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1. Introduction

Underwater complexes with flexible tethers (UCFT)

consist of two types of elements: those with lumped and
distributed parameters. The former include marine mobile
objects (MMO): surface vessels, submarines, remotely oper-
ated vehicles (ROV) and others. The latter include flexible
tethers (FT): umbilical cables, towing cables, anchor chains,
etc. An example of a two-linked UCFT is shown in Fig. 1 [1].

Water surface

Surface vessel

Bottom surface

Fig. 1. Two-linked underwater complex with flexible tethers

Mathematical modeling is one of the main methods of the
UCFT studies. In this regard, the UCFT motion simulators
should include corresponding MMO and FT mathematical
models. It is known that their motion equations are non-lin-
ear and their dynamic behaviors are mutually dependent. As

a result, these equations are strongly coupled, which has to
be taken into account when simulating UCFTs. Due to equa-
tions nonlinearity usually it is impossible to find an analyti-
cal solution of such a complicated problem, hence numerical
methods are employed.

The motion of MMOs as of solid bodies in the water flow
has been well studied [2, 3]. The MMO mathematical models
include mathematical models of their hulls, hydrodynamic
drags, propulsive complexes, bearing surfaces, and other
elements. As a rule, it is possible to develop an MMO math-
ematical model in the form of ordinary differential equations
system, despite complex dependencies between parameters
of model elements. This allows applying effective methods
of numerical solution of differential equations to the MMO
simulation.

The flexible tether modeling is a more challenging
problem, as the FT is an object with distributed parameters
which is described by a system of nonlinear differential
equations with partial derivatives. Two approaches were
evolved for modeling FT dynamics [4]. These are segmental
and lumped-mass-spring (LMS) methods. For the former the
FT is modeled as a continuous system and resulting partial
differential equations are solved numerically by finite dif-
ference or any suitable approximation method. In the LMS
approach the cable is modeled as mass points joined together
by massless elastic elements of finite length, which makes
it possible to express the FT model in the form of ordinary
differential equations. All the forces along the cable are as-
sumed to be concentrated at the mass points.




The UCFT mainly employs inextensible FTs (anchor
chains, steel cables) and poorly extensible FTs (umbilical ca-
bles with a Kevlar load-bearing element). To model the latter,
the assumption of their inextensibility is usually adopted.

The segmental method makes it possible to naturally
simulate inextensible FTs by taking into account the rele-
vant inextensibility equation. But iterative solution search
makes it demanding to computational resources and suitable
only for rough estimations. The LMS method is well suited
for simulating elastic FTs. But its usage for inextensible FTs
is followed by a significant increase of computational re-
sources demands. The development of the FT mathematical
modeling method endowed with classic methods merits and
deprived of their drawbacks is the pressing scientific prob-
lem. Its solution will make the practice of flexible tethers
simulating available for underwater complexes researchers
without specialized computational equipment.

2. Literature review and problem statement

Usually researches neglect the umbilical cable effect
when developing simulators of tethered MMOs such as
ROVs. At that, the ROV is a part of a UCFT by definition.
The main reason is that it causes the MMO numerical model
to be very complicated and difficult to solve. Thus, the ROV
mathematical models presented in [5, 6] don’t include the
cable influence and are useful for studying only slow ROV
motions or positioning without current.

The ROV model presented in [7] is provided with an input
for external disturbances simulation, which could be the cable
effect. But the cable model is not presented in the paper.

There are known ROV simulators with cable effect simu-
lation based on stationary cable motion models. The usage of
such models simplifies the ROV simulators development and
decreases the needed computational resources. Thus, in [8] a
hydrodynamic model is developed to simulate the six degrees
of freedom motions of the ROV including the stationary
umbilical cable effect. The multi-step shooting method is
suggested to solve the two-end boundary-value problem on
the umbilical cable with respect to a set of first-order ordi-
nary differential equation system. In [9] there is suggested
the umbilical cable mathematical model which takes into
account the water stream unevenness and makes it possible
to estimate the cable influence on the ROV maneuverability.
In [10] there is suggested the umbilical cable mathematical
model with variable length of its released part. The assump-
tion of flat cable line and three cable segments is adopted.
The variability of cable length is simulated at the expense
of its first segment. But the steady motion FT models don’t
take into account its dynamics, which limits their usage with
certain UCFT motion modes. Such are synchronous motion
of a surface vessel and an ROV, and also the ROV position-
ing within water stream.

The paper [11] presents a three-dimensional hydrody-
namic model to simulate an underwater towed system. The
governing equations of cable were established based on the
segmental approach. The cable motion equations were ap-
proximated using a central implicit finite difference method,
which formed the assembly of non-linear algebraic equations.
The established equations were solved using Newton’s itera-
tive method. Since the model uses implicit time integration,
it is stable for large time steps and is effective for the simu-
lation of large-scale towed systems. Because of the iterative

solving algorithm the rough cable approximation was used.
The paper presents six-segment cable model with nonlinear
segment length distribution from 8.23 m to 723 m with a
total cable length of approximately 1 km. Such simulation
results have limited validity and are acceptable for large
scaled UCFTs. To increase simulation accuracy, it is needed
to increase the number of cable segments which will dramat-
ically increase needed computational resources.

