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1. Introduction

At the present stage of development of measurement 
equipment, accuracy of reproduction of the frequency stan-
dard is the highest in comparison with the standards of 
other physical magnitudes. Metrological characteristics of 
measuring transducers with a frequency-modulated output 
signal differ significantly from the characteristics of sensors 
with the amplitude-modulated signal [1]. 

By the type of physical phenomenon that underlies their 
operating principle, all sensors with frequency output can be 
divided into four groups:

– resonator;
– with non-resonating frequency-dependent systems;
– integrating;
– statistical.
Resonator sensors with AOS possess a number of advan-

tages [2]:
– high quality factor of resonators makes it possible to 

substantially increase precision characteristics of sensors;
– there is a possibility to introduce a self-excited oscil-

lator to the circuit for obtaining continuous output signal;
– signal to noise ratio is considerably higher than in the 

sensors of other groups given above.
The auto-oscillating systems of resonator sensors already 

developed are oriented toward a particular type of resonator 
[2]. However, all existing circuits of AOS commonly include 

the following elements – mechanical resonator of the exciter 
and receiver of oscillations, feedback amplifier. All enumer-
ated elements demonstrate a certain degree of nonlinearity, 
which makes their studying and modeling impossible. A 
problem of the generalized analysis of auto-oscillating sys-
tems with different types of mechanical resonators is crucial 
when selecting the type of resonator and the characteristics 
of positive feedback circuits.

2. Literature review and problem statement

Despite the fact that AOS is one of the basic compo-
nent parts of vibration frequency sensors, the publications 
that address analysis and design of such systems are not 
numerous. Article [3] presents calculation for designing 
a mechanical resonator with variable section. The cal-
culation is applicable only to the resonators of the type 
indicated. Authors [4] propose an analytical model of 
micromechanical resonator in the plane of bending vibra-
tions. Data on that the model is applicable for calculating 
other types of resonators are missing. Paper [5] described 
the examined synchronized system of nano-mechanical 
resonators and study of the authors is devoted to the 
process of synchronization of the system of sensors. Arti-
cle [6] explored modal self-excitation with the nonlinear 
feedback of acceleration in the class of mechanical systems 
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with distributed parameters. The authors [6] did not in-
vestigate methods of reduction to the lumped parameters. 
The analysis and synthesis of the modal and non-modal 
self-excited oscillations in the class of mechanical systems 
with nonlinear high-speed feedback is given in paper 
[7]. However, data on the use of results of study [7] for 
mechanical resonators of different types are lacking. The 
processes of oscillation damping in mechanical resonators 
were examined in [8]; data about the application of results 
in the imitation simulation are not given.

An analysis of publications testifies to the fact that the 
designed AOS of resonator sensors are very specific, which 
is why results of the studies cannot be used for mechanical 
resonators of other types. A reason for such situation is the 
complexity of analytical description of mechanical resona-
tors with distributed parameters.

In articles [9, 10], author employed a method for reduc-
ing the distributed parameters of mechanical resonators 
to the lumped ones. This approach yields a certain gener-
alization, simplifying the task on the subsequent analysis. 
But, at the same time, transition to the linear differential 
equations of oscillations of mechanical resonator does not 
consider the nonlinearity of lumped rigidity, related to the 
phenomena of nonisochronicity (dependence of frequency 
on the amplitude of oscillations of mechanical resonators). 
Nonlinearities in the characteristics of feedback amplifier 
are also not considered. If the selection of linear regions of 
exciter and receiver of oscillations is a simple engineering 
task, then examining the auto-oscillating system with a 
nonlinear resonator and nonlinear feedback necessitates 
the search for new solutions.

Thus, the study of auto-oscillating systems with two 
types of nonlinearity in the basic elements – of resonator 
and amplifier for attaining the required stability of am-
plitude and frequency of auto-oscillations (consequently, 
the accuracy of measurements) is an important scienti- 
fic task.

3. The aim and tasks of the study

The aim of present work is to select a character of non-
linearity in the elements of feedback and mechanical reso-
nator of the assigned type, which would ensure the assigned 
frequency stability and amplitude of auto-oscillations when 
designing a vibration frequency sensor.

