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1. Introduction

One may define recent years as a period of rapid devel-
opment of technical means and information technologies 
with high performance efficiency that led to the creation 
and implementation of more effective methods of pro-
cessing and analysis of data and new methods of solving 
complex applied problems. In this regard, there is a surge 
of theoretical and practical techniques in the field of neu-
rocomputers and there is increased interest in neuro-like 
structures, which are widely applied in various areas of hu-
man activity – pattern recognition, forecasting, business, 
medicine, engineering.

Solving applied problems in neuro-basis would be pos-
sible if practically applicable methods of the synthesis of 

neural elements and the synthesis of logical circuits from 
them are developed. 

Significant resources that are invested in creating soft-
ware and hardware implementation of artificial neural net-
works, as well as widespread use of neuro-like structures, in-
dicate that the problem of synthesis of neural elements with 
different activation functions and the construction of logical 
circuits from them is relevant and practically significant.

In practice, when recognizing discrete images, at the 
compression and transmission of discrete signals, it is nec-
essary to be able to synthesize neural elements, that have a 
large number of inputs (≥100); in these cases, the classical 
methods of approximation of different orders and various 
iterative methods cannot be actually applied to the synthesis 
of neural elements for the realization of discrete functions. 
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Therefore, the development of new methods of synthesis of 
neural elements that allow finding vectors of a neural ele-
ments structure with a large number of inputs, is a relevant 
and practical important task. 

The results obtained in present work make it possible 
to synthesize neural elements with a large number of inputs 
for the implementation of Boolean functions under certain 
constraints on their kernels.

2. Literature review and problem statement

Artificial neural networks have been successfully used 
for the development of various components of intelligent 
systems. The main problem of applying these networks is 
to select required input data for the set problem, to form a 
test sample for training a neural network and to choose a 
learning algorithm.

The scope of practical applications of artificial neural 
networks is wide. They are effectively used to improve qual-
ity [1], segmentation [2], classification and recognition of 
images [3, 4]. Based on them, intelligent blocks of different 
systems for the chemical processes control are devised [5], 
for the classification of diseases [6] and diagnosis [7], to 
predict economic [8], biological [9] processes and forecast-
ing the number of incidences of the disease under study [10]. 
As evidenced by research, neural network techniques are 
successfully used for the compression of signals and images 
[11–13], in the banking sector to assess credit risk [14].

It should be noted that the basis for constructing neu-
ral networks used in the aforementioned spheres of human 
activity is formed by various iterative methods that solve 
appropriate problems with certain accuracy. However, there 
are problems for which approximated solutions are not 
acceptable, for example, the problem on the realization of 
Boolean and multi-valued logical functions by one neural el-
ement with a threshold activation function or in the synthe-
sis of combinational circuits of the specified neural elements. 
These combinational circuits can be successfully used when 
building functional blocks of logical devices to manage tech-
nological processes, for the compression of discrete signals, 
for the recognition of discrete images, etc. The shortcomings 
of iterative methods of training neural elements and neu-
ral networks for solving the problems on the Boolean and 
multi-valued functions realizability by one neural element 
(neural network) include:

– instead of precise solution, we receive approximated 
solution for the problem (for example, discrete function is re-
alized by one neural element while iterative methods of rela-
tively set accuracy reveal lack of its implementation (there is 
a problem of the choice of accuracy and process convergence 
relative to the assigned accuracy));

– the possibility of applying iterative methods for train-
ing artificial neurons with a small number of inputs (40, 
50), whereas biological neurons may possess thousands of 
inputs [15].

The methods obtained in present work for the verifica-
tion of realizability of Boolean functions by one neural ele-
ment with a threshold activation function and the synthesis 
of relevant neural elements under certain constraints on 
their kernels can be applied as well in the case when the ap-
plication of iterative methods is not expedient or practically 
impossible.

3. The aim and tasks of the study

The aim is to devise efficient methods for the synthesis of 
neural elements with a threshold activation function on the 
basis of which it is possible to synthesize neural networks for 
solving practically important problems in the field of com-
pression and transmission of discrete signals, recognition of 
discrete images, diagnosis of technical devices.

To achieve the set aim, the following tasks are to be 
solved:

– to obtain realizability criteria of functions of the alge-
bra of logic by one neural element with a threshold activation 
function;

– to establish necessary conditions for the realizability 
of Boolean functions by one neural element of the above 
described type;

– to propose sufficient conditions for the realizability of 
functions of the algebra of logic, which underlie the synthesis 
of integer neural elements with a large number of inputs.

4. Verification of the realizability of Boolean functions by 
one neural element with a threshold activation function 

and the method for synthesis of these elements

4. 1. Criteria and necessary conditions for the realiz-
ability of Boolean functions by one neural element with a 
threshold activation function

Assume 2Z = {0,1}  and n
2Z  is the nth Cartesian power 

of set Z2. For Boolean function ( ) → n
1 n 2 2f x , ,x (f : Z Z ),  we 

shall define sets −1f (1), −1f (0) :

− −Î Î1 n 1 n
2 2f (1) = { Z | f( ) =1}, f (0) = { Z | f( ) = 0}.x x x x  (1)

By definition, neural element with a threshold activa-
tion function with a vector of structure w w w1 n 0[ = ( , , ); ]w  
(n-dimensional real vector, called a weight vector, ω0 is 
the real number (threshold)) implements Boolean function 
( )1 nf x , ,x ,  if condition is satisfied

−Î ⇔ w1
0f (0) ( , ) < ,x x w   (2)

where (x,w) is the scalar product of vectors x and w. 
If through 

( ) { }( )Î1f i i 0,1  

we denote the number of elements of set f-1(i), then, according 
to [16], kernel K(f) of Boolean function f is determined as:

−= 1K(f) f (1),  

If − −≤1 1f (1) f (0) , and −= 1K(f) f (0) otherwise. 
Assume 1 qK(f) = { , , }a a  is the kernel of Boolean func-

tion →n
2 2f : Z Z  and ( ) ( )* n

2K f = Z \ K f .  From the elements of 
kernel K(f) we shall construct matrix xK (f)  in the following 
way: the first line of matrix xK (f)  is vector 

( )x x xα α(1) (1)1 (1)n= , ,a  

with K(f), the second line of the matrix is vector 

( )x x xα α(2) (2)1 (2)n= , , ,a  
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the final line xK (f)  is 

( )x x xα α(q) (q)1 (q)n= , , ,a  

where x(i)  is the substitution action x Î qS  for i.
Matrix N, built from the first r lines of tolerance matrix 

Î nL E  [16], is called tolerance prematrix and is denoted 
N=L(r). 