In paper [12] there is suggested the mathematical model
of the FT dynamics of an underwater branched cable system
on the basis of virtual work principle generalization. The ob-
tained flexible tether differential equations system includes
partial derivatives and needs either significant simplification
or significant computational resources to find its solution.
In [13] the flexible tether equations were approximated with
the help of splines and reduced to non-linear Cauchy form by
time axis which could be solved numerically. Such approxi-
mation limits the model usage with certain motion modes
and UCFT configurations, which significantly narrows the
model practical value.

In [14] a hydrodynamic mathematical model for simulat-
ing the motions of a ship moored near the quay in waves is
presented. The mooring force is simulated using the linear
LMS model. In [15] the lumped parameter cable model with
consideration of the bending and torsional effects was used
to simulate a circular maneuver of a towed horizontal array.

The paper [16] studies the dynamic performance of sub-
sea umbilical cable laying system. The cable is approximated
with a multi-body kinematic chain consisting of rigid finite
cable elements which are connected with each other by
spring-damping elements. So, the LMS method was used for
simulation.

In [17] a dynamic model for estimating the position of
ship towed array during the U-turn maneuver is developed.
The towed array system is approximately assumed as a uni-
form towed cable neglecting the difference of modules’ ma-
terial and diameter. And starting with the stern, the towed
cable was equally divided into several sections, each of which
was modeled as a mass-spring by LMS method.

In [18] a numerical model of a spar platform, tethered
by a mooring cable with a spherical joint, was developed for
the dynamic simulation of the floating structure in ocean.
The geometry modeling of the cable was established based
on the LMS approach through which the cable was divided
into 10 elements.

In [19] a model of semi-submersible autonomous under-
water vehicle consisting of a towing vehicle, a tow cable,
and a towfish was developed. The internal cable forces were
considered as elastic forces so the LMS cable model was
used. The torsional effect was counted as not significant,
so the authors considered only elastic axial and bending
force effects. The stiffness matrix for the bending effect was
derived from the curvature definition. The stiffness matrix
of the axial effect was composed of nodal coordinates which
include the 3rd order polynomial functions of the relative el-
ement elongation. So, the nonlinear tension effect was taken
into account.

The research articles analysis shows that the main disad-
vantage of the segmental approach is the need of significant
computer resources to simulate the cable dynamics. Simula-
tion and study of multilinked UCFTs, which consist of sever-
al rigid bodies interconnected with flexible tethers, become
almost impossible without specialized high-performance
computing systems. Besides, the segmental approach usage



for multilinked UCFT model development is complicated.
The reason is that the rigid and flexible bodies of which
the UCFT consists must be expressed as a single non-lin-
ear differential equation system with partial derivatives.
Thus, different UCFT configurations need development of
appropriate mathematical models. Therefore, the segmental
approach is used mostly for single-linked UCFTs simulation.
And the number of segments usually doesn’t exceed 6-10
due to necessity of high computing performance.

The LMS method is quite suitable for simulation of mul-
tilinked UCFTs of different configurations. But it becomes
demanding to computational resources when simulating in-
extensible flexible tethers. The reason is that the high cable
axial stiffness coefficient leads to inappropriate numerical
integration and computational instability. Decreasing the
integration step causes the computational time increasing.

At last, the presented mathematical models of flexible
tether dynamics are designed for constant tether length,
though real UCFTs are equipped with cable winches and
mooring windlasses. Flexible tether veering and hauling
change its influence on an ROV and surface vessel and need
to be taken into account in its modeling.

3. The aim and objectives of the study

The study aim is to develop a mathematical modeling
method for the dynamics of spatial motion of the inexten-
sible flexible tether of variable length in the flow of liquid
on the basis of the automatic control of its elements axial
motion. This will significantly enhance the productivity of
the calculation process during a computer-aided study of
the dynamics of underwater complexes with flexible tethers.

To achieve this aim, the following objectives are solved:

— the flexible tether motion governing equation and the
equations of the external forces affecting it are provided;

— the fundamentals of the FT dynamics mathematical
modeling method with automatic control of its elements
axial motion are formulated;

— the regulator of distances between the FT elements is
synthesized as a part of the FT mathematical model;

—the method of FT simulation considering that its
length varies during its operation is developed,

—the FT motion dynamics is simulated, and the results
are compared to the results obtained with known modeling
method.

4. Materials and methods of development of
the mathematical modeling method for
the flexible tether dynamics

4. 1. The flexible tether motion governing equation

Simulation of an object with distributed parameters is
carried out through its approximation by finite elements. In
this work let’s adopt an assumption that the flexible tether
consists of N<oo rigid bodies connected serially by N-1
massless non-stretchable links (Fig. 2).

