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1. Introduction

Passive auto-balancers are used [1–4] to balance on the 
running (working) fast-rotating rotors of the centrifugal 
machines under a constantly changing rotor unbalance. The 
motion of the rotor-auto-balance system becomes steady over 
time. The rotor is balanced by means of auto-balancers in the 
so-called main (steady) rather then secondary motions.

For designing auto-balancers, it is important to solve the 
following problems:

1) to determine of the conditions under which it is pos-
sible to achieve the rotor auto-balancing by one or several 
auto-balancers;

2) to choose the parameters of an auto-balancer to 
achieve:

– the highest balancing capacity of the auto-balancer, 
enough to rotor balancing [1–4];

– the highest balancing quality;
3) to choose the parameters of auto-balancers for the 

fastest balancing of the rotor.

2. Literature review and problem statement

The designs and the action principle of the so-called 
classical (ring, pendulum, ball, roller) auto-balancers with 

solid corrective weights which are intended for balancing 
mainly the drums of washing machines are described in [1]. 
In classical auto-balancers the centers of mass of corrective 
weights move in circles whose planes are perpendicular to 
the longitudinal axle of the rotor with the centers being on 
this axis. Most fully, the designs of various types of classical 
auto-balancers that are intended to balance various fast-ro-
tating rotors are described in [2]. Non-classical auto-balanc-
ers with corrective weights of a special form that can rotate 
in a certain way around a point on the longitudinal axle of 
the rotor are described in [3].

Most fully, the conditions of achieving of the auto-bal-
ancing to balance rotors by passive auto-balancers are de-
fined in the works: [4] – for two-ball auto-balancers within 
a flat model of the rotor, a rotor model with a fixed point, a 
rotor model on two elastic supports; [3] – for the classical 
and non-classical auto-balancers within the above men-
tioned rotor models.

In [4] the formulas for calculating of the balancing ca-
pacity of ball auto-balancers separately for even and odd 
quantities of balls. The balancing capacity is studied for the 
maximum radius of the balls (at their unchanging number). 
The findings were the following: the maximum capacity of 
an auto-balancer is achieved if there is only one ball; if there 
are six balls or more, they are excessive, for they reduce the 
balancing capacity of the auto-balancer.
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In [2] similar researches for roller-type auto-balancers 
are conducted. The findings are the following: the use of 
rollers makes it possible to increase the balancing capacity 
of the auto-balancer in 1.5 times in comparison with the ball 
auto-balancer of the same dimensions; the highest capacity 
of the auto-balancer is achieved with one or three rollers of a 
particular radius in the auto-balancer.

The common faults of works [2, 4] are:
– the formulae to calculate the balancing capacity of an 

auto-balancer (as a total sum value) are different for even 
and odd quantities of the balls, which makes them inconve-
nient for using and analyzing;

– there is no technical (engineering) check of the cor-
rectness of stating the research problem about the extremum 
of the balancing capacity of an auto-balancer on the radius 
of the corrective weights;

– the obtained result relate only to the balancing capacity 
of an auto-balancer and disregard the requirements to raise the 
accuracy and to reduce the time of achieving of the balancing.

The influence of various factors on the accuracy of balanc-
ing is studied in [2, 4–6]. In [5] the main reasons of a decrease 
in the accuracy of balancing rotors by passive auto-balancers 
are called to be as follows: the eccentricity of the racetrack; the 
forces of resistance to swing of the corrective weights on the 
track; external vibrations (or revolting forces).

In [4] the influence of the racetrack eccentricity and the 
forces of resistance to swing of the corrective weights on the 
accuracy of balancing the rotor by ball auto-balancer are es-
timated. An equilibrium equation for the corrective weights 
on the track in steady motion is constituted. It is shown that 
the lower the eccentricity and the forces of dry friction, the 
smaller the balancing error. It is suggested that the forces of 
resistance to swing can be reduced by increasing the radius of 
the balls. In [2] similar results for roller-type auto-balancers 
are obtained. In [6], the Hertz contact mechanics and hyster-
esis losses are taken into consideration to specify the zones of 
stagnation of balls around the auto-balancing position.

In [7-10], differential equations on the motion of the 
rotor-balancer system are used to study the influence of the 
forces of resistance to swing (along with other factors) on the 
dynamics of the system. In [7] it is determined that under 
certain conditions the forces of dry friction can excite oscil-
lating motions of the balls. In [8], it is shown that slight ex-
ternal revolting forces do not necessarily produce vibrations 
of the balls around the auto-balancing position because of 
the inaction of the corrective weights under the effect of the 
forces of resistance to swing. In [9], it is shown that revolting 
forces can influence the accuracy of balancing. In [10], it is 
revealed that concussions between the balls also influence 
the dynamics of the rotor-balance system.