Remark. If ∅K(f) = ,  then we consider that xK (f) = L(0), 
where L is the arbitrary matrix with En. 

Let us determine convex linear shell convK(f) of kernel 
K(f) as follows:

Î l l∑ ∑
q q

n
i i i

i=1 i=1

convK(f) = { [0,1] | = , =1,x x a

l ≥ l ≥ Î 1 q 1 q0, , 0; , , K(f)}.a a   (3)

Theorem 1. Boolean function →n
2 2f:Z Z  is implemented 

by one neural element with a threshold activation function 
if, and only if, when ∩ ∅*convK(f) convK(f) = . 

The proof. The necessity is to be proved by contradiction. 
Suppose that 

/∩ ∅*convK(f) convK(f) = ,  −= 1K(f) f (1)  

and function f is implemented by one neural element with 
a threshold activation function. Then, as it is known [16], 
there is such x Î qS  and Î nL = L E ,w  that xK (f) = L (q).w  It 
follows from the latter equality that for all ÎK(f)a  and for 
all Î *K(f)b

( , ) > ( , ).a w b w   (4)

Assume Î ∩ *convK(f) convK(f) .d  Then 

l l l l ≥ Î∑ ∑  
q q

i i i 1 q 1 q
i=1 i=1

= ; =1; , 0; , , K(f),d a a a  (5)

¢ ¢

¢ ¢l l l l ≥ Î¢ ¢ ¢ ¢∑ ∑  
q q

*
i i i 1 q 1 q

i=1 i=1

= ; =1; , 0; , , K(f) .d b b b  (6)

Assume 

w Îmin i i
= min{( , ) K(f)}a w a  

and 

w Î¢ *
max j j= m ax{( , ) K(f) }b w b . 

We obtain based on (4)–(6):

¢ ¢

 
l ≥ l w w¢  

 
= l w ≥ l¢ ¢ ¢  

∑ ∑

∑ ∑

q q

i i i min max
i=1 i=1

q q

j max j j
j=1 j=1

( , ) = ( , ) > =

( , ) = ( , ).

d w a w

b w d w  (7)

The resulting inequality (d,w)>(d,w) demonstrates that 
our assumption 

/∩ ∅*convK(f) convK(f) =  

at K(f)=f-1(1) is not valid. If K(f)=f-1(0), then we have 
(d,w)<(d,w) and the necessity is proven. 

Let us show that when ∩ ∅*convK(f) convK(f) = ,  then 
function f is realized by one neural element with a threshold 
activation function. Using convex shells convK(f) і con-
vK(f)*, we shall build a set

− Î Î *D = { = | convK(f), convK(f) },d a b a b  (8)

which is, obviously, convex and dows not contain zero vec- 
tor 0 because 

∩ ∅*convK(f) convK(f) = .  

Convex linear shells convK(f) and convK(f)* are com-
pact [17], therefore, the set D is also compact and is there-
fore locked. Then, based on the separation theorem [18], 
one may argue that for D in the n-dimensional Euclidean 
space Rn there is such a hyperplane p Î n

0= { R | ( , ) = p }x p x  
/ Î0( = ), p R,p 0  which satisfies conditions

0p = ( , ) = 0p 0   (9)

and for all ÎDd

> 0( , ) p .p d   (10)

With regard to

− Î Î *= ( convK(f), convK(f) )d a b a b  

it follows from the latter inequlity that

>( , ) ( , ),p a p b   (11)

for any ÎconvK(f)a  and for arbitrary Î *convK(f) .b  
Hence inequality (11) holds for all ÎK(f)a  and for all

Î *K(f) .b  
Then, as shown in [19], there is such a vector ÎΩnw  

(Ωn is the set of all such n-dimensional real vectors that 
≠( , ) ( , ),1 2x w x w  if ≠( )1 2x x and Î n

2, Z1 2x x ), which satisfies 
(11). This means that from the elements of kernel K(f) one  
may build such a matrix xK (f), that xK (f) = L (q)w  ( Î nL Ew ).  
Therefore, function f is implemented by one neural element 
with a threshold activation function and the theorem is 
proven. 

Let us determine distance ρ( , )a b between elements 

α α1 n= ( , , )a  and b b Î n
1 n 2= ( , , ) Zb  

as follows:

ρ α − b∑
n

i i
i=1

( , ) = | | .a b   (12)

It is obvious, ρ( , )a b is the number of coordinates in 
which vectors a and b are different. 