The FT elements move under the influence of external
and internal forces. The external forces are the gravity force,
the buoyancy force, the hydrodynamic drag force, and the
environment inertial force that is expressed through added
masses. The internal forces are the axial tension force, the
twist and bend forces. The latter two forces become signif-

icant only if the flexible tether is twisted or bend much, so
usually only the axial tension force is taken into account.
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Fig. 2. Flexible tether elements and coordinate systems

On the basis of the Newton’s second law, let us write
down the equation of the n-th FT element motion as of a solid
body in the vectoral form:

+Fb(n)+Ff(n)+ ‘[(n)_F'[(n—1); n=12..,N, (1)

b, = Fg(n)
where p, — the flexible tether element mass with added
mass of liquid, @, — the flexible tether element acceleration

given in basic inertial coordinate system Oxyz, F,, - the
flexible tether element gravity force, F,,, - the flexible
tether element buoyancy force, F,, - the flexible tether
element hydrodynamic drag force, F,,_, and F,, - the
tension forces from previous and next links respectively. In
designating some of the variables, the enumeration index n
is enclosed in parentheses to distinguish it from the identi-
fication index of the variables.

At n=1 the FT element is basically its inboard (root)
end, and the force F,, =-F,,, is the propulsive force at
the inboard FT end. At n=N the FT element is basically its
running (fast line) end, and the force F, = ai(N) is the pro-
pulsive force at the FT running end.

The basic coordinate system Oxyz is determined as
follows: its origin is connected to a point on the Earth’s
surface, the Ox axis is directed to the north, the Oz axis
is directed vertically upwards, and the Oy axis forms with
the first two the right-handed rectangular (Cartesian)
coordinate system.

Kinematic parameters of the FT elements are calculated
through integrating the components of the vectors @, . The
velocity of each FT element v, in relation to the basic coor-
dinate system Oxyz is calculated through integrating by the
time of the accelerations a,. The FT elements coordinates
p, ={x,,¥,,2,} are calculated through integrating by the
time of the elements of the vectors v,. To designate the
FT elements coordinates, let us also use the vector form:
P, — the radius vector which connects the origin of the basic
coordinate system with the point p,.

4. 2. External forces causing the flexible tether mo-
tion

The FT element gravity force is calculated on the basis of
the free fall acceleration:



Fywy =M, 88,
where m — the FT element mass (without added masses of
liquid), g — the free fall acceleration, € — the unit vector
directed vertically downwards.

The external forces F,,, and Fy,, depend on the kine-
matic parameters of the FT element, namely, its velocity and
coordinates.

The buoyancy force is calculated on the basis of the lig-

uid density p and the volume of the immersed FT element Q :

Fh(n) = —pQ“gé; Qn = f(I_jn? f)n—v I_jnﬂ)'

The Q, value depends on the current FT element coordi-
nates, as well as on the coordinates of the previous and next
FT elements, since they determine the FT element position.

When determining the hydrodynamic drag forces for
the FT motion in a liquid, one usually proceeds from the
assumption of their dependence on the FT elements velocity
in relation to the liquid v, [2]:

Vf(n) = Vn _Vc(n); Vc(n) = v(pn)’

where ¥, — the vector of the FT element velocity in relation
to the basic coordinate system Oxyz, v, — the vector of
the stream velocity in relation to the basic coordinate system
Oxyz in the point of the FT element location, V — the vector
field of the stream velocity.

To calculate the hydrodynamic drag force Ff(n), let us
introduce the natural coordinate system O, x,y,z, for each
FT element and designate its basis with the unit vectors fn,
j, and k. The O,x, axis is tangent to the axial line of the
flexible tether and is directed from the point p, to the point
Puii- The O,y, and O, z, axes will be determined from the unit

vector i, and the vector of the FT element velocity in relation
to the flow of liquid v,

L= { Ly Ly 1z<n>};

1. jn xvf(n) .
kn ={kx(n)’ky(n)7kz(n)}= i - ’
|]n XVf(n)|
T . . . _ kn an
h= { Jx@yr Jyay .]z(n)} ===
k, xi,

Then on the basis of the matrix equation of the coupling
between the basic and natural coordinate systems, the nor-
mal vy, tangential v, and lateral v, components of the
vector V- are determined:

1x(n) Jx(n) kx(n)

_ -1 . _|: .
Vi | =K Vi Ko =l dvan

Vft(n) V[x(n)

y(m)?

Vi) Vi iz(n) jz(n) kz(n)
where K, — the coupling matrix for the n-th FT element.
The components of the vector T, in the natural coordi-
nate system for each FT element are calculated on the basis
of the known equations [20]:
Ey

— 2,
m = _O’Sth(n)Ct(n)Vft(n)7

— 2 .
an(n) = _0’SpDn(n)cn(n)an(n)’

Fﬂ(n) = _07Sle(n)Cl(n)an(n)Vft(n)’

where Fy ., Fy, ., Fp, — the tangential, normal and lateral
components of the vector F, respectively, p — the water
density, D, D, Dy, — the characteristic areas of the FT
element, which depend on its length and the diameter d,
Cymy Cany Ciwy — the FT tangential, normal and lateral hydro-
dynamic coefficients respectively.

