
Eastern-European Journal of Enterprise Technologies ISSN 1729-3774	 6/4 (84) 2016

36

 T. Marusenkova, 2016

1. Introduction

Sensors of vector quantities are an important link in
the collection of primary data for their further processing.
In order to increase sensitivity of the sensors and, thus, the
accuracy of measurement, as well as to reduce their dimen-
sions and, therefore, to increase density of mapping of the
measured vector quantity, new constructive solutions for the
sensors of vector quantities are being developed [1].

However, improving some indicators often entails the
worsening of others. As a result, there are several sensors
of vector quantities of a new generation whose field char-
acteristics depend on all three coordinates of the measured
vector quantity, their squares and pairwise products [2].
Determining coordinates of the sought vector comes down
in this case to solving a system of equations that describe
surfaces of the second order (quadrics). Such a complicated
procedure of processing measurement results leads to the
idea of building intelligent sensors of vector quantities,
that is, for the convenience of using sensors with non-linear
characteristics, they are added with a “brain”, capable of per-
forming the required calculations [3–5]. A microcontroller
that is inferior to the computer in clock frequency and the
volume of permanent and operative memory often performs
a role of the “brain”. Accordingly, the software of intelligent
sensors, as well as of any embedded systems, should meet the
requirements of economic usage of memory of programs and
data, as well of reduced computational complexity.

Since analytical solutions can be obtained only for the
narrow classes of systems of equations, search for the solu-
tions of equations system implies localization of the regions
where they are located, and their further refinement. Classic

search algorithms for the solutions of systems of equations
of quadrics are not applicable for the implementation in the
software of intelligent sensors due to their sensitivity to ac-
curacy of preserving results of the intermediate calculations.
The existing algorithms, focused on the realization in the
microprogramming software, are not sufficiently elaborated,
and this fact necessitates conducting research aimed at im-
proving the performance indicators of these algorithms, first
of all, accuracy, computational complexity and the volumes
of applied permanent and operative memory.

2. Literature review and problem statement

One of the most powerful approaches to the solution of
polynomial equations and their systems is the application
of a Gröbner basis. In 1965 the algorithm was proposed
that makes it possible in only a finite number of steps to
build a Gröbner basis of the ideal [6]. The advantage of the
Buchberger’s algorithm is universality – the algorithm is
applicable for any system of polynomial equations. However,
the Buchberger’s algorithm is oriented towards symbolic
computations and it is quite slow for large systems, which
limits its applicability in practice. A number of scientists
conducted studies of alternative, accelerated ways of con-
structing a Gröbner basis. In 1883 an alternative algorithm
for constructing a Gröbner basis was proposed, faster than
Buchberger’s algorithm. Subsequently, the concept of this
algorithm formed the basis of the F4 algorithm (1994),
which made it possible to avoid redundant intermediate
calculations and was subsequently implemented in Maple.
In 2002 the F5 algorithm was proposed, which is considered

DEVELOPING
AN ALGORITHM

WITH IMPROVED
RELEVANCE FOR

THE LOCALIZATION
OF VECTOR’S

COORDINATES
FOR INTELLIGENT

SENSORS
T . M a r u s e n k o v a

PhD, Senior lecturer
Department of software

Lviv Polytechnic National University
S. Bandery str., 12, Lviv, Ukraine, 79013

Е-mail: tetyana.marus@gmail.com

Досліджено проблему недостатнього розвитку алго-
ритмів, реалізованих у мікропрограмному забезпеченні
для пошуку точок перетину квадрик. Розроблено, реа-
лізовано та досліджено алгоритм локалізації точок
перетину квадрик на основі властивостей неперервних
диференційовних функцій у замкнутій області. Новим
алгоритмом досягається вища релевантність результа-
тів, ніж його єдиним аналогом. Результати призначені
для інтелектуальних сенсорів векторних величин

Ключові слова: інтелектуальні сенсори векторних
величин, локалізація точок перетину квадрик, мікро-
контролер ARM

Исследована проблема недостаточного развития алго-
ритмов, применимых для реализации в микропрограмм-
ном обеспечении для поиска точек пересечения квадрик.
Разработан, реализован и изучен алгоритм локализа-
ции точек пересечения квадрик на основе свойств непре-
рывных дифференцируемых функций в замкнутой обла-
сти. Новым алгоритмом достигается релевантность
результатов выше, чем у его единственного аналога.
Результаты предназначены для интеллектуальных сен-
соров

Ключевые слова: интеллектуальные сенсоры вектор-
ных величин, локализация точек пересечения квадрик,
микроконтроллер ARM

UDC 004.4, 519.688
DOI: 10.15587/1729-4061.2016.84889

Mathematics and cybernetics – applied aspects

37

to be one of the fastest algorithms for constructing a Gröbner
basis [7]. The F5 algorithm uses the sparse matrices, which,
as is known, take up a lot of memory. The F5С algorithm,
accelerated modification of the F5 algorithm, is proposed
in [8]. Further improvement of the algorithm is achieved in
[9]. In [10] proposed G2V – the next modification of F5. In
parallel with the new algorithms, there were also conducted
parallel computations of the classic Buchberger’s algorithm.
An analysis of recent publications dealing with the devel-
opment of applying a Gröbner basis for solving polynomial
equations and their systems indicates that there are studies
in the direction of reducing the computational complexity
of algorithms for its construction, however, without losing
the universality of these algorithms. However, the newest
modifications of algorithms for constructing a Gröbner basis
are still not applicable in microprogramming software due
to their complexity, requirements to the accuracy of saving
intermediate results of transformations and required mem-
ory. On the other hand, the application of these universal
algorithms is excessive when it is necessary to solve only a
system of three equations of surfaces of the second order.
Thus, the implementation of the algorithms for construct-
ing a Gröbner basis is contrary to the general principles of
minimal consumption of resources in the software of the
embedded systems.

