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1. Introduction

There are situations in ophthalmology when standard 
parametric methods (visual acuity test, perimetry, etc.) of 
diagnostics are inexpedient and impossible to use. Such 
situations occur, firstly, in the case of the visual analyzer 
diagnostics of newborn and non-speaking children who are 
unable to express themselves clearly; secondly, they appear if 
there is some pathology in the visual activity related to both 
optical and neural (sensory) disorders. A diagnostics method 
using the visual evoked potential (VEP) does not require 
the patient’s response, so it allows estimating the visual an-
alyzer activity in a complex: the peripheral organ – an eye, 
visual pathways, and visual centers in the cortex.

The visual evoked potential (VEP) is one of the types of 
the brain electric activity registered on the scalp above the 
visual areas and caused by external stimuli (light flashes – 
FVEP, pattern changes – PVEP, or changes in an image on 
the monitor). At a low stimulation frequency (Fs<4 Hz), the 
visual analyzer produces a transient VEP (TVEP), but at an 
increased stimulation frequency (Fs>5 Hz), there appears a 
steady-state VEP (SSVEP). In other words, at high stimu-
lation frequencies, the human visual system proceeds from 
generating a TVEP to an SSVEP, thus producing responses 
with the same frequency.

In contrast to a transient VEP, the SSVEP character-
istics (phase, frequency, and period) are stable throughout 
the whole research duration, and they are less exposed to 
the impact of artifacts and noises [1]. Consequently, the 
field of using the SSVEP is not limited to ophthalmological 
problems (assessment of visual acuity, an injury of the brain 
visual centers, optic neuritis, amblyopia, etc. [2]), but it is 
used to solve problems of cognitive (assessment of visual 
attention, working memory, and binocular vision [3]) and 
clinical (schizophrenia, autism, epilepsy, depression, mi-
graine [4]) neurosciences, brain-computer interfaces [5], 
and neuromarketing [6]. Research on the SSVEP to use 
it further in the information technology of the ophthal-
mological diagnostics is an essential problem as its solving 
contributes to detailed visual analyzer research and appro-
priate complex treatment.

2. Literature review and problem statement

Let us consider the mathematical models of the SSVEP 
and the corresponding parameters that could be used as 
informative for further diagnostics. A component model, 
which is described in [1], represents the SSVEP as the 
sum of three components: primary, secondary, and rhyth-
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mic, obtained as a result of Fourier analysis. To evaluate 
the diagnostic parameters, it is necessary to analyze each 
component (frequency and phase) and to find reference 
values and statistical confidence intervals, which is a really 
time-consuming process.

A contrast response function is used by the authors of 
[2] for amblyopia diagnostics. The maximum amplitude of 
the evoked potentials of healthy people should be growing at 
changing the contrast of the stimulation source of the visual 
analyzer. In the case of a slight increase, an ophthalmologist 
argues about certain pathology. The value of amplitude 
changes is a diagnostic parameter, and an appropriate meth-
od is the comparison of a previous value with some standard-
ized one. It should be noted that there are visual pathologies 
for which this method is not effective, for there is a high 
probability of a false diagnosis.

Scientists use averaging of the signal realization sets 
(a coherent signal accumulation), describing the analyzed 
signal by an additive model [7]. The first component of this 
model is a determined function that represents the VEP, 
and the second component is a centered weakly stationary 
process as a background electroencephalogram (EEG). 
Several methods – GSA, SRM, and SDEM [7] – are used 
to select the VEP on the EEG background. However, only 
the first moment is studied in the analysis, and only the 
amplitude-time characteristics of extremes (N75, P100, 
and N145) are used for ophthalmologic diagnostics, which 
is not enough.

The authors of [8] apply independent component analysis 
for selecting the SSVEP. With such a component approach 
to diagnosing, it is necessary to choose those components 
that display the visual activity; that can be followed by their 
further processing, and this procedure increases the compu-
tational complexity.

An autoregression model is applied to describe the 
SSVEP in [9], and the visual analyzer can be diagnosed 
with estimations of autoregression parameters. The com-
plexity of this model will increase when applying it to a 
two-channel SSVEP, so scientist must necessarily take 
into account the cyclical nature of the studied process for 
parameter estimation.