Using the coupling matrix equation, let us determine the
components of the vector E(n)={fo(n),ny(n),F&(n)} in the
basic coordinate system:

fo(n) Fft(n)
fy(n) = Kn fn(n)|*
fz(n) Fﬂ(n)

Thus, all the vectors of external forces are obtained in
the basic coordinate system.

4. 3. The fundamentals of the flexible tether model-
ing method with automatic control of its elements axial
motion

To model the FT elements motion, both external and
internal forces (constraint reaction forces) should be set.
The major problem in the FT modeling is determining the
constraint reaction forces. Therefore, if we determine the
constraint reaction forces, we will obtain the complete infor-
mation for the FT modeling.

To determine the constraint reaction forces, let us view
the FT as a multi-dimensional object of control. The con-
trolled values are its elements coordinates p,, the controlling
values are the vectors of the constraint reaction forces Fr(n)
except the forces at n=1 and n=N, the disturbing impacts are
the vectors of the externals forces F,

ext(n):

E

T(n-1)

|

wa =F +

o~ n=12...N; 2)

cxt(n);

+F

+F fn)*

b(n)

cht(n) g(n)

To designate the controlling forces, let us introduce the
index m=1, 2, .., N-1. Thus, the forces R(m) are the con-
trolling ones.

The control objective resides in providing the correspon-
dence of the distances between the adjacent FT elements [
to their given values 1, :

1, =1

m g(m);
1m = f)(m+1) _f)m . (3)

At the uniform distribution of the FT elements, the value
of I, can be found from the following equation:

L
lg(m) = m’ (4)
where L — the FT length.

The controlling forces at(m) are directed along the axial
curvilinear FT coordinate s. They can affect the FT element
motion only in the axial coordinate unlike the external
forces Fext(n), which affect the FT element motion in the
three-dimensional space. At that, the problem of control is
also formulated in the one-dimensional statement. In this



regard, the principal equation of the FT motion can be given
in the one-dimensional form:

Hoagmy = _Fr(n—1) +F‘t(n) +Fext(n)’ )

where a,, — the FT element acceleration along the axial
coordinate s, F,,, — the resultant of the external forces
affecting the FT element along the axial coordinate s,
F,,, — the tension forces from the previous FT element,
EF,,, — the tension forces from the next FT element. Similarly
to equation (1), at n=1 and at n=N the forces —F,, and F,,
are the axial components of the propulsive forces of the FT
at its inboard and running ends respectively:

-F

oot — T(0)y

F;

ast —

F

©(N)*

The values F,, ), -F,,, and F  are determined re-
spectively as the projections of the vectors F,, ), —F,,, and
F,, on the vectors i, i, and iy.

Therefore, we obtain a multi-dimensional automatic con-

trol system (ACS) with complete initial information (Fig. 3).
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Fig. 3. Generalized structure of the automatic
control system for the flexible tether elements motion along
the axial coordinate s

The set of given distances between the elements G and
the sets of the kinematic parameters of the elements V and
P come at the input of the regulator; they are calculated by
means of numerical methods on the basis of the set of accel-
eration values A:

G={1 |

g(h)? “g(2) "

1 1

o dgamyr oo g(N—1)};

A= {asm, A9y Ay eens as(N)};

V= {Vsm, Viay oo Vmyr oo VS(N)};

P= {ps(1)7 Ps(2)+++3 Pycnyr ++ o> ps(N)}1

where v, — the FT element velocity in its motion along
the axial line s, p,,, — the FT element coordinate along the
axial line s.

The distances between the adjacent FT elements are
determined on the basis of the elements of the set P and form
the set A:

A= {117 12’ e lm’ e 1N—1}; lm = ps(m+1) _ps(m)'

On the basis of the kinematic parameters of the FT, the
ACS regulator is to calculate such values of T, that the
condition 1=l is fulfilled, in other words, to fulfill the
control task. On the basis of theacalculated F ) the vectors
of the constraint reaction forces F, | = {F‘[x(m)’ Eoy sz(m)} are
obtained through transferring from the natural coordinate

system to the basic one:

x(m) Ft(m)
Fom|=K,| O
F 0

Tz(m)

Afterwards, the FT motion is modeled with the use of
the governing equation of the FT elements motion (2). In
fact, there is no need to model equation (5) to obtain the
sets of the axial kinematic parameters of the FT elements V
and P. Instead, the FT model with automatic control of its
elements axial motion (ACEAM) consists of the regulator,
the external forces calculation unit and the governing mo-
tion equation (Fig. 4).