A search for and mapping of the intersection of surfaces
of the second order is a task that has gained importance
with the development of computer graphics and computer
aided design systems. In the latter, a capacity to process
curves and surfaces appeared in the 1960s; however, the
techniques embedded in them lacked either accuracy or
acceptable time of realization. A number of publications are
devoted to the problem of accurate calculation of the curves
of intersection of surfaces and the points of intersection of
curves. Mathematical basis was designed for computing the
ordering of arbitrary quadrics (in particular, degenerated) in
a three-dimensional space. To do this, the problem is reduced
to the lesser dimension, that is, to the two-dimensional case,
which is solved by cylindrical algebraic decomposition. An
implementation of the latter requires a lot of computing in
itself and there has recently been the work carried out to
simplify this process, in particular, by means of a Gröbner
basis [11]. In [12] solved the problem of efficient and accu-
rate parametric representation of the curve of intersection
of two quadrics. These results led to further development in
[13], in which an effective, accurate and complete algorithm
was proposed for constructing the graph of contiguity of
ordering quadrics.

However, an analysis of existing publications in the field
of computational geometry reveals that the attention of sci-
entists is focused on the development of symbol-numerical
algorithms that are inexpedient to use in micro program-
ming software.

There are libraries, optimized for different architectures
of microcontrollers that implement numerical methods for
solving arbitrary equations, regardless of their nature. As
is known, the solution of nonlinear equations by numerical
methods include separation of roots (localization of solu-
tions) and their refinement. [14] examined influence of the
localization of potential solutions of a system of nonlinear
algebraic equations on the success of refinement of these
solutions by library functions, applicable for microcontrol-
lers of the ARM architecture, that implement the known
numerical methods (as a rule, this is a method of dichotomy,

the Newton’s method and the method of chords). All library
functions require an approximate solution, which in the form
of numbers or intervals is passed to them as parameters. In
the course of study of the specified library functions, it was
found that their work is unstable if, as the parameter, an
incorrectly formed interval was transmitted (not narrow
enough or the one that contains several solutions of the
equation) or not sufficiently approximated solution. A mul-
ti-dimensional Newton’s method allows specification of the
approximate solution of the system of nonlinear equations;
however, for any initial vector of initial approximations, the
method is able to find only one solution, therefore, in order
to search for all the solutions, it is necessary to know their
number and regions, in which they are located. All this testi-
fies to the importance of proper localization of the solutions.
In an ideal case, as a result of the stage of localization of
solutions of equations system, there has to be found as many
regions as there are solutions.

However, at present there are no ready libraries for
the localization of solutions of polynomial equations and
their systems. Thus, a relevant task is the development of
algorithms and their implementations for the localization of
solutions of polynomial equations and their systems, which
would meet the requirements to the minimum resource con-
sumption. Moreover, in parallel with the research into devel-
opment of universal algorithms, there is a need for research
aimed at developing quick and simple algorithms that would
allow us at minimum expenses to solve a certain narrow class
of problems.

[15] presents the algorithm for the separation of roots of
polynomial functions of one variable and microprogramming
software for the ARM family of controllers. [16] described a
method for the localization of solutions of systems of equa-
tions of the form

+ + + + + + =2 2 2
11 22 33 14 24 34 44a x a y a z a x a y a z a 0

using Sylvester’s matrix calculation. [14] presented an algo-
rithm for the localization of polynomial equations and their
systems, which uses interval arithmetic. The basic idea of
the algorithm is as follows. All the equations in the system
are reduced to the form so that their right parts are equal to
0. All the region of the search for solutions of the system of
equations is divided into contiguous subregions in the form
of the same size rectangular parallelepipeds

+£ £i i 1x x x , +£ £j j 1y y y , +£ £k k 1z z z .

Instead of the point values of x, y and z, each of the
functions that represent the left parts of the equation, is
substituted with intervals +  i i 1x ,x , +

  j j 1y ,y , +  k k 1z ,z . As a
result, we obtain three intervals. If the interval contains 0,
then there is a point in the examined region, in which func-
tion takes a 0 value, that is, this point is a solution of the
corresponding equation in the system. Otherwise, there is no
such a point in this region. Thus, if all the calculated inter-
vals include 0, we consider this region to potentially contain
solutions. Otherwise, the region is neglected. The algorithm
is simple to implement and is guaranteed to find all regions
containing solutions, but its shortcoming is that part of the
found regions is a “false alarm”, that is, it actually contains
no points of quadrics intersection. Therefore, there is a need
to search for alternative algorithms that would provide a
higher relevancy of results.

Eastern-European Journal of Enterprise Technologies ISSN 1729-3774	 6/4 (84) 2016

38

3. The aim and tasks of the study

The aim of this work is to improve the algorithm for
the localization of solutions of the systems of equations of
quadrics for intelligent sensors of vector quantities based
on microcontrollers of the ARM Cortex-M architecture by
relevance of the found regions with potential solutions. If
the speed, permanent and operative memory usage of the
algorithm, improved by this indicator, worsens, then such
worsening should be compensated for by the increase in rel-
evance of the found regions.

To achieve the set aim, the following tasks were formu-
lated:

– to analyze and systematize mathematical apparatus
that can serve the foundation for improving the algorithm of
localization of the points of quadrics intersection, to develop
and implement a new algorithm for a microcontroller based
on the ARM Cortex-M4 architecture;

– to conduct a comparison of implementations of the
existing and improved algorithms for the localization of the
points of quadrics intersection by relevance of the regions,
found by these algorithms, with potential points of intersec-
tion, as well as the time of execution, the amount of code and
the usage of operative memory.

4. 1. Mathematical apparatus for the localization of
points of quadrics intersection

Let an intelligent sensor of vector quantity contains
three detectors whose field characteristics are described by
quadric equations:

+ + + + +
+ + + + − =

2 2 2
11 12 13 11 12

13 11 12 13 1

a x a y a z b xy b xz

b yz c x c y c z S 0,

+ + + + +
+ + + + − =

2 2 2
21 22 23 21 22

23 21 22 23 2

a x a y a z b xy b xz

b yz c x c y c z S 0,

+ + + + +
+ + + + − =

2 2 2
31 32 33 31 32

33 31 32 33 3

a x a y a z b xy b xz

b yz c x c y c z S 0, 	 (1)

where x, y and z are the projections of the measured vector
quantity on the vertical axis, horizontal axis and applicate
of certain Cartesian coordinate system, bound to the sensor
body, aij, bij, cij (=i 1,3, =j 1,3) are the known coefficients
of the field characteristics of detectors, Si are the measured
signals of each of the three detectors.