To achieve the set aim, the following tasks are to be 
solved:

– to reduce basic, those employed in the 
sensors, types of mechanical resonators to 
the lumped mass of rigidity and oscillation 
damping;

– in the generalized linear differential 
equation of mechanical resonator, obtained 
with regard to the reduction, to consider 
nonisochronicity s, to obtain a transfer func-
tion of nonlinear resonator;

– to devise and explore on the simu-
lation model a generalized auto-oscillating 
system with nonlinear resonator and non-
linear feedback with the purpose to select 
such character of nonlinearity that ensures 
maximum frequency and amplitude stability 
by suppressing the harmonics.

4. Synthesis of auto-oscillating system with mechanical 
resonator

In order to synthesize AOS with mechanical resonator 
(tubular, plate, and cylindrical) with the distributed mass m 
and rigidity c, they reduce it to the oscillatory system with 
lumped (equivalent) mass me and rigidity сe. Basic condi-
tions for this reduction [11]:

– equality of frequencies of natural oscillations of me-
chanical resonator;

– agreement between resonance frequency of the re-
duced mechanical resonator and oscillation frequency of 
MR, free from the analyzed mass;

– agreement between input resistances of the oscil-
latory systems of mechanical resonator, of that being 
reduced and of that already reduced, near the resonance 
frequencies.

In the systems with lumped parameters for the frequen-
cies lower than the resonance one, the input resistance is of 
elastic character. For the frequencies higher than the res-
onance one, it is inertial. In this case, this is an agreement 
between coefficients of mechanical damping rm and mechan-
ical friction re.

Coefficient of mechanical friction re is determined by 
relationship [12]:

e
е

c
r ,

2 f Q
=

⋅π ⋅ ⋅
     (1)

where f is the resonance frequency of oscillations; Q is the 
quality factor of oscillatory system (it is determined exper-
imentally). 

Taking into account given relationships for the equiva-
lent rigidity of pipe, plate, cylinder, based on the first con-
dition for reduction, we obtained the equivalent masses of 
mechanical resonators (Table 1).

For a standard experimental model of mechanical reso-
nator, taking into account the peculiarities of fastening, we 
determine quality factor Q of the oscillatory system and, 
according to data in the table for the appropriate type of 
resonator, we determine parameters me, сe, re.

λ is determined by formula:

( ) ( ) ( )
( ) ( )( )
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.
2 h / a 4 L / a
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π ⋅ π + ⋅

Table 1

Reduced parameters of mechanical resonators

Tubular resonator  
(fastened by two ends)

Plate resonator  
(fastened by perimeter)

Cylindrical resonator  
(fastened at edges)

Reduced 
rigidity

Reduced 
mass

Reduced 
rigidity

Reduced 
mass

Reduced 
rigidity

Reduced mass

3

192 E J
L
⋅ ⋅

t0,38 L m⋅ ⋅ ( )
3

2 2

4 E h

3 a 1

⋅ π ⋅ ⋅
⋅ ⋅ − µ p0,48 a m⋅ ⋅

3

2

7,4 E h
a
⋅ ⋅ 4

c2 2

L 1
0,20 m

a
⋅ ⋅ ⋅

λ

Note: E – modulus of elasticity; μ – Poisson ratio; J – static moment of the tube’s inertia; 
L – length of tube or height of cylinder; a – radius of plate or middle radius of cylinder; 
h – mean lengthwise thickness of wall of tube or cylinder; mt – mass of the unit of tube’s 
length; mp – mass of the unit of plate’s area; mc – mass of the unit of median surface of 
cylinder; λ – constant of cylindrical resonator
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5. Differential equation of resonator oscillations with 
consideration of nonisochronicity

A differential equation of oscillations of the generalized 
mechanical resonator can be written down in the canonical 
form:

2

е e e2

d x dx
m r c x F,

dt dt
⋅ + ⋅ + ⋅ =    (2)

where me, re, ce, F are the reduced: mass, damping, rigidity 
and exciting lumped force, respectively. 

