that in a certain region all quadrics intersect in pairs, but not 
in one common point. The fact that the algorithm based on 
interval arithmetic yields a larger percentage of “parasite” 
regions is consistent with the results of applying interval 
arithmetic to the estimation of errors of measurement – they 
are always overstated and indicate the “worst case”. Be-
havior of the algorithms was studied for the test cases with 
one, two, four and multitude of intersection points of three 
quadrics, as well as in the absence of intersection points. 
Limitation of the test sets allows us to speak only about ap-
proximate percentages of winning in the relevance of results 

of the proposed algorithm relative to the algorithm based on 
interval arithmetic.

However, conducted numerical experiments allow us to 
affirm that in case of necessity to solve a system of quadrics 
equations, the proposed algorithm is more expedient than 
its analogs for the implementation in micro programming 
software, taking into account constraints of their resources. 
Obtained results are focused primarily on the application in 
intelligent sensors of vector quantities; however, they can 
be extended to other problems that comprise equations of 
surfaces of the second order and their systems. Moreover, 
the same technique can be applied to any of the functions of 
three variables, the finding of partial derivatives for which 
has the same complexity as for the functions that represent 
the left parts of equations (1). If the computation of partial 
derivatives requires more resources (for example, in the case 
of equations of the highest degree) or there is no an analyt-
ical method for finding critical points of functions that rep-
resent the left parts of the solved system of equations, then it 
requires additional study.

As noted above, a new algorithm requires more of perma-
nent memory and runs longer. Presented numerical indices 
are not absolute since they apply only to a single model of 
microcontroller. Generalized results may be obtained the-
oretically if we consider the number of instructions in the 
algorithm and the period of implementation of each of the 
instructions for a particular architecture of microcontroller. 

Further direction of research is the reduction in compu-
tational complexity of the proposed algorithm. A potential 
way to achieve this result is a breakdown of the region into 
intervals of different step, in contrast to the division into 
intervals of equal length.

7. Conclusions

1. We performed an analysis and systematization of 
mathematical apparatus for the localization of intersection 
points of quadrics, which allowed us to design a new algo-
rithm for the localization of quadrics intersection points 
that is based on the properties of continuous differentiable 
functions in closed regions and verification of the signs of 
functions in the node and critical points. The developed al-
gorithm was implemented for a microcontroller of the ARM 
Cortex-M4 architecture.

2. Conducted comparative analysis of the new algorithm 
to an algorithm-analogue allows us to assert that the new 
algorithm provides for higher relevance results, approx-
imately by 2.2 times, of the found regions with potential 
points of intersection at the execution longer by 12 %. The 
new algorithm requires 20 % more of permanent memory, 
but 15 % less of operative memory. Thus, the studies we con-
ducted have proved the expediency of applying the proposed 
algorithm.
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