Assume a, b are the arbitrary elements of kernel K(f) 
/( = )a b  of Boolean function →n

2 2f : Z Z  and O(a,b) is the set 
of such unit vectors i i1 s

, , ,e e  that 

⊕ + + +i i i1 2 s
= ,a b e e e  

where ⊕  is the coordinate-wise sum of vectors by module 2, 
/r ki = i ,  if /r = k.  We shall denote through H(a,b) a subgroup 

of group n
2Z  ( n

2Z  forms a group relative to operation ⊕), 
which is generated by elements O(a,b), that is, 
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Î i i i i1 s 1 s
H( , ) = , , | , , O( , ) .a b e e e e a b

Assume 

α α1 n= ( , , ),a b b Î n
1 n 2= ( , , ) Z .b  

Coordinate-wise conjunction of vectors a and b will be 
denoted through

α b α b1 1 n n& = ( & , , & )a b  

and through H( & )a b  we shall denote adjacent class of 
group n

2Z  by subgroup H(a, b), which is determined by el-
ement & ,a b  that is,

⊕H( & ) = & H( , ).a b a b a b

Theorem 2. If Boolean function →n
2 2f:Z Z  is implemented 

by one neural element with a threshold activation function, 
then for any two different elements a, b with K(f), for which 

∩ ≥*| H( & ) K(f) | 2a b  

and for any two different elements g, h with ∩ *H( & ) K(f)a b , 
inequality ρ ρ( , ) < ( , )g h a b  is true.

The proof. Let 

α α1 n= ( , , ),a b b1 n= ( , , )b  

are the arbitrary different elements with K(f) /( = ),a b  

γ γ1 n= ( , , ),g  δ δ1 n= ( , , )h  

are the arbitrary different elements with ∩ *H( & ) K(f)a b  
and ρ ρ= ( , ).a b  Without confining the generality of reasons, 
we shall assume that the first ρ  coordinates of vectors a 
and b are different, while others are equal, that is, /α bi i=  
for ρi =1,2, ,  and α b ρ + i i= , i = 1, ,n.  It follows from 
theorem 1 and from the fact that function f is realized by one 
neural element with a threshold activation function:

∩ ∅*convK(f) convK(f) = .   (13)

Therefore,

/l + − l l + − l1 1 2 2(1 ) = (1 ) ,a b g h   (14)

for all l l Î1 2, [0,1].
Given that points a, b /( = ),a b  g, h /( = )g h  are the cor-

ner points of the corresponding sets convK(f), convK(f)* 

and ∩ = ∅*K(f) K(f) ,  inequality (14) can be replaced with 
inequality

/l − + l − +1 2( ) = ( )a b b g h h   (15)

provided

l Î1 (0,1)  and l Î2 (0,1).   (16)

It follows from (16) that there is such a number 
Î ρr {1, , },  for which there is inequality

/l α − b + b l γ − δ + δ1 r r r 2 r r r( ) = ( ) .   (17)

Let us demonstrate that with (15), (16) and /α br r= , then 
γ δr r= .  This means that

ρ ρ( , ) < ( , ).g h a b   (18)

Let us consider the following possible cases: 
1. Assume αr =1.  Then br = 0  and from (17) we obtain

/l l γ − δ + δ1 2 r r r= ( ) .  Hence

/γ − δ l − δ
lr r 1 r

2

1
= ( ).   (19)

The left part of inequality (19) takes the values from set 
{–1, 0, 1}, because γ δ Îr r 2, Z .  

The right side of inequality (19) based on (16) cannot 
be equal to 0 at any values of l1, l2.  Therefore, inequality 
(19) is valid at arbitrary l l Î1 2, (0,1)  only when γ − δr r = 0. 
Thus, ρ ρ( , ) < ( , ).g h a b

2. Assume /αr = 0 . Then br =1  and it follows from 
(17) that

/−l + l γ − δ + δ1 2 r r r1= ( ) ,  (20)

or

/γ − δ − l − δ
lr r 1 r

2

1
( ) = (1 ).   (21)

Similar to the previous case, the latter inequality 
holds for all l l Î1 2, (0,1)  only when γ − δr r = 0.  Thus, 
ρ ρ( , ) < ( , ).g h a b  The theorem is proved. 

Assume 

1 qK(f) = { , , }a a  

is the kernel of Boolean function

→n
2 2f : Z Z  and { }= ⊕ ⊕iK(f) ,...,i 1 i qa a a a  

is the reduced kernel [16] of function f relative to element 
ÎK(f).ia  

We shall denote the set of all reduced kernels of Boolean 
function f through

{ }= = =iT(f) K(f) K(f) i 1,2,...,q .ia

They say that vector 

α α Î n
1 n 2= ( , , ) Za  

precedes vector 

b b Î n
1 n 2= ( , , ) Zb ( ),a b  

if α ≤ b =i i (i 1,2,...,n).  
We shall denote through Ma  the set of all such vectors 

from n
2Z ,  which precedes vector a. 

Assume = α ijL ( )  is the tolerance matrix over 

( )= = n1
2Z j 1,2,...,n; i 1,2,...,2 .  

Let us build matrix ( )b*
rjL =  in the following fashion: 

− − +
b = α n 1rj 2 i 1j

,  
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where α ij  is the negation of element α ij  and define operation 
∇  over matrices L and L* as:

 
∇ =   

*
*

L
(L L ) .

L

Assume 

w w ÎΩ1 n n= ( , , ) ,w  

α α Î n
1 n 2= ( , , ) Za  and σ Î nS . 

Let us define operations: 

( )1 n
1 n( 1) ,...,( 1)α α= − w − waw  and ( )σ

σ σ= w w(1) (n),..., .w  

Theorem 3. If Boolean function →n
2 2f : Z Z  is imple-

mented by one neural element with a threshold activation 
function, then in the set of reduced kernels T(f) there is such 
an element iK(f)  that

∀ Î ⇒ ⊂i iK(f) M K(f) .aa   (22)

The proof. It follows from the fact that function f is 
realized by one neural element with a threshold activation 
function that there exist such Î nL E  and ( )x Î qS q =| K(f) |  
[16] that satisfy condition

xK (f) = L(q).   (23)

Assume L = L ,w  then [16]

∇ ⋅* T T(L L ) = ,ww c   (24)

where = > > >n n1 2 1 22 2
(c ,c ...,c ), c c ... c .wc

Let us select by ai the first line of matrix L and transform 
equality (23) as:

xi iK (f) = L(q).a a   (25)

The coordinates of vector 1 i=w a w  are negative, and 
matrix i1

L = Lw a  satisfies condition [16]