External
forces

Froot
FT elements
L -
— Fam) vectoral
Regulator
model

Fig. 4. Mathematical model of the flexible tether dynamics as
an automatic control system

The required transformations of the components of the
vectors from the basic coordinate system to the natural and
back to the basic one are performed by the regulator. The
elements 1., of the set G are determined from equation (4),
the elements | of the set A are determined from equation (3),
the elements v, of the set V are determined as projections
of the vectors v, on the axis O, x, (that is, on the vector 1i,).
The FT length L is specified by the constant, and the general
FT motion is controlled by the forces F, and F,.

Let us consider a variant of the proportional control law
with the coefficient of proportionality k:

1., -1
Ft(m) :_kwv m:L 2,...,N—1.
lg(m)

It is easy to notice that the proportional control law
transforms the FT mathematical model into the linear LMS
model. In such a model, the constraint reaction forces appear
at |l emy ~ In| >0. Hence, there will always be a static error at
the FT motion in the flow of liquid. To study inextensible FTs,
more effective automatic control methods should be applied.




4. 4. Synthesis of the flexible tether model regulator
using the inverse dynamics method

The inverse dynamics method implements the concept
of inverse control and with the complete initial information
provides highly precise control of complex nonlinear objects
including UCFT [21]. Let us apply it for synthesis of the FT
model regulator.

The regulator should provide control of the distances
between the FT elements 1. According to the inverse dy-
namics method, let us select a reference model for controlling
the values | :

T = Vi ~ Vamy
where o, — the desired acceleration of the value 1, vy, — the
actual rate of change in the valuel .

Let us form the inverse model of the controlled object on
the basis of the equation of the FT elements axial motion (5)
and replace the acceleration values a, with their desired
values ag,:

_Ft(nf1) + Fr(n) =K, Q90— Fext(n)’
where pu, — the FT element mass with added masses of water.

This system includes the unknowns Fony m=1,2, .., N-1,
and a,,, n=1, 2, ..., N. The total number of the unknowns
makes up 2N—1, while the total number of the equations
is equal to the value of N. Let us supplement the inverse
model with the equations which couple the FT elements
accelerations a,,, to the accelerations of the distances
between them o,

Ag(met) ~ Ag(m) = Oy -

Thus, we obtain a system of linear algebraic equations
with the number of unknowns equal to the number of equa-
tions in the system:

-F

t(n-1) + Fr(n) = Mnad(n) - Fext(n); n= 1’ 3’ bt N’

Qmsty ~Ad(my = Oy M=2,3,..,N-1.

If this system of equations is supplemented by ele-
ments with zero coefficients, it can be presented in the
matrix form:

B-H=R;

T
H= [F'c(1)7 ) FT(N—i)’ A4y T ad(N)] ;
R=

T
= [Fext(l) - Fr(oy Fext(Z)’ T Fext(N—1)’ Fext(N) + FT(N)’ Oy - OCN-1:| ’

where H — the matrix of unknown forces and accelerations,
R — the matrix of given forces and accelerations, B — the
matrix of coefficients.

For example, if we accept the value of N to be 4, the ma-
trix B takes the following form:

(<1 0 0 w, 0 0 O]
t -1 0 0 p, 0 O
0 1 -1 0 0 p, O
B={0 0 1 0 0 0 u,l
00 0 -1t 1 0 0
00 0 0 -1 1 0
(0 0 0 0 0 -1 1]

Calculation of the constraint reaction forces F,, ), as well
as the desired axial accelerations of the FT elements a,,, in
other words, the elements of the matrix H, is performed by
solving the following matrix equation:

H=B'R. (6)

At that, it is sufficient to calculate the matrix B! once,
before the modeling starts, since its elements are constant.
Afterwards, the constraint reaction forces are singled out
from the matrix H and transformed into the vector form
I:“T(m) to be used in the governing equation of the FT elements
motion (2).

The controlling forces F,, and F,,, are given to the
input of the developed FT mathematical model, and the
kinematic parameters of the FT elements are obtained at
its output. However, the practical value is assigned to the
FT model which obtains the kinematic parameters of its in-
board and running ends p,,, and P, at the input and the
tension forces at the output [1]. It is due to the fact that the
mathematical models of MMOs (surface vessels, underwater
vehicles, etc.) are also obtained on the basis of the Newton’s
second law, and their interaction with FT is modeled by giv-
ing the vectors of the tension forces to the input.

To implement such MMO models in conjunction with
the developed FT model, the points p, and py should be
separated from the points p,,, and P, where the inboard
and running FT ends respectively are mounted. Then, using
the proportional control law, we obtain the tension forces on
the inboard and running FT ends:

1, -1
Froot = kw’ ]0 = |f)1 _f)ro()t|;
lg(O)
1,1
Ffast = _k(g(ll\)N)’ lN = |f)fast _f)N|’
8(N)

where 1, — the actual distance between the first FT element
and the FT mounting point on the MMO, 1 — the actual
distance between the last FT element and the FT mounting
point on the MMO.