Let us denote through f1, f2 and f3 those functions that
are the left parts of equations (1):

= + + + +
+ + + + + −

2 2 2
1 11 12 13 11

12 13 11 12 13 1

f a x a y a z b xy

b xz b yz c x c y c z S ,

= + + + +
+ + + + + −

2 2 2
2 21 22 23 21

22 23 21 22 23 2

f a x a y a z b xy

b xz b yz c x c y c z S ,

= + + + +
+ + + + + −

2 2 2
3 31 32 33 31

32 33 31 32 33 3

f a x a y a z b xy

b xz b yz c x c y c z S . 	 (2)

Let us consider in detail the behavior of function f1 with-
in the rectangular parallelepiped £ £a bx x x , £ £a by y y ,

£ £a bz z z . If at different tops of the parallelepiped the
function takes different signs, then, due to its continuity,
there will be such a point within the specified rectangular

parallelepiped in which function takes the value 0. But, if, at
all tops of the parallelepiped, the function either positive or
negative, we cannot conclude that in the given region there is
no such a point where the function becomes zero, additional
tests are required.

As is known, function acquires the maximum (and mini-
mum) value in a limited region either in the points of extremum
or on the border. Thus, it is necessary to find the maximum
value on the border and compare it with the values in the points
of extremum inside the region if there are such points there.

A border of parallelepiped is six of its edges. On each of
these edges, one of the variables of function f1 is fixed, that
is, we receive 6 functions from two variables that take the
value 0 in the critical points:

+ + + + +
+ + + + − =

2 2 2
11 12 13 a 11 12 a

13 a 11 12 13 a 1

a x a y a z b xy b xz

b yz c x c y c z S 0,

+ + + + +
+ + + + − =

2 2 2
11 12 13 b 11 12 b

13 b 11 12 13 b 1

a x a y a z b xy b xz

b yz c x c y c z S 0,

+ + + + +
+ + + + − =

2 2 2
11 12 a 13 11 a 12

13 a 11 12 a 13 1

a x a y a z b xy b xz

b y z c x c y c z S 0,

+ + + + +
+ + + + − =

2 2 2
11 12 b 13 11 b 12

13 b 11 12 b 13 1

a x a y a z b xy b xz

b y z c x c y c z S 0,

+ + + + +
+ + + + − =

2 2 2
11 a 12 13 11 a 12 a

13 11 a 12 13 1

a x a y a z b x y b x z

b yz c x c y c z S 0,

+ + + + +
+ + + + − =

2 2 2
11 b 12 13 11 b 12 b

13 11 b 12 13 1

a x a y a z b x y b x z

b yz c x c y c z S 0. 	 (3)

Each of the six functions that represent the left side of
equations (3), in turn, takes maximum value either in critical
points (if they are in the region, limited by the appropriate
rectangle) or at the borders.

The limits for functions that represent the left side of
equations (3) are the edges of the rectangular parallelepiped

£ £a bx x x , £ £a by y y , £ £a bz z z ::

+ + + + +

+ + + + − =

2 2 2
11 12 i 13 j 11 i 12 j

13 i j 11 12 i 13 j 1

a x a y a z b xy b xz

b y z c x c y c z S 0,

+ + + + +

+ + + + − =

2 2 2
11 k 12 13 j 11 k 12 k j

13 j 11 k 12 13 j 1

a x a y a z b x y b x z

b yz c x c y c z S 0,

+ + + + +
+ + + + − =

2 2 2
11 k 12 i 13 11 k i 12 k

13 i 11 k 12 i 13 1

a x a y a z b x y b x z

b y z c x c y c z S 0, 	 (4)

where { }Îk a bx x ,x , { }Îi a by y ,y , { }Îj a bz z ,z (that is, for
each equation there are four combinations of pairs of fixed
variables).

Each of the functions that represent the left part of equa-
tions (4) takes the maximum (and minimum) value either
in critical points (if they exist on the corresponding face of
the examined parallelepipeds) or at the ends of the section.
The ends of the section are the tops of the parallelepiped rep-
resented by all points ()k i jx ,y ,z , { }Îk a bx x ,x , { }Îi a by y ,y ,

{ }Îj a bz z ,z .
To find critical points of each of the functions that repre-

sent the left part of equations (3), we find partial derivatives
and equal them to zero. For example, for the first of these
functions:

Mathematics and cybernetics – applied aspects

39

+ + + + +
+ + + + − =

2 2 2
11 12 13 a 11 12 a

13 a 11 12 13 a 1

a x a y a z b xy b xz

b yz c x c y c z S 0

critical points are determined from the system of linear al-
gebraic equations:

+ + + =11 11 12 a 112a x b y b z c 0,

+ + + =11 12 13 a 11b x 2a y b z c 0. 			 (5)

Critical points of the rest of the functions that represent
the left side of equations (3) are determined in a similar way.

To find the extremum points of functions that represent
the left side of equations (4), we will take their derivatives
and equal them to zero:

+ + + =11 11 i 12 j 112a x b y b z c 0,

+ + + =12 11 k 13 j 122a y b x b z c 0,

+ + + =13 12 k 13 i 132a z b x b y c 0. 		 (6)

Thus, each of the functions that represent the left side
of equations (4) may have not more than one critical point
(if it belongs to this examined face) and critical points are
determined by formulas:

()+ +
= − 11 i 12 j 11

11

b y b z c
x ,

2a

()+ +
= − 11 k 13 j 12

12

b x b z c
y ,

2a

()+ +
= − 12 k 13 i 13

13

b x b y c
z .