∇ ⋅* T T
11 1 1

(L L ) = .w w ww c   (26)

We shall position coordinates of vector w1 in descend-
ing order, that is, construct vector σ

2 1= ,w w  where σ Î nS .  
Then, based on (26), we shall obtain:

∇ ⋅* T T
22 2 2

(L L ) = ,w w ww c   (27)

where σ

2 1
L = Lw w . Assume d is the arbitrary line of matrix 

σ σ
xi 2

K (f) = L (q),wa  except for the first one. If Î n
2Zb  is such 

that /⊂M M ( = ),b d b d  then inequality 2 2( , ) < ( , ).d w b w  is 
true. It follows from the latter inequality and (27) that the 
ordinal number of line d in matrix 

2
L (q)w  is larger than the 

ordinal number of line b. Thus, if /⊂M M ( = ),b d b d  then

σ σ σ σ σ
x x x xÎ ⇒ Î =i i i iK (f) K (f) (K (f) K (f)).d b a  

If we denote through a vector 
−σ 1

,b  then it directly fol-
lows from the latter ratio 

∀ Î ⇒ ⊂i iK(f) M K(f) ,aa   (28)

and the theorem is proved. 
Let { }= = ÎiT(f) K(f) K(f) K(f)i ia a  is the set of re-

duced kernels of Boolean function

→n
2 2f : Z Z ,  α α Î n

1 n 2= ( , , ) Z ,a

α∑
n

i
i=1

= ,a  { }Î*
i ik = max | K(f)a a  

and { }= * *
ik min k | i =1,2, , K(f) .

It directly follows from theorem 3. 
Corrolary. If Boolean function →n

2 2f : Z Z  is implement-
ed by one neural element with a threshold activation func-
tion, then 

1) in the set of reduced kernels T(f) there is such element 
( )i

K f ,  that, for any arbitrary ( )Î
i

K fa  and for any inherent 
integer r < a , inequality is true

{ }Î ≥ r
iK(f) | = r C ,ab b   (29)

where m
nC  is the binomial coefficient;

2) ≥
*k

| K(f) | 2 ..

4. 2. Sufficient conditions of realizability of Boolean 
functions by one neural element with a threshold acti-
vation function and its application for the synthesis of 
neural elements

Assume ⊆ n
1 q 2A = { , , } Za a  and 1 n{L , ,L }  is the set of 

tolerance matrices whose elements are built by recurrent 
relation:

− −

− −

   
      

1 1 n 1 n 1
1 1 2 n* *

1 1 n 1 n 1

L 0 L 0
L = (0 ), L = , ..., L = .

L 0 L 0
 (30)

We shall denote through ( )σ σi i
ip Aa  the matrix whose 

lines are elements of maximum subsets of set 
σi

i( A) ,a  which 
satisfy condition

( ) ( )
+

− + − + +−

∇ ∇ ∇


   * i * i
j j j j 0 j r ri i i i i i i

n j 1 n j r 1in j i ii

(L 0 0 ) (L (q )0 0) (L (q ) 0 0 ),(31)

where ≥ ≥ ≥i i i
0 1 ri

q q q .
Let ( )= b kjB  is the rectangular m×n matrix over Z2 and 

s(j;B)  is the number of unities of jth column of matrix B. 
Element σ Î nS  relative to = α α Î1 n( ,..., ) Ba  will be deter-
mined so that

σ σ σ σ− ≥s(j 1; B ) s(j; B ),a a   (32)

where σ σ
σ σ= α ⊕b( j) s ( j)B ( ).a

Assume, 

( ) ( ) ( ) ( )σ σ σ σ σ σ σ σ
+∇ ∇ ∇i i i i i i i i

i 0 i 1 i r 1 ii
p A = p A p A p A ,a a a a (33)

where 

( )σ σ

−


i i
0 i j j ji i i

n ji

p A = (L 0 0 );a

( )
( )

σ σ

− +
* ii i

1 i j 0i
n j 1i

p A = (L (q )0 0);a

( )
( )

σ σ
+ +

− + +




* ii i
r 1 i j r ri i i i

n j r 1i i

p A = (L (q ) 0 0 )a   (34)
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and element σ Îi nS  is determined by condition (32). 
Let us denote through 

( )σ σi i
ip Aa  

the number of lines in matrix ( )σ σi i
ip Aa  and assume 

( ) ( ){ }σ σ σ σ
m m i i

m ip A = max p A i =1,2, ,q .a a

If set 

( ){ }σ σ
i i

ip A i =1,2, ,qa  

contains several maximal elements, then we shall denote one 
of them through 

( )σ σm m
mp Aa . 

Threshold operator p with marks am and σm  relative to set A 
will be determined as: ( ) ( )σ σm m

mp A = p A ,a  that is, 

∇ ∇ ∇0 1 t0
p(A) = p (A) p (A) p (A),  (35)

where 

( ) ( )σ σm m
s s mp A = p A ,a  + + m 0 ms = 0,1, ,r 1(t = r 1).

The maximal subset of set A, from whose elements 
matrix (35) can be constructed, will be called the p-a 
subset of set A with marks am and σm  and denoted 
through A (1). 