The authors of [10] apply a discrete wavelet transform 
to the SSVEP; the information parameters are appropriate 
decomposition coefficients, and the classification method 
is the support vector machine. It is important to choose 
correctly and justify the basic function and the number of 
the decomposition levels. An increase in the number of the 
decomposition levels of the wavelet transform increases the 
number of the informative parameters. This technique is 
applied in brain-computer interfaces, but for ophthalmologic 
diagnostics it is necessary to investigate the correlation 
between the results of the wavelet decomposition and the 
biophysical principle of generating the signal for further 
results interpretation.

Thus, the primary important problem is to create a math-
ematical model that would take into account the simultane-
ous interaction between multiple sources of the brain activ-
ity, includes the cyclical properties and the stochasticity of 
the SSVEP, reflects the mechanism of generating electrical 
activity by individual neurons, and allows estimating the 
informative features of the process.

Obtaining informative parameters on the basis of an ap-
proved model that takes into account the above enumerated 
requirements is the main critical stage in the creation of 

the information technology of ophthalmologic diagnostics, 
which reflects the objective of this research.

3. The purpose and objectives of the study

The research purpose is the feature extraction of a 
two-channel SSVEP for further ophthalmological diagnos-
tics, using a corresponding linear transformation based on a 
mathematical model in the form of two-dimensional linear 
periodic random process (LPRP).

To achieve this purpose, it is necessary to do the follow-
ing tasks:

– to justify the usage of the Karhunen-Loeve expansion 
for the feature extraction of a two-channel SSVEP;

– to determine the optimal number of informative char-
acteristics that sufficiently characterize the investigated 
process;

– to investigate the effect of a stochastic correlation 
between the channels on the optimal number of informative 
parameters.

4. Materials and a 2-channel steady-state VEP feature 
extraction method

4. 1. The digital electroencephalograph specification 
and the 2-channel SSVEP registration protocols

The SSVEP registration was performed by the electro-
encephalograph DX-NT32 (Kharkiv, Ukraine) with the fol-
lowing specifications: the sampling frequency – 512 Hz, the 
signal quantization – 12 bits, the notch filter – 50 Hz, the 
high-pass filter – 0.05-1 Hz, the input impedance – 20 MΩ, 
the phase noise reduction coefficient – 100 dB, the light 
stimulation – three LED lamps with the ability to change 
the stimulation frequency (1–30 Hz).

The research involved 20 participants (12 men and 8 wo- 
men) aged 18-23 years (the average age was 20 years). Each 
person of the subject group participated in two experiments 
conformed to the ISCEV standard for clinical registration 
of a VEP [11]. The international 10–20 system was used 
to determine the location of scalp electrodes. Active elec-
trodes were placed in the positions O1 and О2, whereas the 
reference electrode was in the position Fz. The experiments 
were performed in a dimly lighted laboratory. The source of 
the external visual stimulation consisted of three LED light 
bulbs that simultaneously produced light flashes lasting 
30 microseconds. The horizontal visual field was 140°. The 
mean luminance was 3 cd×m-2.

The first experiment comprised three trials with the cor-
responding stimulation frequencies of 6, 8, and 10 Hz, as sche-
matically shown in Fig. 1. The recording duration of each trial 
was 120 sec, which was divided into four sessions: 10 seconds 
of a resting part when the participant could look at the source 
of stimulation without any response; 10 seconds of an adaptive 
session when the source of stimulation produced light flash-
es at the selected frequencies; 10 seconds of a resting part; 
90 seconds of an active session during which the SSVEP was 
registered under the stimulation frequencies of 6, 8 or 10 Hz.

The second experiment differed from the first experi-
ment only since the electrodes activity changed during the 
active session: for 45 seconds, the active electrode was O1; for 
the next 45 seconds, it was O2. In other words, there was no 
simultaneous registration of the two-channel SSVEP.
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4. 2. Feature extraction of a SSVEP by the Karhunen- 
Loeve expansion

In [12, 13], a mathematical model of the SSVEP is con-
structed and justified, taking into account all previously 
described requirements of a two-dimensional linear periodic 
random process (LPRP). The following information briefly 
represents the basic provisions of the model.

Suppose the random process x(t), which reflects the visu-
al activity caused by a flash cyclic stimulation, is presented 
in the form of a linear random process (LRP) [11]:

¥

−¥

x = j t p t∫ 1(t) ( ,t)d ( ),   (1)

where p1(t), tÎ(–¥, ¥) is a non-uniform generalized Pois-
son process for which P{p1(0)=0}=1; j(t, t) is the kernel of 
the LRP, a nonrandom function that is presented by the 
expression:

j(t,t)=e–b(t)(t–t)sin(w(t)(t–t))U(t–t),  (2)

where U(s) is the Heaviside function; w(t) is a nonrandom 
function that describes the coefficient of impulse damping; 
b(t) is a nonrandom function that describes the impulse fre-
quency. It is assumed that only one active electrode placed 
on the human scalp was used for the random process regis-
tration (one-channel record).