2a
		 (7)

Thus, if it is necessary to verify the existence of points
of quadrics intersection in a certain region that has the
shape of rectangular parallelepiped Î  a bx x ,x , Î  a by y ,y ,

Î  a bz z ,z , then it is sufficient to determine the signs of
function (2) at all tops of the parallelepiped, functions that
represent the left side of equations (4), in points (7), that
is, on the edges of the parallelepiped, and functions that
represent the left side of equations (3), in points that are
the solutions of systems of linear algebraic equations of the
form (5). If for any of the functions of group (2) we detect
the change in sign (for example, the function is negative in
all tops ()k i jx ,y ,z , { }Îk a bx x ,x , { }Îi a by y ,y , { }Îj a bz z ,z , but
it takes negative value in some of the points on the face of
parallelepiped or its edge), then in the examined region
there is a point, in which this function takes the value 0. If
the change in signs is detected for each of the functions (2),
there is a probability that in the examined region there is
a point of quadrics intersection (1). It is not excluded that
within this region all quadrics intersect in pairs, but not in
one point, which is why the answer to the question about the
existence of intersection point can be obtained only after
the refinement of solutions by one of the known methods or
when xb–xa, yb–ya and zb–za are so small that in the middle
of ranges   a bx ,x ,   a by ,y ,   a bz ,z can be considered with
permissible error to be a solution of the system of equations
(1). On the other hand, the absence of change in signs of at
least one of the functions (2) indicates that in the examined

region there are no points of quadrics intersection whatso-
ever (1).

4. 2. Procedure for determining the regions of quadrics
intersection points

As in [14], the whole region D, in which we will search for
solutions of the system of equations (2), we split in the same
size rectangular parallelepipeds: take L of equidistant points
on the Ox axis, M – on the Oy axis and N – on the Oz axis.

In contrast to the proposed by [14] approach to the local-
ization of solutions of system of three equations of surfaces
of the second order that is based on the interval arithmetic
and implies the allocation of memory to save the calculated
limits of intervals of the quadrics (1), ranges of variables

+  k k 1x ,x , +  i i 1y ,y , +
  j j 1z ,z and the intermediate results of

computations, the approach presented in this paper, allows
us to save only data on the signs of functions (2) in each of
the node points and functions that represent the left parts
of equations (3) and (4), in those their critical points, de-
termined from (5) and (7), which belong to the edges and
edges of the current examined rectangular parallelepiped.
To keep the sign, one bit is sufficient (hereinafter 1 encodes a
negative value, 0 – nonnegative) that allows us to design and
implement localization algorithm for the points of quadrics
intersection using variables of the unsigned integer type in-
stead of variables of the valid type. In this case, in the desig-
nated variables every bit will be employed as opposed to the
situation when in a variable part of bits is engaged with data,
and the remaining bits are complementing zeros.

To keep the signs of function f1, in node points we will
create array F1_Nodes the size ×M N of the unsigned integer
type T that contains L bits. Each element F1_Nodes[i][j] of
this array will represent the values of function f1 in points, in
which y=yi, z=zj, and x takes on value xk (=k 1,L), and the
bit with number k (in the LSB order) will correspond to
the sign of function f1 in point ()k i jx ,y ,z . For example, if
M=N=8 and T is the type that is represented by 8 bits,
then F1_Nodes[i][j]=10010011 will mean that function f1
in points ()1 i jx ,y ,z , ()4 i jx ,y ,z , ()7 i jx ,y ,z , ()8 i jx ,y ,z takes
negative values and in points ()2 i jx ,y ,z , ()3 i jx ,y ,z , ()5 i jx ,y ,z ,
()6 i jx ,y ,z – nonnegative.

To save data on the signs of functions f2 and f3 in the
same node points, we need two other arrays (F2_Nodes[i][j]
and F3_Nodes[i][j]) of the same size and the same type. All
three of these arrays will use × ×3L M N / 8 bytes.

To track the existence of critical points and signs of de-
rivative of each of three functions (2), let us create 6 arrays:
F 1_PosExtremums, F1_NegExtremums, F2_PosExtremums,
F2_NegExtremums, F3_PosExtremums and F3_NegExtrem-
ums. For each combination of x and y, x and z, and y and
z, we find those common values of z, y and x, respective-
ly, for which equations (4) are converted to equalities.
Next, we determine to which ranges +

  j j 1z ,z (= −j 1,N 1)
(= −i 1,M 1) +  k k 1x ,x (= −k 1,L 1) the found values of z,
y and x, respectively, belong. It is enough to remember
only the beginning of each of the specified ranges (be-
cause the length of each range is known). Each face (and
critical point on it) may belong to four or two contiguous
parallelepipeds or to only one parallelepiped. In the bit
with number K of the element of array F1_PosExtrem-
ums[i][j] we will store 1, if at least on one of the 12 edges
of parallelepiped, one of the tops of which is the point
()k i jx ,y ,z and this particular top is closest to the origin
of coordinates, there is a critical point where the function

Eastern-European Journal of Enterprise Technologies ISSN 1729-3774	 6/4 (84) 2016

40

that represents the left side of the first equation from the
system of equations (4) takes a negative value. The pur-
pose of array F1_NegExtremums is similar, the difference
being that in it we save 1 in the case when function takes
negative value in at least one critical point on the edges
of parallelepiped with the top ()k i jx ,y ,z . Zeros in the bits
of elements of these arrays will encode a lack of critical
points in the corresponding parallelepipeds. Four other
arrays are needed to save similar data on critical points of
functions f2 and f3 on the edges of parallelepipeds.

Thus, when we find critical point ()i jx,y ,z , +Î  k k 1x x ,x
of the function that represents the left side of the first equa-
tion of the system of equations (4), one should perform the
following steps:

– assign the sign of function to it;
– in array F1_NegExtremums or F1_PosExtremums

(depending on the sign of function), to assign the following
bits to 1;

– bit with number k of the element with indexes i and j;
– bit with number k of the element with indexes (i–1)

and j, if condition i>0 and i<M–1 is valid;
– bit with number k of the element with indexes i and

(j–1), if condition j>0 and j<N–1 is valid;
– bit with number k of the element with indexes (i–1)

and (j–1), if conditions (i>0 and i<M–1) and (j>0 and
j<N–1) are valid.

For critical points that are located on the edges, parallel
to the Oy axis and the Oz axis, the approach remains the
same, only the analyzed indices change.