We shall determine index j0 of p-a subset A(1) as:

+0 02j = | p (A) | 1,log

where 0| p (A) |  is the number of lines in matrix p0(A).
Let us build the following system of sets:

( ) ( ){ }σ
− +α α α α Î (1) m

j 1 j 1 j 1 n m0 0 0
A = = , , ,1, , , | A ,a a a

( ) ( ){ }σ
+ +α α α α Î (1) m

j 1 1 j j 2 n m0 0 0
A = = , , ,1, , , | A ,a a a

( ) ( ){ }(1) m
j t 1 1 j t 2 j t n m0 0 0 0 0 0

A = = , , ,1, , , | A , (36)
σ

+ − + − +α α α α Îa a a



 

whose elements will be called one-index sets of p-expansion 
of set A. We shall apply threshold operator p to each of these 
sets in accordance with marks

( )
σ  (1)

j m0
0

= (0, ,0, ,0, ,0), ,1
j

e

( )+
+

σ  (1)
j 1 m0

10

= (0, ,0, ,0, ,0), ,1
j

e

( )+ −
+ −

σ


  (1)
j t 1 m0 0

t 10 0

= (0, ,0, ,0, ,0), ,1
j

e   (37)

where σ(1)
m  satisfies conditions:

1) ∀ Î − + + + σ σ  (1)
0 0 0 0 0 m mj {1,2, , j 1, j t , j t 1, ,n} (j) = (j);

2) If /Î + + −0 0 0 0i, j {j , j 1, , j t 1} (i = j)  and σ σ(1)
m m(i) = (j), 

σ σ(1)
m m(j) = (i),  then it is possible only in the case when the 

sum of unities in columns i and j matrix 
σ
x x Îm

m q( A) ( S )a  
coincide, that is, 

( ) ( )σ σ
x x

m m
m ms i;( A) = s j;( A) ;a a

3) if 

Î + + −0 0 0 0i, j {j , j 1, , j t 1}  

and 

( )σ
x /m

ms i;( A) =a ( )σ
x

m
ms j;( A)a , 

then 

σ σ σ σ(1) (1)
m m m m(i) = (i), (j) = (j).

Assume

( )
+ −

=

 
∇ 

 ∇
0 0

j t 10 0
2 (1)

0 i0
i j

p (A) = p (A) p A .   (39)

We shall denote through A(2) the maximal subset of set 
A, from whose elements matrix 2p (A),  can be built. 

Assume →n
2 2f : Z Z  is the Boolean function and its ker-

nel is A=K(f).
Theorem 4. If (2)A = A  and the blocks of matrix

∇ ∇ ∇2 2 2
0 1 t0

p (A) = p (A) p (A) p (A)   (40)

satisfy conditions: 

1) ( ) ( )+ + +
(1) (1)

0 j i 0 j i 10 0
p A = p A , − 0i = 0,1, ,t 2;

2) at each fixed

+ + +Î − 0 j i j i 10 0
i {0,1, ,t 2} t = t

and for each { }+ +Î  j i 10
k 1,2, ,t  

( ) ( )+ + +− ≥(1) (1)
k j i k j i 1 i0 0

p A p A = q 0,   (41)

then function f is implemented by one neural element with a 
threshold activation function. 

The proof. It is given that (2)A = A ,  that is, there are such 
elements ÎAa  and σ Î nS ,  relative to which a matrix can be 
constructed from the elements of set σ σAa

∇ ∇ ∇2 (2) (2)
0 1 t0

p (A) = p (A) p (A) p (A).

Let us demonstrate that when blocks

( ) ( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

(1) (1) (1) (1)
j 0 j 1 j t j0 0 0 j 00

(1) (1) (1) (1)
j 1 0 j 1 1 j 1 t t0 0 0 j 1 j 10 0

(1) (1) (1) (1)
j t 1 0 j t 1 1 j t 1 t t0 0 0 0 0 0 j t 1 j t 10 0 0 0

p A = p A p A p A ,

p A = p A p A p A ,

p A = p A p A p A , (38)

+ + + + +

+ − + − + − + − + −

∇ ∇ ∇

 ∇ ∇ ∇   

 ∇ ∇ ∇   
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(2) (2) (2)
1 2 t0

p (A),p (A), ,p (A)  of the matrix satisfy conditions 1, 
2, then there is such n-dimensional vector w, for which there 
is inequality

σ σ σ σ∀ Î ∀ Î n
2a A , Z \ a Ax y ( , ) > ( , ).x w y w  (42)

Assume 

( ) +(1)
1 0 j 1 02 0
j = p A 1 (j < j )log  

and
−

w − w w − w w −∑

j 11

1 2 1 j i1
i=1

= 1, = 1, , = 1.   (43)

We shall denote through −0 t 1j0
, ,z z  the last lines of the 

respective matrices 

( ) ( )(1) (1)
1 j t j0 j 00

p A , ,p A  ( ≥0t 2) 

and coordinates +w j s1
 are successively found from equalities:

+

− + −

w w w

= w w w −

 

  

s 1 j j s1 1

s 1 1 j j s 1 j1 1 0

( ,( , , , ,0, ,0)) =

( ,( , , , ,0, ,0)), s =1,2, ,t 1.

z

z  (44)

Parameters 0 1j , j  and −j0
t 1  are related to one of the 

relations:
a) − + −0 1 j0

j (j t 1) >1;
b) − + −0 1 j0

j (j t 1) =1.
In the first case, the coordinates

+ + + −w w wj t j t 1 j 11 j 1 j 00 0
, , ,  

of vector w will be found as

+ − +w w w w −  j t j 1 t 1 j t1 j 0 10
= = = ( ,( , , ,0, ,0)) 1,z  (45)

where −j0
t = t 1.

In the second case, coordinates −w w w 1 j j 11 0
, , , ,  of 

vector w have been already defined. Coordinate w j0
 will be 

determined by formula: 

−

w w −∑
j 10

j i0
i=1

= 1.
 

Then from 2nd condition of the theorem for coordinates 

+w j i0
 we obtain:

+ + − −w w − −j i j i 1 i 1 00 0
= q (i =1,2, ,t 1).  

Coordinates + + +w w wj t j t 1 n0 0 0 0
, ,  will be defined by 

formula:

+w w w w + w −  j t n 0 1 j j0 0 1 0
= = = ( ,( , , ,0, ,0)) 1.z  (46)

Then vector w w1 n= ( , , )w  satisfies condition (42) and 
for vector 

−σ 1

1 =w aw we have:

∀ Î ∀ Î n
2 1 1A, Z \ A ( , ) > ( , ).x y x w y w  (47)

It follows from the latter inequality and [19] that there 
exists such vector ÎΩn ,v  which satisfies (47), too. Thus, it 
is possible to build from elements of set A tolerance prema-
trix L (q) (q =| A |)v  and in this case the theorem is proved. 