The given values of these distances l,,, and 1, can be
taken as equal to zero or calculated on the basis of equa-
tion (4), but in this case two additional links should be con-
sidered for the formation of the matrix G:

L
lg(q) :m, q:O, 1,...,N.
It should be noted that the FT can be mounted not only
on MMOs, but also on immobile objects, for example, on
bottom.



The vectors of the forces affecting the first and the last
FT elements are determined from the following equations:

Fr(O) ==

Froot = _Froor 11 )

F i

F1(N) = Last = Lhast In-
The vectors of the forces affecting the MMO as a result
of its interaction with the FT will be equal to F, , and -F,,

in the points of mounting of the inboard and running ends
respectively.

4. 5. Dynamic change of the flexible tether length

If the FT length is changed during the UCFT operation,
an additional load appears; it is transferred to MMOs and
affects their movement. In this regard, the FT mathematical
model should include appropriate algorithms to take these
loads into account.

The easiest way to change the FT length in the process
of its simulation is changing the parameter L and, as a result,
the set of the given distances between the FT elements G.
Yet, instead of the synchronous FT elements motion along
the axial coordinate, this method will move them non-uni-
formly, which does not correspond to the real process.

The consecutive change of the length of the elements 1,
of the set G is more accurate in representing the reality. Let
us assume that the FT length change is carried out from its
inboard end:

0, ifg<aq,;
lg(‘I) = Lli“k (qr + 1)_ Lcoi]cd’ lf qQ= qw (7)
L. else
L = Ly .
link N + 1 )
Leoited = L — L5
q,= ﬂoor(Lw”e‘i];
Lliuk
q=0,1,...,N,

where L, — the full FT length, L, — the released FT length,
L iq — the coiled FT length, L, — the length of one link,
g, — ordinal number of the link next to the inboard end of
the released part of the FT, floor — rounding function to the
lowest integer value.

Changing the length of the released part of the FT, i.e.
the parameter L, will affect the length of only those links
which get into the coiled part of the FT. Thus, the even
coiling (hauling) or release (veering) of the FT is ensured.

However, in this case the FT elements with the distance
between them being equal to zero will concentrate in the
area of the inboard FT end and continue interacting with
liquid, which also does not correspond to the actual process.

In reality, the FT elements stop interacting with liquid at
the FT coiling, and come into interaction with liquid at the
FT release. This effect should be achieved in the simulating
of the FT length change. For this purpose, it is suggested to
exclude from calculation those FT elements which complete-
ly belong to the coiled part of the FT, i. e. elements with the
numbers q<q,. This can be done without the need to re-cal-
culate the matrix of coefficients B! in equation (6) with

each change in the FT length. It is sufficient to set to zero
the external forces with the indices n<q, n=1, 2,.., N, and the
desired accelerations with the indices m<q,, m=1, 2,..., N-1
in the matrix of given forces and accelerations R. Meanwhile,
the propulsive force T, =-F,, should be added to F,,,
with the index n=q,.

5. Flexible tether simulation

5. 1. Simulation of the flexible tether motion dynamics
with the use of the developed method

Let us perform the FT simulation with the help of the
mathematical model on the basis of the developed ACEAM
method. It is assumed that the flexible tether has a cylin-
drical shape and zero buoyancy, and the stream velocity is
uniformly distributed in space. For the period of simulation,
the inboard end is fastened in the origin of the basic coor-
dinate system Oxyz. At the moment of the simulation start
t,, the running end is located at the depth of 50 m under
the inboard one and is movable. The main parameters of the
mathematical model are summarized in Table 1.

Table 1
Parameters of the flexible tether mathematical model
Physical parameters Regulator parameters
Parameter Value Parameter Value
Ly, m 100 Ty s 0.1
N 101 T, s 0.025
p, kg/m? 1024 k N 10000
dpp, mm 10 - -
c, 1 - -
C 0.1 - -
¢ 0.0 - -

Let us perform the simulation under the following con-
ditions:
E

g~

Fb(n)v Ve =1-1,0,0} m/s,
B () =1{0,0,0) m, B (£)={0,0,~50} m.

The numerical solution of the nonlinear differential
equations of the FT model will be carried out using the Dor-
mand-Prince method with a variable step. The simulation
results are shown in Fig. 5.

The moments of time specified in Fig. 5 have the fol-
lowing values: t,=0s, t,=10s, t,=22.5s, t,=35s, t,=45s,
t;=57.5s and t;=70s.

Over the time period from t, to t,, the running end does
not move, and the FT line takes over a steady position. At the
moment of time t,, the running end starts moving upwards
at the velocity of 1 m/s. In such a way, it moves for 25 s and
stops at the moment of time t,. Afterwards, the running end
does not move for 10 seconds, then at the moment of time t, it
starts moving forward at the velocity of 1 m/s. In such a way,
it moves for 25 s and stops at the moment of time t;.