Next, one should determine the sign of maximum/min-
imum value of each of functions (2) on the edges of paral-
lelepipeds. For this purpose, we will find the solution to the
system of linear algebraic equations of the form (5) with two
unknowns for each of functions (2) and each value of xk, yi
and zj (=k 1,L, =i 1,M, =j 1,N). Unlike critical points on
the edges, for critical points on the sides it is necessary to
determine the ranges, to which a pair of the found values
belongs – y and z for planes x=xk, x and z for planes y=yi
and x and y for planes z=zj.

Each side may belong only to one or two contiguous
parallelepipeds. That is why, by analogy with critical points
(7), we attribute the found critical points to the parallelepi-
peds, in each of which the top with the least coordinates is
one of the node points. To keep the signs of functions on the
sides of parallelepipeds, it is possible to use existing arrays,
determined earlier for the signs of functions in critical
points (7). If a critical point belongs to the parallelepiped
for which point xk, yi and zj (= −k 1,L 1, = −i 1,M 1, = −j 1,N 1)
is the top with the least coordinates, namely, its edges, per-
pendicular to the Ox axis, then the following steps should
be taken:

– determine the sign of function in critical point;
– into one of the arrays (ХХ_PosExtremums or ХХ_

NegExtremums), depending on the sign of function, assign
the bits to 1;

– bit with number k of the element with indexes i and j;
– bit with number k of the element with indexes (i–1)

and j, if condition i>0 and i<M–1 is valid.
For the planes, perpendicular to the Oy and Oz axes, the

approach remains the same (only the indices change).
The total amount of memory for arrays F1_PosExtrem-

ums, F1_NegExtremums, F2_PosExtremums, F2_NegEx-
tremums, F3_PosExtremums and F3_NegExtremums is

× ×6L M N / 8 bytes.

When all arrays are formed, it is possible to start to ana-
lyze the signs of functions in all node and critical points. To
save the results, it is expedient to create array RootsLocalized
of the same dimensions as that of each of the array defined
previously. Each element of this array is determined as fol-
lows: we compare the signs of function f1 in every top of par-
allelepiped ()k i jx ,y ,z with the signs of the same function in
the neighbouring tops ()+k 1 i jx ,y ,z , ()+k i 1 jx ,y ,z , ()+k i j 1x ,y ,z ,
()+ +k 1 i 1 jx ,y ,z , ()+ +k 1 i j 1x ,y ,z , ()+ +k i 1 j 1x ,y ,z , ()+ + +k 1 i 1 j 1x ,y ,z . This
condition takes the following form:

V1 = (F1_Nodes[i][j] XOR F1_Nodes[i][j]<<1) OR
(F1_Nodes[i][j] XOR F1_Nodes[i+1][j]) OR

(F1_Nodes[i][j] XOR F1_Nodes[i][j+1]) OR (F1_
Nodes[i][j] XOR F1_Nodes[i+1][j<<1) OR

(F1_Nodes[i][j] XOR F1_Nodes[i][j+1]<<1) OR (F1_
Nodes[i][j] XOR F1_Nodes[i+1][j+1])

(F1_Nodes[i][j] XOR F1_Nodes[i+1][j+1]<<1). 	 (8)

If among eight tops there are those where the function
takes on different signs, then the result of this expression
will be 1, otherwise – 0. The result of comparison (NOT
(F1_Nodes[i][j])) AND F1_NegExtremums[i][j] will be 1 of
only the zero bits in the element of array F1_Nodes[i][j], that
is, of those from L described by this element tops, in which the
function has an integral sign (and, accordingly, the change
in signs is found). The result of comparison (F1_Nodes[i][j]
AND F1_PosExtremums[i][j]) will be 1 only for those bits
F1_Nodes[i][j] that represent the tops where the function
takes negative values, while unity in the corresponding bits
of array F1_PosExtremums[i][j] means a negative sign of the
function. A general condition of change in the sign of function
in the tops or critical points will take the form:

V1 = V1 OR ((NOT(F1_Nodes[i][j]))
AND F1_NegExtremums[i][j]) OR
(F1_Nodes[i][j]) AND F1_PosExtremums[i][j]). 	 (9)

It is important that every bit in array F1_Nodes sets
only one top of parallelepiped, not all eight, since if among
eight tops there are tops with a different sign, value of the
expression will be 1; otherwise – all tops have the same sign
and it does not matter, the sign of which of them we compare.

Similarly, we form values V2 and V3. Parallelepiped can
contain points of quadrics intersection (1), if

V1 AND V2 AND V3				 (10)

is valid.

4. 3. Algorithm for the localization of the intersection
points of three quadrics

1. Define closed region D, in which we will look for the
solutions. In a general case, the base for selection can be the
knowledge about the measurement range. In this case, D will
have the shape of cube because each coordinate of the vector
quantity can intersect any values from zero to the module of
searched vector quantity (but, without loss of generality, we
will deal with a rectangular parallelepiped). For example, if
module of the measured quantity may be in the range from
Vmin to Vmax, then we will search for each of the coordinates
in the region from – Vmin to Vmax. If, among the preset
quadrics, there are limited surfaces (e. g., ellipsoids), region
D can be determined by determining to which of 17 types

Mathematics and cybernetics – applied aspects

41

of quadrics each of the quadrics (1) belongs, and reducing
quadric equation to canonical form.

2. Set L, M and N points, by which the Ox, Oy and Oz
coordinate axes are split, respectively. For convenience of
work with bits and arrays of elements of the scalar types,
each of these numbers should not exceed the number of
bits in the unsigned integer type of data (for reasons out-
lined above).

3. Create arrays F1_Nodes, F2_Nodes, F3_Nodes, F1_
PosExtremums, F1_NegExtremums, F2_PosExtremums,
F2_NegExtremums, F3_PosExtremums, F3_NegExtrem-
ums and RootsLocalized and initialize them with zeros.