If 0t = 0,  or 0t =1, then (2) (1)A = A  and vector w is built ac-
cording to [20]. Hence, the theorem is proved. 

Let +α α α α  1 j j s n= ( , , , , , , )a  is the arbitrary vector 
of set Î −s {0,1, ,n j}  and ≥j 2 . On the set of coordinates 
α α1 n{ , , }  of vector Î n

2Za  for fixed s and j we shall deter-
mine function ε Î k

j (k {0, ,s}) as follows:

α ≤ −
ε α α − +
α +

i
k
j i i k

i

, if    i j 1;

( ) = (j r ), if    i = j k;

j, if    i > j s,

 (48)

where 

Î − 0 1 sr ,r , ,r {1,2, , j 1}.  

Through functions ε k
j (k = 0, ,s)  at fixed Î −s {0, ,n j} 

and j we shall assign mapping of 

+ε →s n n
j 2 j 1: Z Z ( )+ ≤ ≤j 1Z = {0,1, , j}, 2 j n

as follows:

(
)

s
j

s s 0 1
j 1 j j 1 j j j j 1

s s s
j j s j j s 1 j n

( ) =

( ), , ( ), ( ), ( ), ,

( ), ( ), , ( )

− +

+ + +

ε

= ε α ε α ε α ε α

ε α ε α ε α

a

 

  (49)

and define functional s
jv  on set n

2Z  by formula:

∀ Î n
2Za +

Î

ε α + ε α∑ ∑
s

s s i
j j i j j i

i I ( j) i=0s

v ( ) = ( ) ( ),a  (50)

where + + sI (j) = {1,2, ,n} \ {j, j 1, , j s}.  Using functional 
s
jv  for each 

Î k {0,1, ,s},  

we shall construct a set of Boolean vectors ( )
+
r ,sk

j kF  as:

( ) ( ){ }+ +Î ≤ −
r ,s * sk

j k j k jF = m L 0 0 | v ( ) j 1 ,a a  (51)

where ( )+ *
j km L 0 0  is the set of Boolean vectors, built of the 

lines of matrix ( )+ *
j kL 0 0 , and 

Î − 0 1 sr ,r , ,r {1, , j 1}.

Theorem 5. If in kernel K(f) of Boolean function 
→n

2 2f (f : Z Z ), in group nS  there accordingly exist such el-
ements ,a σ  and such integers 

≥ ≥ ≥0 1 sr r r > 0  ≤ −0(r j 1)  

that

( )σσ
+

−

 
∪    

s
(r ,s)i

j j i
n j i=0

K f = m(L 0 0) F ,a   (52)

then function f is implemented by one neural element with a 
threshold activation function. 

The proof. We shall assign n-dimensional vector 
w w1 n= ( , , )w  as follows:

−w w −1 j 1= = = 1,
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+ + + +w − w − w − w w − j 0 j 1 1 j s s j s 1 n= r j, = r j, , = r j, = = = j.  

Upon construction of vector w, we obtain:

( ){ }
( ) ( ){ }

( ) ( ){ }
( ) ( ){ }

+

+ +

Î −

∀ Î Î −

Î −

∀ Î + Î −







 

j

r ,kk
j k

(r ,k)* k
j k j k

*
t

min , | m(L 0 0) =1 j,

k {0,1, ,s} min , | F =1 j>

> max , | m L 0 0 \ F = j,

t {s 1, ,n} max , | m L 0 0 = j

x w x

x w x

x w x

x w x . (53)

Then it follows directly from (52):

( )σσ σ σ∀ Î ∀ Î n
2K f , Z \ K(f) ( , ) > ( , ).x a y a x w y w  (54)

Thus, there is such vector −ÎΩnv  [19], which also satis-
fies inequality (54). This means that there is such element 

( )x Î qS (q =| K f |),  

that 

σ σ
xK (f) = L (q),va

where −Î nL Ev . Then, from the elements of kernel K(f) one 
can build tolerance prematrix 

( )−σ 1

1 1L (q) L = L .va  

The theorem is proved.

5. Discussion of results of the study

5. 1. An application of necessary conditions for veri-
fying the realizability of Boolean functions by one neural 
element with a threshold activation function

The efficiency of applying necessary conditions, ob-
tained in present paper, for the realizability of functions of 
the algebra of logic by one neural element with a threshold 
activation function will be demonstrated using the following 
problem: is the given Boolean function →100

2 2f : Z Z  realized 
by one neural element if

{ }− =1f (1) ,1 2 100e ,e ,...,e  

where ei is the unit vector, whose ith coordinate equals 1. 
In this case,

( ) −= 1K f f (1).  

Let us build a set of reduced kernels

( ) ( ) ( ) ( ){ }=
1 2 100

T f K f ,K f ,...,K f . 

By the definition of a reduced kernel for arbitrary fixed 
i we have

( ) { }= ⊕ =
i

K f j 1,2,...,100 .i je e 

If ≠j i,  then for element

= ⊕ Î iK(f) ,i ja e e 

condition ⊂ iM K(f) .a  is not satisfied. Thus, function f is 
not implemented by one neural element with a threshold 
activation function. 