The nonlinearity of resonator is considered by the intro-
duction of relationship for the cubic elastic characteristic of 
beam [13]:

3
R eF c x x⋅= ⋅ ± α ⋅ ,    (3)

where се is the equivalent rigidity of resonator; α is the coef-
ficient of deviation of the elastic characteristic of resonator 
from the linear one. 

The reduced nonlinearity displays the following charac-
ter of manifestation:

1) frequency of auto-oscillations decreases with the 
growth in amplitude – the soft type of nonlinearity;

2) frequency of auto-oscillations increases with an in-
crease in amplitude – the rigid type of nonlinearity;

3) at low amplitudes for the reduced types of mechani-
cal resonators, the soft type of nonlinearity is manifested, 
which, with an increase in amplitude, passes into the rigid 
type of nonlinearity.

6. Obtaining a transfer function of nonlinear resonator by 
the method of harmonic linearization

The nonlinear part of rigidity α∙х3 can be linearized by 
the substitution of harmonic function х1=sin∙ω∙t; then, disre-
garding small terms of the series, we shall obtain coefficient 
of harmonic linearization q1(a1)=0,75α∙a1

2.
Transfer function of resonator KR∙WNR(p) takes the 

form:

R R
R NR
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   (4)

where KR∙WR(р)=KR/(TR
2∙p2+2∙ξ∙TR∙p+1) is the transfer 

function of linear part of mechanical resonator; ωR
2=се/me 

is the square of circular frequency of oscillations of mechan-
ical resonator; ξ=re/(2∙me∙ωp) is the normalized attenuation 
factor of resonator; ТR=1/ωR is the period of resonator oscil-
lations; KR=1/(me∙ω2)=1/ce is the static transfer coefficient 
of resonator. 

A structure of the closed auto-oscillating system with a 
resonator will take the form, represented in Fig. 1.

In Fig. 1, the following designations are accepted: 
KRWR(р) – transfer function of the linear part of resona-
tor; Kro∙Wro(р)=Kro∙р − transfer function of the receiver of 
oscillations (for the basic types of receivers, capacitive, elec-
tromagnetic, magnetic-electric – differentiating element); 
Keo∙Weo(р)=Keo − transfer function of oscillation exciter (for 
the basic types of oscillation exciters, capacitive, electromag-

netic, magnetic-electric – proportional element); FNA(x2) − 
nonlinear amplifier; Fnr − force, caused by nonisochronicity 
(nonlinearity of rigidity).

Fig. 1. Auto-oscillating system of vibration frequency sensor 
with mechanical resonator

7. Imitation simulation of auto-oscillating system in the 
Matlab Simulink programming environment

The main difficulty in the simulation of auto-oscillating 
system in the Matlab Simulink programming environment 
is the absence of element in the library that corresponds to a 
nonlinear amplifier [14, 15]. It is not possible to obtain such 
nonlinearity by the combination of such elements that exist 
in the library as, for example, clamped amplifier and dead 
zone or a three-position relay. 

In order to search for characteristic FNA(x2) of non-
linear amplifier, we programmed a model, in which we 
conducted comparison of spectra of the output signals of 
nonlinear resonator with a standard amplifier (Fig. 2), 
with the examined amplifier (Fig. 3) and with a standard 
two-position relay.

Fig. 2. Realization of amplifier with bilateral amplitude 
limitation in Matlab Simulink

Fig. 3. Realization of amplifier with bilateral amplitude 
clipping in Matlab Simulink

The model is created in accordance with circuit in Fig. 1, 
with the use of nonlinearities shown in Fig. 2, 3 and elements 
from the Simulink base.

In order to reproduce results, we shall attach a fragment 
of the programming code

«%1 –config_nlin =1– nonlinear amplifier bistable relay
%2 –config_nlin =2– nonlinear amplifier clipping bi-

lateral 
%3 –config_nlin =3– nonlinear amplifier clipping am-

plitude
config_nlin =3;
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% Setting the value of the variable that determines the 
position of the switch

%– linear part + nonlinear amplifier – W_lin =k.*1i*w./ 
((T1*1i*w+1).* (-T2*w.^2+2*T2*e*1i*w+1-m*A.*A/w.^2).* 
(T3*1i*w+1))k=20; m=0.01; T1 =0.001; T2 = 0.0005; T3 = 
0.001; b = 0.1;c = 1;e=0.001;».