According to expression (1), a SSVEP is the sum of all 
impulses (2) that are produced by neurons at consistent 
time moments tn, nÎZ. Herewith, the random variable of 
generating the process jumps p1(t), tÎ(–¥, ¥) characterizes 
the impulses amplitude.

The authors of [12] use the LPRP to represent x(t), 
having justified the periodic properties of the mathematical 
model (1). The model takes into account the cyclic stimu-
lation, which is important for diagnostics by the SSVEP. 
Suppose that the visual system of some object is exposed to 
a cyclical stimulation with a certain frequency F or a corre-
sponding stimulation period T=1/F. Based on the conclusion 
of [12], we claim that the mathematical expectation and the 
covariance function of the investigated process (1) are T-pe-
riodic, namely:

x = x +E (t) E (t T),  1 2 1 2R (t ,t ) R (t T,t T).x x= + +  (3)

Let us consider a case where the SSVEP is recorded by 
two electrodes – O1 and O2 (a two-channel record). The 
corresponding random processes should be noted as x1(t) 
and x2(t), and the two-channel resulting process will be rep-
resented as a two-dimensional model:

x 
Ξ =  x 

1

2

(t)
(t) .

(t)
  (4)

 

Based on the optic tract anatomy, we argue that a signal 
registered at the position of the projection of the left visu-

al part of the brain contains useful 
information obtained not only from 
the left eye but also from part of the 
right eye.

We then state the generating pro-
cess vector as follows:

p t 
Π t =  p t 

1

2

( )
( ) .

( )
  (5)

and the matrix of the LPRP kernels of the 2-dimensional 
model elements (4) will be:

j t j t 
Φ t =  j t j t 

11 12

21 22

( ,t) ( ,t)
( ,t) .

( ,t) ( ,t)
  (6)

Based on expressions (5) and (6), the two-dimensional 
stochastic process (4) is represented in the integral form:

¥

¥

Ξ = Φ t Π t∫


(t) ( ,t)d ( ).   (7)

Using the modern theories of electrogenesis, the cyclos-
tationarity theorems given in [14], the periodic properties 
of the generating process increments and the kernels of the 
LRP (1), the authors of [13] justified the T-periodicity of the 
mathematical expectation and the covariance function of the 
2-dimensional process (7). As a result, the 2-channel SSVEP 
will be described with the 2-dimesional mathematical model 
that is presented by (7). 

Since the information technology of diagnostics uses 
a signal at discrete time, the random process (1) should be 
presented as an L-periodic linear random sequence:

t ,t ,
¥

t t
t=−¥

x = j h∑ Ît Z,    (8)

where jt,t=jt+L,t+L is a L-periodic nonrandom function, the 
kernel of the stochastic sequence, ht is white noise, and L=T/
Δt, Δt is the sampling rate. 

In a general case, (8) is a linear transformation of the 
white noise sequence, which can be represented by the linear 
operator:

Zt=At[ht],  (9) 

where At[]=At+L[].
Since the Karhunen-Loeve expansion/transform (KLE 

or KLT) is sufficiently simple to use, its mathematical ap-
paratus is thoroughly investigated [15, 16] and widely used. 
Therefore, At was selected from the large number of linear 
operators to perform the specified task. Let us consider the 
features of the KLE performance for the 2-channel SSVEP. 
It should be noted that according to [17] representation of 
the L-periodic random cyclostationary sequence requires the 
KLE only within the set [0,L 1]− :

−

=

x = h j∑
L 1

t k k
k 0

(t),   (10) 

where xt  is the centered linear L-periodic random sequence, 
jk(t) is the real functions within the set −[0,L 1], which are 
orthogonal in the space RL, and hk is pairwise uncorrelated 
random variables with the variance Var(hk)=lk, where lk is 

 

Fig. 1. A flowchart representation of the two-channel SSVEP protocol  
(R – rest, AS – adaptation session, ACS – active session)
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the covariance matrix eigenvalues Rx(t1,t2) of the investigat-
ed sequence (8). 

It should be noted that the KLE is completely deter-
mined by the covariance matrix of the sequence because the 
orthogonal basis consists of its eigenvectors and associated 
eigenvalues.