If one applies iterative methods for the synthesis of 
neural elements with a threshold activation function, which 
have n inputs and structure vector

= w w w w1 2 n 0( , ,..., ; ),w

then for finding the value of the weighted sum

= w α + w α + + w α + w1 1 2 2 n n 0(a) ...w

in set = α α α α Î n
1 2 n 0 2( , ,..., ; ) Za  it is required to perform n 

operations of multiplying and n adding operations, that is, 
2n arithmetic operations. Hence, it directly follows that to 
perform one step of iteration (excluding those arithmetic 
operations that are required to find new structure vector w1 
by recurrent formula) is equal to 2n+1n. Thus, the number 
of arithmetic operations needed for the verification of real-
izability of Boolean functions by one neural element with a 
threshold activation function at any accuracy of approxima-
tion by the iterative method is not less than number 2n+1n. 
In our case, not less than number 2101100. This indicates 
that the iterative method is practically not applicable when 
solving the set problem because of a large number of required 
arithmetic operations.

5. 2. Synthesis of integer neural elements with thresh-
old activation functions

We shall demonstrate how theorems 4 and 5 are applied 
for the synthesis of integer neural elements with a threshold 
activation function. 

Example 1. Assume n=10, ai=(1,1,1,1,1,0,0,0,0,0),

 
σ   

1 2 3 4 5 6 7 8 9 10
= ,

6 7 8 9 10 1 2 3 4 5

σ ∇ ∇2 2 2
i i 0 i 1 i 2 iK (f) = p (K(f) ) = p (K(f) ) p (K(f) ) p (K(f) ),

where 

( ) ( ) ( )= ∇ ∇ ∇

2
0 i 7 1 i

(1) (1) (1)
0 i,7 1 i,7 2 i,7

p (K(f) ) = (L 000),p (K(f) ) =

p K(f) p K(f) p K(f)

Let us find a structure vector of neural element that im-
plements function ( )1 10f x , ,x .  In line with theorem 4, we 
shall construct vector w w1 10= ( , , ) :w

( ) +(1)
1 0 i,72j = p K(f) 1=4,log

then w − w − w − w −1 2 3 4= 1, = 2, = 4, = 8.
Vectors 

0 = (1,1,0,1,0,0,1,0,0,0),z  

( )∇ =

= ∇ ∇ ∇

(1)
3 i,7

* * *
4 4 5 6

p K(f)

(L 001000) (L (4)001000) (L (2)01000) (L (2)1000);

( ) ( ) ( ) ( )= ∇ ∇ ∇ =

= ∇ ∇ ∇

2 (1) (1) (1) (1)
2 i 0 i,8 1 i,8 2 i,8 3 i,8

* * *
4 4 5 6

p (K(f) ) p K(f) p K(f) p K(f) p K(f)

(L 000100) (L (3)000100) (L (1)00100) (L (1)0100).
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1 = (1,0,0,0,1,0,1,0,0,0),z

2 = (1,0,0,0,0,1,1,0,0,0)z  

are built from the last lines of corresponding matrices 

( )(1)
1 i,7p K(f) , ( )(1)

2 i,7p K(f) , ( )(1)
3 i,7p K(f) .  

Coordinates w w5 6,  of vector w are successively found from 
relations:

+ +

− + + −

w w w w

= w w w w

  

  

s 1 j j 1 j s1 1 1

s 1 1 j j 1 j s 11 1 1

( ,( , , , , , 0, ,0)) =

( ,( , , , , , 0, ,0)),

z

z s =1,2.

In this case, w − w −5 6= 10, = 10.  Parameters j0=7, j1=4, 
t7=3 satisfy condition − + −0 1 j0

j (j t 1) =1.  
Then

w w + + w − −7 1 6= 1= 36.  

Parameter t0=2, and by appropriate formula (theorem 4)

+ + − −w w − −j i j i 1 i 1 00 0
= q (i=1,2, ,t 1)  

is determined w w − −8 7= 1= 37. The last coordinates of vec-
tor w will be found from the following relation:

w w w w + w − −9 10 0 1 4 7= = ( ,( , , ,0,0,0,0,0,0)) 1= 48.z

The built vector 

w=(–1, –2, –4, –8, –10, –10, –36, –37, –48, –48) 

satisfies condition

σ σ∀ Î ∀ Î n
i 2 iK (f) , Z \ K (f)x y ( , ) > ( , ).x w y w

Thus, Boolean function 1 10f(x , ,x )  is realized by the 
neural element with weight vector

−σ − − − − −
1

1 i= = (10,36,37,48,48, 1, 2, 4, 8, 10)w a w  

and threshold 

( )−σw¢
1

1 i 0= , =132,w a z  

if K(f)=f–1(1). In the opposite case (K(f)=f–1(0)) function 
1 10f(x , ,x )  is implemented by the neural element with 

structure vector − w¢¢1[ ; ],w  where w −¢¢ = 131.
Example 2. Assume n=10, ai=(0,0,0,0,0,1,1,1,1,1),

 
σ   

1 2 3 4 5 6 7 8 9 10
= ,

10 9 8 7 6 5 4 3 2 1

j=5, r0= r1=3, r2=2, r3=1, r4= r5=0. 

j=5, r0= r1=3, r2=2, r3=1, r4= r5=0. 

In this case s=3, since r3>0 і r4=0. 
For arbitrary 

α α Î 10
1 10 2= ( , , ) Za  

we shall determine ε3
5( ) :a

j=5, r0= r1=3, r2=2, r3=1, r4= r5=0. 

3 3 3 3 3 0
5 5 1 5 2 5 3 5 4 5 5

1 2 3 3 3
5 6 5 7 5 8 5 9 5 10

1 2 3 4 5 6 7 8 9 10

( ) = ( ( ), ( ), ( ), ( ), ( ),

( ), ( ), ( ), ( ), ( ))

= ( , , , ,2 ,2 ,3 ,4 ,5 ,5 ).