4. For each combination of values xk, yi and zj (=k 1,L,
=i 1,M, =j 1,N), using the three cycles, it is necessary to:

4. 1. find value of each of functions (2) and assign bit
with number k with indices i and j to the appropriate array
(F1_Nodes, F2_Nodes or F3_Nodes) if the function is neg-
ative in the point, otherwise – 0;

4. 2. calculate by formulas (7) such values of x, y and z for
each of three functions so that in points ()i jx,y ,z , ()k jx ,y,z
and ()k ix ,y ,z equations (4) are converted to equalities, as
well as to compute the signs of functions (2) in these points;

4. 3. find such values k1, i1, j1 so that +Î  k1 k1 1x x ,x ,

+Î  i1 i1 1y y ,y and +
 Î j1 j1 1z z ,z , that is, determine to which

edges of parallelepipeds the points of extremum, calculated
in step 4. 2, belong;

4. 4. set to 1 bit with number k1 of the element with in-
dices i and j, bit with number k of the element with indices
i1 and j and bit with number k of the element with indices i
and j1 in the appropriate array (one of F1_PosExtremums,
F1_NegExtremums, F2_PosExtremums, F2_NegExtrem-
ums, F3_PosExtremums and F3_NegExtremums, depend-
ing on the analyzed function and its sign);

4. 5. set the bits for all the “neighbors” (parallelepipeds,
which also contain the found edges); there may be 9, 3 or 0,
in accordance with the above stated considerations;

4. 6. find such combinations of values y1 and z1, x1 and
z2, x2 and y2 for each function so that in points ()k 1 1x ,y ,z ,
()1 i 2x ,y ,z and ()2 2 jx ,y ,z equations (5) are converted to
equalities;

4. 7. find such values i1 and j1, k1 and j2 і k2 and i2 so
that +Î  1 i1 i1 1y y ,y and +

 Î 1 j1 j1 1z z ,z , +Î  1 k1 k1 1x x ,x and

+
 Î 2 j2 j2 1z z ,z , +Î  2 k2 k2 1x x ,x and +Î  2 i2 i2 1y y ,y . Find the

signs of functions (2) in the points found in step 4. 6 and set
unities in the corresponding bits of arrays to track the signs
of functions in the points of extremum by the technique,
similar to the one described in step 4. 4;

4. 8. set the bits for parallelepipeds with the sides defined
in step 4. 7 (there may be 3 or 0 of such parallelepipeds).

5. Form element RootsLocalized[i][j] using (8)–(10) for
each combination of indices i and j.

6. Compute critical points of functions (2), identify
intervals to which they belong, and complement generated
array RootsLocalized with data on the signs of functions (2)
in critical points.

7. The algorithm is finalized.

5. Results of comparative analysis of the proposed
algorithm to the algorithm based on interval arithmetic

To determine the appropriateness of the proposed al-
gorithm, we conducted a series of numerical experiments

of implementations of two algorithms – the one proposed
in this work and an algorithm based on interval arithme-
tic [14].

The algorithm was implemented in the language C in
the Keil uVision 5 environment; its verification was per-
formed at the STM32F407VG microcontroller (as part of
the evaluation board STM32F4Discovery), built on the base
of the ARM Cortex-M4 architecture. The algorithm based
on interval arithmetic [14] is realized in the same language
using the same compiler and the same microcontroller, which
means a possibility of correct comparison of these two algo-
rithms.

A comparison of implementations of the algorithms was
carried out by the following attributes: share of the regions
that were found as a result of work of the algorithm but they
did not actually contain the points of quadrics intersection,
time of execution, volume of machine code and the use of
operative memory.

As the test sets, we took 48 systems of three quadric
equations whose points of intersection are known. Manual
testing revealed that none of the solutions of the systems of
equations was “overlooked” – for each of the test systems
of quadric equations among the results of the algorithm’s
work there were regions (rectangular parallelepipeds),
which contained the points of quadrics intersection. How-
ever, similar to the case with the algorithm described in
[14], some of the found regions happened to be a “false
alarm” – in fact, they did not contain solutions for the test
systems of equations.

Initially we tested the simplest variants for the sys-
tems of equations, for which it was easy to find analytical
solutions – systems of canonical equations of quadrics
(without non-linear carry and rotation of the axes). In such
equations, part of coefficients in the variables, their squares
and pairwise products are equal to zero, which allowed us
to test the branches of code associated with dividing by
zero. A comparison of the regions found in the course of
work of the two algorithms was performed at the similar
test sets with the same node points (otherwise, results of
the comparison would not be considered valid). Results are
grouped in Table 1.

Next, rotation of axes and linear carry were applied to
the same systems of equations.

Since each quadric equation in the system underwent
the same conversion, the number of intersection points
remained – only their coordinates in the “old” coordinate
system changed. For each of 12 test systems of equations
represented in Table 1, the rotation was performed at three
different combinations of angles. Test results appeared to be
about the same as in Table 1, with possible differences not
exceeding a few unities.

Asymptotic estimation of complexity of both algorithms
in the notation “O large” is the same, but the nature of in-
structions is different, that is, the set of machine instructions
is substantially different, thus the actual execution time may
vary significantly.

An evaluation of execution time of implementations of
two algorithms at the same number of node points (that is,
at the identical sets of numbers L, M and N) was performed
by practical way only – using measurements of time of reali-
zation of each of the algorithms (at the same clock frequency)
at the same test sets. The algorithm proposed in this paper
proved to be slower on average by 12 %.

Eastern-European Journal of Enterprise Technologies ISSN 1729-3774	 6/4 (84) 2016

42

Table 1

Numbers of regions of the points of quadrics intersection, localized by the implementations of two algorithms

No. System of quadrics equations Solutions

Quantity of regions found
using the algorithm of interval

arithmetic

Quantity of regions found
using the proposed algorithm

=L 8
=M 8

=N 8
(343 regions)

=L 16
=M 16

=N 16
(3375 regions)

=L 8
=M 8

=N 8
(343 regions)

=L 16
=M 16

=N 16
(3375 regions)