Because the two active electrodes in the positions O1 
and O2 were active during the investigated process record-
ing, their appropriate realizations will be noted as Xt and 
Yt, and their mathematical representation will be the same 
as in (8). Taking into account the interaction between the 
two channels, we introduce a random sequence of the fol-
lowing type:

−

≤ ≤ −=  ≤ ≤ −
t

t
t L

X , 0 t L 1,
Z

Y , L t 2L 1.
  

 (11)

The problem of the KL expansion of random sequence 
(11) becomes the problem of estimating its covariance ma-
trix, which is represented in the following form: 

−

−

− −

 ≤ < −


≤ < − ≤ < −= 
≤ < − ≤ < −

 − ≤ < −

1 2

1 2

1 2

2 1

1 2

t t 1 2

t t L 1 2Z
t ,t

t t L 2 1

t L t L 1 2

cov(X , X ), 0 t , t L 1,

cov(X , Y ),  0 t L 1 t 2L 1,
R

cov(X , Y ),  0 t L 1 t 2L 1,

cov(Y , Y ),  L 1 t , t 2L 1,

  (12)

where t tX ,Y  are centered linear L-periodic random se-
quences; 

1 2t tcov(X , X ),
1 2t tcov(Y , Y )  

are corresponding autocovariance functions of the sequences 
Xt and Yt; 

1 2 1 2t t t tcov(X , Y )=cov(Y , X )  

are corresponding cross-covariance functions that charac-
terize the interaction between the sequences Xt and Yt.

A simple way of implementing the mathematical ex-
pectation and the covariance function estimation is a 
method of j-series [18], where j-series is a set of sequence 
samples arranged in time (Xt or Yt) and taken through a 
period of L:

Δ += ≤ ≤ − Îkl k t lLx X , 0 k L 1, l .Z
 

 (13)

j-series are stationary and stationary related sequences; 
therefore, the probable characteristics can be assessed by the 
already verified methods of statistical analysis of stationary 
sequences. The mathematical expectation estimates of j-se-
ries reflect the mathematical expectation estimates of the 
L-periodic sequence, taken from one period:

= Î∑
m1

k kl
l=0

1 n
x x , k [0,L1], m= ,

m L
  (14)

where n is the volume of the investigated sequence.
The centered linear L-periodic random sequence tX  

(or tY ) is presented in the matrix form X (or Y), each row of 
which represents centered j-series:

−

−

− − − − − − −

− − − 
 − − − =
 
 − − − 





   



00 0 01 0 0,m 1 0

10 1 11 1 1,m 1 1

L 1,0 L 1 L 1,1 L 1 L 1,m 1 L 1

x x x x x x

x x x x x x
.

x x x x x x

X   (15)

Then the L-periodic random sequence would be repre-
sented in the matrix form as a concatenation of the centered 
matrices of the t tX ,Y  sequences:

 
=   

.
X

Z
Y

  (16) 

The next step is to construct a square matrix of the size 
(2L´2L) in which the elements are asymptotically unbiased 
estimates and consistent estimates of the covariance matrix 
samples (12):

T1
( ).

m
= ´R Z Z  (17)

The final step of the KLE is to get a set of eigenvectors 
{j1, j2,…, jk} and the corresponding eigenvalues {l1, l2,…, lk} 
of the covariance matrix R.

4. 3. The estimation of the optimal number of the 
SSVEP informative features 

We will use the following statistics [17] for choosing the 
number of informative features that sufficiently characterize 
the investigated process:

=

l
=

∑
k

i
i 0

ke ,
trR

  (18) 

where ek reflects the percentage of the initial sequence that 
is made by the first k elements of the expansion, and trR is 
the total sequence energy as a trace of the covariance matrix. 

The statistics is the results of the KLE properties: the 
investigated sequence variance, the estimations of which are 
displayed on the main diagonal of the covariance matrix, 
is the sum of its eigenvalues. The optimal number of the 
informative features k would be defined by the inequality 
ek>0.95.

Kaiser’s rule will also be used to estimate the number of 
the informative features: 

l >k

tr
.

2L
R

   (19)

According to (19), the informative parameters will be 
eigenvectors with corresponding eigenvalues whose values 
are greater than the power of the initial sequence.

5. The KLE results of the two-channel SSVEP at 
different stimulation frequencies

The stepwise results of the KLE to 2-channel SSVEP 
obtained in the first experiment at a stimulation frequency 
of 10 Hz are presented below.