Fig. 4 shows a simulation model of the designed auto-os-
cillating system.

The purpose of the simulation was a harmonic analysis 
of signal at the output of self-excited oscillator. Fig. 5 shows 

spectra of the output signals of auto-oscillating system with 
a nonlinear mechanical resonator and different types of non-
linearity of the amplifiers.

Results of harmonic analysis of the frequency-modulated 
signal (Fig. 5) demonstrate that only the nonlinear amplifier 
with bilateral amplitude clipping enables operation at the 
first harmonic and effectively suppresses noise components 
of measurements. Thus, the auto-oscillating system designed 
functions stably at the first harmonic without application of 
additional frequency filters.

 
Fig. 4. Simulation model of auto-oscillating system, performed in Matlab Simulink

 

 
                                                                                    

 
 
 
 
 
 
 
 
 
 
 
 
c 

Fig. 5. Spectra of the output signals of auto-oscillating system’s model: a – nonlinear element – a two-position relay, b=0.1; 
s=1; linear part –WL(р), K=20, Т1=0.001, Т2=0.0005, Т3=0.001; b – nonlinear saturation amplifier, b=0.1; s=1;  

linear part –WL(р), К=20, Т1=0.001, Т2=0.0005, Т3=0.001; c – nonlinear clipping amplifier, b=0.1; s=1; 
 linear part – WL(р), K=20, Т1=0.001, Т2=0.0005, Т3=0.001

 

a b
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8. Discussion of results of the imitation simulation

Research into auto-oscillating systems with two types 
of nonlinearity in the basic elements – resonator and 
amplifier – for the purpose of attaining required stability 
of amplitude and frequency of auto-oscillations is a new 
study.

Results of the imitation simulation, based on the fun-
damental positions of the theory of automatic regulation, 
indicate that nonlinear amplifier at work with a nonlin-
ear mechanical resonator can provide for an auto-oscil-
lating system that is stable by frequency and amplitude. 
This is confirmed by results of harmonic analysis of the 
frequency-modulated output signal, given in the present 
work.

The obtained transfer function of resonator, designed 
structure of auto-oscillating system with different types 
of mechanical resonators can be used in the design devel-
opment of vibration frequency sensors. 

A devised simulation model of the generalized auto-os-
cillating system with a nonlinear resonator and nonlinear 
feedback might be used not only for the spectral analysis 
of output signals, but also for conducting the studies on 
transient processes in AOS and stability examination.

Results of model’s work confirm fully the studies, 
carried out in articles [9, 10, 12]. Plans for further 
investigations include conducting the design calcula-
tions of vibration frequency sensor with the developed 

auto-oscillating system for obtaining a model sample of 
the sensor.

9. Conclusions

1. We obtained analytical expressions for the reduction 
of mechanical systems of resonators to the lumped parame-
ters with maintaining fundamental characteristics – reso-
nance frequency of oscillations, friction damping influence 
and resistance to motion. The relationships proposed make 
it possible to analytically describe and employ the methods 
of research into nonlinear systems of control in the analy-
sis of AOS of different types of mechanical resonators, for 
which such a possibility was missing previously.

2. A simulation model is proposed of auto-oscillating 
system for the basic types of mechanical resonators of 
vibration frequency sensors, which is different from the 
known ones by the fact that it displays a changing char-
acter of nonlinearity and considers the nonisochronicity 
(nonlinearity of rigidity) of resonator.

3. Results of harmonic analysis of the frequency-mod-
ulated signal make it possible to assert that only the non-
linear amplifier with a bilateral amplitude clipping ensures 
the work at the first harmonic and effectively suppresses 
the noise components of measurements. Thus, the auto-os-
cillating system designed functions stably at the first har-
monic without application of additional frequency filters.
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