1

 + − =


+ − =
 + + − =

2 2

2 2

2 2 2

x y 1 0

x z 1 0

x y z 1 0

()−1,0,0 ,
 ()1,0,0 42 56 8 26

2

 + + − =


+ + − =
− + + − =

2 2 2

2 2 2

2 2 2

x y z 2 0

x 0.05y z 2 0

x y 2z 4 0

()−0,0, 2 ,

()0,0, 2 40 58 24 32

3

 + + − =


+ + − =
− + + + =

2 2 2

2 2 2

2 2 2

x y z 2 0

x 0.05y z 2 0

x y 2z 4 0

()− 2,0,0 ,

()2,0,0 40 58 24 32

4

 + + − =


+ + − =
 − + − =

2 2 2

2 2 2

2 2 2

x y z 2 0

x 0.05y z 2 0

x 2y z 2 0

a set of all points ()x, 0, z ,
so that + =2 2x y 2

142 182 64 64

5

 + + − =


+ + − =
 + + + =

2 2 2

2 2 2

2 2

x y z 2 0

x 0.05y z 2 0

x z 4x 3 0

 
− − 

 
5 7

,0, ,
4 4

 
− 

 
5 7

,0,
4 4

36 52 24 32

6

 + + − =


+ + − =
 + + − =

2 2 2

2 2 2

2 2 2

x 0.05y z 2 0

x y z 2 0

x z y 1 0

no intersection points 28 46 8 8

7

 + + − =


+ + − =
 + + − =

2 2 2

2 2 2

2 2 2

x 0.05y z 4 0

x y z 4 0

x y z 2x 0

()2,0,0 42 50 24 32

8

 + + − =


+ + − =
 + + + =

2 2 2

2 2 2

2 2 2

x 0.05y z 4 0

x y z 4 0

x y z 2x 0

()−2,0,0 42 50 24 32

9

 + − =


+ + − − =
 + − + =

2 2

2 2 2

2 2

x y 2z 0

x y z 2z 4 0

x z 4z 3 0

()− −1, 3,2 , ()−1, 3,2 ,

()−1, 3,2 ,

()1, 3,2

46 54 24 24

10

 + − =


+ + − − =
 + − + =

2 2

2 2 2

2 2

x y 2z 0

x y z 2z 4 0

y z 4z 4 0

()−2,0,2 ,
 ()2,0,2 44 54 24 24

11

 + − =


+ + − − =
 + − + =

2 2

2 2 2

2 2

x y 2z 0

x y z 2z 4 0

y z 4z 2 0

()− −2, 2,2 ,

()−2, 2,2 ,

()− 2, 2,2 ,

()2, 2,2

46 58 24 24

12

 + + − =


− + =
 + − =

2 2 2

2 2 2

2 2 2

x y z 4 0

x y z 0

x y z 0

()− −0, 2, 2 ,

()−0, 2, 2 ,

()−0, 2, 2 ,

()0, 2, 2

46 58 16 16

Mathematics and cybernetics – applied aspects

43

The volume of machine code and engaged operative
memory was estimated by data taken from map-file gener-
ated by the Keil uVision environment after compiling and
linking. The amount of permanent memory, used by the algo-
rithm proposed in this work, appeared to be 20 % larger than
the analogous indicator for the algorithm based on interval
arithmetic. Instead, the volume of the engaged operative
memory was 15 % less.

Appropriateness of the use of the algorithm based on
interval arithmetic as an intermediate link in the process
of solving the systems of polynomial equations has already
been proven in [14]. Test sets for verification of the algo-
rithm proposed in this work included the majority of the
systems of quadrics equations, by which the algorithm in
[14] was tested, and the test was carried out particularly
in the same region of the search for solutions and in the
same node points. For this reason, the role of the proposed
algorithm in refining the solutions was not examined in
this work.

6. Discussion of results of comparative analysis of the
proposed algorithm to the algorithm based on interval

arithmetic

Results of testing implementations of the two com-
pared algorithms allow us to state that the new algorithm
achieved a reduction in the quantity of irrelevant regions
with potential points of intersection of three quadrics by
approximately 2.2 times. It should be noted, however, that
the number of regions depends on ranges   a bx ,x ,   a by ,y ,
  a bz ,z , in this case, the narrowing of ranges does not
always lead to an increase (or, conversely, decrease) in the
number of regions. In addition, the number of “parasite”
regions appeared to be different for different test sets. A de-
pendence of the “parasite” regions on the system of quadrics
equations is explained by the principle of the algorithm’s
work – it is guaranteed to “reject” only those regions in
which at least one pair of quadrics has no intersection points.
That is, all regions containing the points of intersection of
each pair of quadrics definitely belong to the list of regions
that could potentially contain the sought solutions for the
systems of quadrics equations. However, it is quite possible
that in a certain region all quadrics intersect in pairs, but not
in one common point. The fact that the algorithm based on
interval arithmetic yields a larger percentage of “parasite”
regions is consistent with the results of applying interval
arithmetic to the estimation of errors of measurement – they
are always overstated and indicate the “worst case”. Be-
havior of the algorithms was studied for the test cases with
one, two, four and multitude of intersection points of three
quadrics, as well as in the absence of intersection points.
Limitation of the test sets allows us to speak only about ap-
proximate percentages of winning in the relevance of results

of the proposed algorithm relative to the algorithm based on
interval arithmetic.

However, conducted numerical experiments allow us to
affirm that in case of necessity to solve a system of quadrics
equations, the proposed algorithm is more expedient than
its analogs for the implementation in micro programming
software, taking into account constraints of their resources.
Obtained results are focused primarily on the application in
intelligent sensors of vector quantities; however, they can
be extended to other problems that comprise equations of
surfaces of the second order and their systems. Moreover,
the same technique can be applied to any of the functions of
three variables, the finding of partial derivatives for which
has the same complexity as for the functions that represent
the left parts of equations (1). If the computation of partial
derivatives requires more resources (for example, in the case
of equations of the highest degree) or there is no an analyt-
ical method for finding critical points of functions that rep-
resent the left parts of the solved system of equations, then it
requires additional study.

As noted above, a new algorithm requires more of perma-
nent memory and runs longer. Presented numerical indices
are not absolute since they apply only to a single model of
microcontroller. Generalized results may be obtained the-
oretically if we consider the number of instructions in the
algorithm and the period of implementation of each of the
instructions for a particular architecture of microcontroller.

Further direction of research is the reduction in compu-
tational complexity of the proposed algorithm. A potential
way to achieve this result is a breakdown of the region into
intervals of different step, in contrast to the division into
intervals of equal length.

7. Conclusions

1. We performed an analysis and systematization of
mathematical apparatus for the localization of intersection
points of quadrics, which allowed us to design a new algo-
rithm for the localization of quadrics intersection points
that is based on the properties of continuous differentiable
functions in closed regions and verification of the signs of
functions in the node and critical points. The developed al-
gorithm was implemented for a microcontroller of the ARM
Cortex-M4 architecture.