The first stage is a sampled signal preprocessing, which 
means centering and estimation of the mathematical expec-
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tation of each single-channel realization. Fig. 2, a, b show the 
estimation of the mathematical expectation with the param-
eters L=50, m=900, and Î, k [1,50]

 
for the j-series method.

a                                              b 
 

Fig. 2. Estimations of SSVEP mathematical expectation:  
a – registered on the position О1; b – registered on  

the position О2 

The main diagonal of the covariance matrix with the 
dimensions of (100´100) reflects the variance estimations of 
each j-series, as shown in Fig. 3; their total sum is the full 
energy of the investigated 2-channel SSVEP.

Fig. 3. Variance estimation of the 2-channel SSVEP  

(at =k [1,50]  is SSVEP variance estimation registered on 

the position О1 and at =k [51,100]  on the position О2)

Based on the calculated estimates of the covariance ma-
trix, the KLE was implemented and a set of eigenvectors and 
eigenvalues was obtained for the matrix R. Fig. 4 shows the 
first two eigenvectors – j1 and j2 (k=[1,100]),  which repre-
sent the highest percentage of the signal energy.

Based on the considered array of eigenvalues {l1, l2,…, 
lk}, k=[1,100], as shown in Fig. 5, the estimation of the 
optimal number of the informative features was calculated 
according to expressions (18) and (19). It should be noted 
that Fig. 5 shows the first 25 eigenvalues because others 
have insignificant values. The dot-dashed line represents 
the SSVEP signal power and demonstrates Kaiser’s rule, 
according to which the informative parameters will be only 
those eigenvectors (in this case, 15) whose corresponding 
eigenvalues are above the specified line.

a 

b 

Fig. 4. The eigenvectors of the covariance matrix R of the 
2-channel SSVEP: а – the first eigenvector reflects 42 % of 

the process energy; b – the second eigenvector reflects  
17 % of the process energy

Fig. 5. The first 25 eigenvalues of the covariance matrix R of 
the 2-channel SSVEP

Fig. 5 shows that the informative features are eigenvec-
tors. These eigenvectors correspond to the first few highest 
eigenvalues that reflect the researched process fully enough.

Table 1 below demonstrates the average values of the 
eigenvectors that are used for the diagnostics as informative. 
They were obtained by the statistics of (18) and (19) for the 
two-channel SSVEP and recorded during the first experi-
ment for each of the 20 participants at different stimulation 
frequencies.

Table1

The correspondence between the average optimal number 
of the informative features and the stimulation frequency 

(from the first experiment, calculated for the 2-channel 
registration)

Statistics
The number of the informative features

6 Hz 8 Hz 10 Hz

Kaiser’s rule 20 16 14

ek>0.95 18 15 12

Table 2 demonstrates the average values of the selected 
eigenvectors that were obtained by the statistics of (18) 
and (19) for the SSVEP; they were registered during the 
first experiment for each of the 20 participants at different 
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stimulation frequencies and calculated separately for each 
channel.

Table 2

The correspondence between the average optimal number 
of the informative features and the stimulation frequency 
(from the first experiment, calculated for each separately 

registered channel)

Statistics

The number of the informative features

6 Hz 8 Hz 10 Hz

О1 О2 Total О1 О2 Total О1 О2 Total

Kaiser’s rule 10 10 20 8 8 16 7 7 14

ek>0.95 10 11 21 8 9 17 7 8 15

Table 3 demonstrates the average values of the selected 
eigenvectors that were obtained by the statistics of (18) and 
(19) for the SSVEP; they were registered during the second 
experiment and calculated for each of the 20 participants.

Table 3

The correspondence between the average optimal number 
of the informative features and the stimulation frequency 

(from the second experiment, calculated for each separately 
registered)

Statistics

The number of the informative features

6 Hz 8 Hz 10 Hz

О1 О2 Total О1 О2 Total О1 О2 Total

Kaiser’s rule 10 10 20 8 8 16 7 7 14

ek>0.95 10 11 21 8 8 16 7 8 15

The results were calculated separately for each chan-
nel, and the corresponding values are the following: L=25, 
m=450, and Îk [1,25].  It should be noted that the results 
presented in Table 2 and Table 3 are almost identical.

6. Discussion of the KLE results of the 2-channel SSVEP 
at different stimulation frequencies

An optimal number of informative parameters were 
evaluated by using two statistics, which allowed comparing 
them and determining the most appropriate statistics for 
the researched objectives. According to Fig. 5, the optimal 
number of the informative parameters of the 2-channel 
SSVEP at a stimulation frequency of 10 Hz is equal 14 or 
equal to the number of eigenvalues that were registered and 
showed below the dotted line. This approach is based on the 
assumption that the information component of the signal is 
of high amplitude and much smaller size, but the noise is of 
small amplitude and a big size. This assumption is not always 
true, which is a disadvantage of Kaiser’s rule.