Fig. 5, a shows the FT lines depending on the time and
position of the running end. In particular, there is a change



in the line over the period of time from t, to t,, when the run-
ning end does not move. The difference between the length
of the released part of the FT L_and the sum of distances
between its elements L, does not exceed 0.03 % of L, during
the whole time of simulation (Fig. 5, b). At that, this differ-
ence is caused by the inboard (root) and running (fast) links,
whose lengths are controlled on the basis of the proportional
law. This indicates a highly precise operation of the inverse
regulator of the FT mathematical model.
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Fig. 5. Simulation of the flexible tether dynamics at
L, (t)=const: a — the flexible tether configurations at
the running end motion, b — the length of the released
part of the flexible tether L, and the sum of distances
between the centers of its elements L,, ¢ — the tension force
on the inboard (root) FT end, d — the tension force on
the running (fast) FT end

Fig. 5, ¢, d show the components of the vectors of the
tension forces on the inboard and running ends respectively:

sz{F F F}-

x? Ty Tz o
FfasL = {fo’ ny’ Ffz } .

The change in the running end velocity affects the com-
ponents of the vectors F,, and F,,. In addition, there is a
change in the vectors of the tension forces over the period of
time from t, up to t,, when the running end does not move. It
is caused by the FT line changing its configuration.

Let us perform the FT simulation under the same condi-
tions, but with the change of the length of the released part
L, during the running end motion. The simulation results are
shown in Fig. 6.

When the running end moves upward over the period of
time from t, to t,, the length of the released part of the FT
decreases, that is, the FT is being coiled. Over the period
of time from t, up to t, the FT length increases at the rate
of 0.5 m/s, in other words, the FT is being released. With
the scale presented in Fig. 6, b, the difference between the
lengths L, and L, is not visible and does not exceed 0.07 % of
L. The FT length change affects the FT line configuration

(Fig. 6, a) and the tension forces on its ends (Fig. 6, ¢, d). At
that, the FT coiling considerably increases the tensions on
its ends, while the release decreases them.
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Fig. 6. Modeling of the flexible tether dynamics at
L (t)#const: a — the flexible tether configurations at
the running end motion, b — the length of the released
part of the flexible tether L, and the sum of distances
between the centers of its elements L, ¢ — the tension force
on the inboard (root) FT end, d — the tension force on
the running (fast) FT end

3. 2. Comparison of the developed modeling method
to the linear method of lumped masses and springs

Let us introduce the following variables: L, — the sum
of the link lengths between the FT elements in modeling
with the ACEAM method, L, — the sum of the link lengths
between the FT elements in modeling with the LMS method.
For the magnitude L, to be of the same order of magnitude
L,.., it is necessary to select a proper coefficient of propor-
tionality k,, for the LMS method. Let it be k, =40k, ,
where k. — the coefficient of proportionality in controlling
with the ACEAM method. This will ensure the equality
(non-strict) of the tension forces on the FT ends while simu-
lating with different methods.

Let us perform the modeling at L, (t)=const with the lin-
ear LMS method and compare the obtained results with the
ACEAM method (Fig. 7, a).
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Fig. 7. Comparison of the flexible tether lengths:
a — modeling with the coefficient of proportionality
K,=40k,.,, & — modeling with the coefficient of

proportionality k. =0.11k,.,
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The graphs of the tension forces obtained with the LMS

method are not presented, since at k,, =40k, they coincide
with the graphs obtained with the ACEAM method, which
are shown in Fig. 5, ¢, d.

The simulation results have shown that simulation of
the given mode of motion with the LMS method requires
approximately 25 times more computer time than that with
the ACEAM method.

Let us set such value of the coefficient of proportion-
ality that the time of modeling with LMS and ACEAM
methods is approximately the same: k,, =0.11k,.. Fig. 7, b
shows the lengths, and Fig. 8 — the tension forces on the
inboard and running FT ends in modeling with different
methods.
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Fig. 8. Comparison of the tension forces on the FT ends in
simulation with the LMS and ACEAM methods:
a — the tension forces on the inboard (root) end,
b — the tension forces on the running (fast) end

The designations in Fig. 8 are as follows: F_ ., F
the absolute values of the vectors of the tension forces on
the inboard and running FT ends respectively in simula-
tion with the ACEAM method, F,, ., F;,,. — the absolute
values of the vectors of the tension forces on the inboard
and running FT ends respectively in simulation with the
LMS method.

The length L, is considerably different from its given
value L. In addition, there is a substantial delay in the FT
response to the running end motion, which is caused by the
small coefficient of proportionality (extensible stiffness) of
the LMS method.

Analysis of the modeling results shows that lowering the
coefficient of proportionality when using the LMS method
leads to obtaining inaccurate results for inextensible FTs.
Increasing the coefficient of proportionality reduces the
integration step and makes the time of calculation substan-
tially longer.