2. Conducted comparative analysis of the new algorithm
to an algorithm-analogue allows us to assert that the new
algorithm provides for higher relevance results, approx-
imately by 2.2 times, of the found regions with potential
points of intersection at the execution longer by 12 %. The
new algorithm requires 20 % more of permanent memory,
but 15 % less of operative memory. Thus, the studies we con-
ducted have proved the expediency of applying the proposed
algorithm.

References

1.	 Bol’shakova, I. A. Mikroelektronni sensorni prystroi mahnitnoho polia [Text] / I. A. Bol’shakova, M. R. Gladun, R. L. Goljaka,

Z. Ju. Gotra, I. Je. Lopatyns’kyj, Je. Potencki, L. I. Sopil’nyk; Z. Ju. Gotra (Ed.). – Lviv: Vyd. Natsionalnoho universytetu

«Lvivska politekhnika», 2001. – 412 p.

2.	 Bolshakova, I. A. Metody modeliuvannia ta kalibruvannia 3D-zondiv mahnitnoho polia na rozshcheplenykh khollivskykh

strukturakh [Text] / I. A. Bolshakova, R. L. Holyaka, Z. Y. Hotra, T. A. Marusenkova // Elektronika ta zviazok. Tematychnyi

vypusk «Elektronika ta nanotekhnolohii». – 2011. – Issue 2 (61). – P. 34–38.

Eastern-European Journal of Enterprise Technologies ISSN 1729-3774	 6/4 (84) 2016

44

3.	 Riviere, J. M. Design of smart sensors: towards an integration of design tools [Text] / J.-M. Riviere, D. Luttenbacher,

M. Robert, J.-P. Jouannet // Sensors and Actuators A: Physical. – 1995. – Vol. 47, Issue 1-3. – P. 509–515. doi: 10.1016/0924-

4247(94)00952-e

4.	 Bowen, M. Consideration for the design of smart sensors [Text] / M. Bowen, G. Smith // Sensors and Actuators A: Physi-

cal. – 1995. – Vol. 47, Issue 1-3. – P. 516–520. doi: 10.1016/0924-4247(94)00953-f

5.	 Chaudhari, M. Study of Smart Sensors and their Applications [Text] / M. Chaudhari, S. Dharavath // International Journal

of Advanced Research in Computer and Communication Engineering. – 2014. – Vol. 3, Issue 1. – P. 5031–5034.

6.	 Buchberger, B. Bruno Buchberger’s PhD thesis 1965: An algorithm for finding the basis elements of the residue class ring of a

zero dimensional polynomial ideal [Text] / B. Buchberger // Journal of Symbolic Computation. – 2006. – Vol. 41, Issue 3-4. –

P. 475–511. doi: 10.1016/j.jsc.2005.09.007

7.	 Hashemi, A. Applying IsRewritten criterion on Buchberger algorithm [Text] / A. Hashemi, B. M.-Alizadeh // Theoretical

Computer Science. – 2011. – Vol. 412, Issue 35. – P. 4592–4603. doi: 10.1016/j.tcs.2011.04.040

8.	 Eder, C. F5C: a variant of Faugere’s F5 algorithm with reduced Grobner bases [Text] / C. Eder, J. Perry // Journal of Symbolic

Computation. – 2010. – Vol. 45, Issue 12. – P. 1442–1458. doi: 10.1016/j.jsc.2010.06.019

9.	 Gao, S. A new incremental algorithm for computing Groebner bases [Text] / S. Gao, Y. Guan, F. Volny // Proceedings of the

2010 International Symposium on Symbolic and Algebraic Computation – ISSAC ‘10. – 2010. doi: 10.1145/1837934.1837944

10.	 Hashemi, A. Invariant G2V algorithm for computing SAGBI-Grobner bases [Text] / A. Hashemi, B. M.-Alizadeh, M. Riahi //

Science China Mathematics. – 2012. – Vol. 56, Issue 9. – P. 1781–1794. doi: 10.1007/s11425-012-4506-8

11.	 Wilson, D. J. Speeding up cylindrical algebraic decomposition by Gröbner bases [Text] / D. J. Wilson, R. J. Bradford,

J. H. Davenport // Lecture Notes in Computer Science. – 2012. – P. 280–294. doi: 10.1007/978-3-642-31374-5_19

12.	 Dupont, L. Near-optimal parameterization of the intersection of quadrics: III. Parameterizing singular intersections [Text] /

L. Dupont, D. Lazard, S. Lazard, S. Petitjean // Journal of Symbolic Computation. – 2008. – Vol. 43, Issue 3. – P. 216–232.

doi: 10.1016/j.jsc.2007.10.007

13.	 Dupont, L. Complete, Exact and Efficient Implementation for Computing the Adjacency Graph of an Arrangement of Quadrics

[Text] / L. Dupont, M. Hemmer, S. Petitjean, E. Schomer // Lecture Notes in Computer Science. – 2007. – P. 633–644.

doi: 10.1007/978-3-540-75520-3_56

14.	 Marusenkova, T. A. Development of algorithm and embedded software for separation of intersection points of quadrics [Text] /

T. A. Marusenkova, D. O. Horman // Eastern-European Journal of Enterprise Technologies. – 2015. – Vol. 3, Issue 4 (75). –

P. 16–20. doi: 10.15587/1729-4061.2015.42609

15.	 Marusenkova, T. Approach To Roots Separation For Solving Nonlinear Equations On ARM Cortex-Based Microcontrollers

[Text] / T. Marusenkova, I. Yurchak // XXII Ukrainian-Polish Conference on “CAD in Machinery Design. Implementation

and Educational Issues”. – Lviv, 2014. – P. 101–103.

16.	 Horman, D. Algorithm of Polynomials’ Root Separation for ARM-Based Microcontrollers [Text] / D. Horman, T. Marusenko-

va, I. Yurchak // XIII International Conference The Experience of Designing and Application of CAD Systems in Microelec-

tronics. – Lviv-Poljana, 2015. – P. 50–52.