The statistic estimation on the basis of the percentage 
of the signal energy that constitutes the energy of the 
first k components also has its disadvantage: namely, the 
optimal number of the informative parameters will enlarge 
by increasing the percentage of the energy; therefore, it is 
necessary to choose the right value of ek, which would be 
the most appropriate value. In the considered case, ek>0.95 
and the number of the informative parameters is 12, which 
is fewer than by applying Kaiser’s rule. The author of [19] 
also states the fact that Kaiser’s rule for data of large 

dimensions underestimates the number of informative pa-
rameters.

Table 1 shows an inverse correlation between the stim-
ulation frequency and the number of eigenvectors of the 
covariance matrix of the 2-channel SSVEP. The reason for 
this is a change in the duration of the period L. For example, 
the dimension of the covariance matrix of the SSVEP at a 
stimulation frequency of 10 Hz is equal to (100´100), and 
for the SSVEP at a stimulation frequency of 6 Hz, it is equal 
to (160´160). Consequently, the number of eigenvalues and 
vectors increases. It should also be noted that as the value 
of ek increases the number of the informative parameters 
increases, too.

Let us consider Tables 1–3 and explore the examples at  
a stimulation frequency of 10 Hz to substantiate the ex-
pediency of using the optimal number of visual signals 
that are recorded simultaneously in the positions O1 and 
O2. Table 1 shows the average optimal value of the se-
lected number of eigenvectors that was obtained by two 
statistics based on the Karhunen-Loeve expansion of the 
2-channel SSVEP covariance matrix that includes infor-
mation about interference between the channels. At the 
frequency of 10 Hz, it is enough to select 14 (according 
to Kaiser’s rule) and 12 (according to the energy percent-
age) informative parameters. It should be noted that in 
this case it is necessary to present a two-channel signal 
in the form of (11) before performing the estimation of 
the covariance matrix elements and only then implement 
the calculation, which constitutes a complexity in the 
processing.

Calculations of the average optimal number of informa-
tive parameters for each signal registered simultaneously in 
the positions O1 and O2 were performed for comparison. The 
Karhunen-Loeve expansion was implemented on the basis 
of two separate covariance matrices. According to the data 
from Table 2, at a frequency of 10 Hz, it is enough to select 15 
(according to Kaiser’s rule) and 16 (according to the energy 
percentage) informative parameters. It should be noted that 
the number of parameters is higher as compared with the 
first approach, namely, it is 15>14 and 16>12, which means 
that some informative parameters duplicate the primary use-
ful information, confirming the fact of a correlation between 
the registration channels [13]. This should be taken into 
account in diagnostics.

Calculations of the average optimal number of infor-
mative parameters were made for each signal registered 
simultaneously in the positions O1 and O2; the results are 
presented in Table 3. The data in Tables 2 and 3 are almost 
identical. It confirms that using the KLE of a two-channel 
SSVEP based on the covariance matrix of each channel 
separately produces results that are equal to those that are 
obtained by using the KLE of a one-channel SSVEP with 
the data being recorded non-simultaneously, without any 
stochastic correlation between the channels.

7. Conclusions

1. Based on a mathematic model of the steady-state VEP 
as a two-dimensional linear periodic random process, it is 
justified to use its Karhunen-Loeve expansion for the feature 
extraction: the eigenvalues and eigenvectors of the covari-
ance matrix of a random vector formed by a concatenation of 
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the vectors of the observed SSVEP data that are simultane-
ously recorded from two separate channels.

2. Taking into account the statistical estimations of the 
informative features and the stochastic cyclostationarity of 
the signal, it has been found that the first 18 components 
(at a stimulation frequency of 6 Hz) of the Karhunen-Loeve 
expansion reflect more than 95 % of the signal energy (15 
components at a simulation frequency of 8 Hz and 12 com-

ponents at a stimulation frequency of 10 Hz). It suggests 
using the estimated number of the appropriate informative 
features in actual diagnostics.

3. It has been proved that the stochastic dependence 
between signals registered from different channels and ana-
lyzed together allows using fewer informative features (cho-
sen according to the energy criterion) than when the signals 
from the channels are analyzed independently.
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