The FT modeling method developed in this paper allows
obtaining reliable results with less time spent on computa-
tions than that of the classical methods.

f.acm
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6. Discussion of the flexible tether dynamics
modeling method with automatic control of
its elements axial motion

The pure ACEAM method allows obtaining the FT
model, the inputs of which are the vectors of the force
on the FT ends, and the outputs are the coordinates of
the FT ends and other elements. Separation of the FT
end (boundary) elements and their mounting points on
MMOs or immobile objects requires using the proportion-

al control law, which is similar to the linear LMS method.
This introduces an inessential error in the simulation of
inextensible FTs. However, here only the boundary links
undergo elastic deformation, which is not the case with
the classical LMS method. Generally, the ACEAM meth-
od provides an almost instantaneous force response of the
model for changes in the motion parameters in comparison
with the classical LMS method. At that, the actual FT
length is almost the same as the given one. In addition, the
presence of only two elastic links enables choosing rather
large coefficients of proportionality k in comparison with
the classical LMS method without losing the stability of
the model.

The suggested method makes it possible to model
UCFTs at the periodic nature of the FT ends motion,
such as at the vertical moving of the surface vessel on
waves. When the LMS method with a low coefficient k is
applied, the amplitude of the tension force on the running
end will be reduced due to elastic deformation of the FT
elements, which is not valid for inextensible FTs. The
suggested ACEAM method is not characterized by this
disadvantage.

At the FT modeling with the use of the segment meth-
od, differential equations of the FT are presented in the
form of finite differences not only by the axial FT coor-
dinate, but also by time. At that, the systems of equations
are to be integrated implicitly, which makes it necessary
to use iterative methods for finding the solution. The
presence of the iterative component in the simulating
algorithm considerably increases the simulation time.
The problem of the segment method is made even more
complex by the fact that the UCFT mathematical model
should include equations for one or more solid bodies. In
this case, the iterative component of the model may even
lead to the impossibility of finding the numerical solu-
tion. Thus, the modeling of multilinked UCFTs appears
hardly probable. Moreover, the study of the ACS for the
spatial motion of the multilinked UCFT with the help of
the computer modeling method presents a most difficult
computation problem.

The ACEAM method does not contain the iterative
component. The FT equation is reduced to the Cauchy
normal form, which allows using effective methods of
numerical solution of ordinary differential equations. The
inverse control has shown to be effective and highly precise
as a part of the ACEAM method, since the FT model as an
automatic control system forms a system with complete
initial information.

Concerning the change in the length of the released part
of the FT, it can be properly carried out when the lengths of
the links between the elements 1 correspond to their given
values 1, accurately enough. In this case, excluding the
element from calculation at the FT coiling or including the
element into calculation at the FT release does not result in
substantial force surges at the FT ends. This effect is hard to
achieve with the LMS method, since its application always
involves a static error in the lengths.

The disadvantage of the suggested method is the reduc-
tion in the regulator operation accuracy at the FT overbend-
ing, i.e. at the decrease of the angles between the links. This
is caused by the fact that the axial components of the vectors
of the external forces Fm(n) and the FT elements velocity in
relation to the flow of liquid ¥, are determined as their pro-



jections on the unit vector i, of the natural coordinate sys-
tem of the n-th element. This disadvantage shows up when
the angles between the links are in the range of <90°...110".
However, the more elements N there are in the FT modeling,
the smaller the risk of such overbending is.

The suggested ACEAM method combines the advan-
tages of both classical FT modeling methods: the LMS
method and the segment method. Like the segment meth-
od, it provides a nearly constant value of the link lengths.
At the same time, its application engages non-iterative
methods of solving differential equations like that of the
LMS method.

7. Conclusions

1. For the mathematical modeling of the flexible tether
dynamics in the flow of liquid, it is represented as a set of
series-connected elements — solid bodies, affected by inter-
nal and external forces. The external forces include gravity
force, buoyancy force and hydrodynamic drag force, while
the internal ones are the axial constraint reaction forces
between the flexible tether elements.

2. The fundamentals of the flexible tether dynamics
mathematical modeling method with automatic control of
its elements axial motion are formulated. The nature of the

method resides in presenting the flexible tether as a multi-
dimensional automatic control system. It consists of a set of
the flexible tether elements, the adjacent elements interact
via the constraint reaction forces, and the regulator, which
is designed to provide the given distances between the adja-
cent flexible tether elements.

3. With the inverse dynamics method, the regulator is
synthesized as a part of the flexible tether mathematical
model. It provides a highly precise control of the distances
between the elements and, therefore, accurate modeling of
the inextensible flexible tether dynamics.

4. There is suggested the method of the flexible tether
simulation considering that its length varies during its op-
eration on the basis of the dynamic change in the number of
its elements being involved in the calculation process. This
allows considering the impact of the motion dynamics and
the change of the flexible tether length on marine moving
objects of the underwater complex.

5. Simulation of the flexible tether motion dynamics was
carried out by means of the method with automatic control
of its elements axial motion and the classical method of
lumped-masses-springs. Comparing the simulation results
showed that the numerical calculation of inextensible flex-
ible tethers carried out with the developed method takes
25 less time due to ensuring the same accuracy of the meth-
ods at the increased integration step.
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