ε ε α ε α ε α ε α ε α

ε α ε α ε α ε α ε α =
α α α α α α α α α α

a

Let us successively build sets (3,3)
5F ,  (3,3)

6F ,  (2,3)
7F ,  

(1,3)
8F  

by rule:

( ) ( ){ }+ +Î ≤ −
r ,s * sk

j k j k jF = m L 0 0 | v ( ) j 1 ,a a

where ( )+ *
j km L 0 0  is the set of Boolean vectors, construct-

ed of the lines of matrix +
*
j kL ;

(3,3)
5F = {(0,0,0,0,1,0,0,0,0,0),(1,0,0,0,1,0,0,0,0,0),  

(0,1,0,0,1,0,0,0,0,0), (1,1,0,0,1,0,0,0,0,0),  
(0,0,1,0,1,0,0,0,0,0),(1,0,1,0,1,0,0,0,0,0),  
(0,1,1,0,1,0,0,0,0,0),  (0,0,1,1,1,0,0,0,0,0,0)};

(3,3)
6F = {(0,0,0,0,0,1,0,0,0,0),(1,0,0,0,1,0,0,0,0,0),

(0,1,0,0,0,1,0,0,0,0),(1,1,0,0,0,1,0,0,0,0),

(0,0,1,0,0,1,0,0,0,0),(1,0,1,0,0,1,0,0,0,0),

(0,1,1,0,0,1,0,0,0,0),(0,0,1,1,0,1,0,0,0,0),

(0,0,0,0,1,1,0,0,0,0)};

(2,3)
7F = {(0,0,0,0,0,0,1,0,0,0),(1,0,0,0,0,0,1,0,0,0),

(0,1,0,0,0,0,1,0,0,0),(0,0,1,0,0,0,1,0,0,0),

(0,0,0,1,0,0,1,0,0,0)};

(1,3)
8F = {(0,0,0,0,0,0,0,1,0,0)}

and let us consider the Boolean function whose reduced ker-
nel allows for the following representation:

σ ∪ ∪ ∪ ∪(3,3) (3,3) (2,3) (1,3)
i 5 5 6 7 8K (f) = m(L 00000) F F F F .  

Then by theorem 5

w w w w − w − −1 2 3 4 5= = = = 1, = 3 5 = 2,

w − w −6 7= 2, = 3,

w − w w = −8 9 10= 4, = 5.

Neural element with weight vector
−σ ´

´ − − − − − − − − − −
= − − − − −

1

1 i= = (0,0,0,0,0,1,1,1,1,1)

( 5, 5, 4, 3, 2, 2, 1, 1, 1, 1) =

( 5, 5, 4, 3, 2,2,1,1,1,1)

w a w

 

by threshold 

−σw
1

0 i 1= ( , ) = 2,a x w  

where 

= ( ,0,0,0,0,0),x z  

z is the last line in tolerance matrix *
5L , implements func-

tion 1 10f(x , ,x ),  if K(f)=f–1(1). In the opposite case 
(K(f)=f–1(0)) function 1 10f(x , ,x )  is realized by one neural 
element with structure vector 
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− − − − − w −¢2 0[ = (5,5,4,3,2, 2, 1, 1, 1, 1); = 1].w

The examples presented in the article demonstrate that, 
based on theorems 4 and 5, it is possible to construct effective 
algorithms for the synthesis of integer neural elements with a 
threshold activation function with a large number of inputs.

6. Conclusions

For a wide use of neural elements with threshold activa-
tion functions for solving applied problems, it is necessary to 
possess efficient methods for the verification of realizability 
of functions of the algebra of logic on such elements and the 
methods for their synthesis with a large number of inputs. 
These tasks may include: compression and transmission of 
discrete signals, classification and recognition of discrete 
images, coding of information, selecting fragments in dis-
crete images. 

Based on the results, described in present article, on the 
structure of kernels and reduced kernels of Boolean func-
tions and properties of tolerance matrices, we obtained:

– criteria for the realizability of Boolean functions by 
one neural element with a threshold activation function;

– effective necessary conditions for the validation of re-
alizability of Boolean functions by one neural element with 
a threshold activation function;

– sufficient conditions for the realizability of functions of 
the algebra of logic by one neural element with a threshold 
activation function, using which it is possible to synthesize 
neural elements with integer structure vectors with a large 
number of inputs.

Obtained results might be successfully applied when de-
veloping methods for the synthesis of neural network circuits 
from integer neural elements with a large number of inputs. 
These neural network circuits can be effectively used for the 
encoding and compression, for the classification and recog-
nition of discrete signals and images.
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1. Introduction

Today in Ukraine we may observe a considerable increase 
in negative phenomena in the sphere of marriage and family, 
namely a reduction in the quantity of new marriages, an in-
crease in divorce rate, weakening family bonds and others [1]. 

The institute of family in the contemporary society, 
including Ukrainian, is subjected to significant changes. 
Its value-normative space is changing, the new types of 
families and family relations appear, and functional relations 
between the family and the society are transformed. The 
transitive nature of society development could not but affect 
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Розглянуто використання фак-
торного аналізу для вивчення фак-
торів ризику виникнення кризи 
в сімейних відносинах, які приво-
дять до дисциркуляторної енцефа-
лопатії. За допомогою факторно-
го аналізу обґрунтовано розбиття 
системи показників на змістовні 
блоки. Виявлені фактори дозволя-
ють визначити мішені психокорек-
ції, які включають особистісні яко-
сті й фактори, умовно віднесені до 
блоку сімейної кризи

Ключові слова: сімейна криза, 
дисциркуляторна енцефалопатія, 
факторний аналіз, тіснота зв'язку, 
когнітивні та емоційні розлади

Рассмотрено применение фак-
торного анализа для изучения фак-
торов риска возникновения кризиса 
в семейных отношениях, которые 
могут привести к дисциркуляторной 
энцефалопатии. С помощью фак-
торного анализа обосновано разбие-
ние системы показателей на содер-
жательные блоки. Выявленные 
факторы позволяют определить 
мишени психокорекции, которые 
включают личностные качества 
и факторы, условно отнесенные к 
блоку семейного кризиса

Ключевые слова: семейный кри-
зис, дисциркуляторная энцефало-
патия, факторный анализ, теснота 
связи, когнитивные и эмоциональ-
ные расстройства
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