If conclusions are derived from [2, 4–10] to specify the 
design of auto-balancers, it is possible to suggest that a higher 
accuracy of balancing is achieved with: corrective weights of a 
larger diameter; a maximum precision in the racetrack design, 
and if corrective weights made of the hardest solid material.

The influence of the parameters of an auto-balancer 
on the velocity of achieving auto-balancing is described in 
many studies, including:

[11] – about a flat model of the rotor with an two-ball 
auto-balancer;

[3, 12–14] – about a flat model of the rotor with an 
multi-ball auto-balancer;

[15] – about a rotor model with a viscoelastic fixation of 
the corps with a fixed point and one auto-balancer;

[16] – about a spatial model of the rotor on two supports 
and balanced by one auto auto-balancer;

[17] – about a spatial model of the rotor placed in a 
heavy corps with viscoelastic fixation and balanced by one 
auto-balancer;

[18] – about a spatial model of the rotor on two supports 
and balanced by two auto-balancers; 

[19] – about a discrete model of a flexible two-support 
rotor, balanced by two auto-balancers that are placed near 
the supports.

In these works the velocity of achieving auto-balancing 
is estimated by the roots of a characteristic equation that 
describes the stability of the main motion or a family of the 
main motions.

For rotor machines with one auto-balancer with a lot of 
corrective weights, the root with the smallest value of the 
negative real part is obtained by the following:

λ = − − − −� � �2 2
cr[b b (1 p)mnb ] / 2,  (1)

where b�  is a the dimensionless parameter characterizing the 
scope of the forces of resistance relative to the motion of the 
corrective weights;

n

i ki,k 1
p cos2( ) / n [0;1];

=
= ψ − ψ Î∑ � �  (2)

it is a the parameter that is determined by the positions 
of the corrective weights in an unperturbed main motion; 

i, /i 1,n /ψ =�  are the angles that set the positions of the 
corrective weights in the main motion; n is the number of 
the corrective weights in the auto-balancer, m is the mass of 
one corrective weight; crb�  is a dimensionless parameter that 
is determined by mass-inertial characteristics of the rotor 
system irrespective of the parameters of the auto-balancer.

The root (1) shows that the arrangement of the balls in 
the main motion significantly affects the velocity of achiev-
ing auto-balancing.

If the rotor model has on two supports and two auto-bal-
ancers (both for rigid [18] and for flexible [19] rotors), the 
duration of the transition processes depends on the positions 
of the corrective weights in the main motions of each auto- 
balancer:

jn

j i,j k,j ji,k 1
p cos2( ) / n [0; 1],

=
= ψ − ψ Î∑ � � / j 1,2/,=

and generally it is impossible to write the root (1) in an ex-
plicit form, but the tendencies with which the parameters pj, 
mj, nj, /j=1,2/ affect the duration of the transition processes 
remain the same.

The expression of the root (1) shows that at p=1 it is 
equal to 0 which theoretically can extend the time of achiev-
ing auto-balancing occurrence to infinity.

In [12–14], for corrective weights of an infinitesimal ra-
dius, it is proved that (at a fixed rotor unbalance in the plane 
of the auto-balancer correction) the parameter p changes 
within 0<pmin≤p≤pmax<1, with the transition of the corrective 
weights from one main motion to another in the multiple 
parameter family. However, a rotor unbalance can change 
from 0 to a certain maximum value. So there are always such 
rotor unbalances that will be balanced by auto-balancers for 
an infinitely long time. In practice, however, auto-balancers 
quickly track and balance any change in the rotor unbalance 
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because corrective weights are always finite in size. This is 
not taken into account when calculating the parameter p.

Thus, it is still essential to solve the complex problem of 
selecting the parameters of real ball or roller-type balancers 
(with finite corrective weights) that can maximize the bal-
ancing capacity of the auto-balancer and minimize the time 
of achieving auto-balancing.

3. The purpose and objectives of the study

The purpose of the work is to research of the influence of the 
size of corrective weights and their quantity in an auto-balancer 
on the balancing capacity of the auto-balancer and the duration 
of the transition processes in the auto-balancer.

To achieve this purpose it is necessary to solve the fol-
lowing research problems:

1) to receive a general formula for estimating the balanc-
ing capacity of the auto-balancer that would be suitable for 
both even and odd quantities of corrective weights;

2) to establish a technically correct task of optimizing 
the parameters of the auto-balancer and to determine the 
size and the quantity of the corrective weights that would 
maximize the balancing capacity;

3) to define the limits of changes in the parameter p, 
taking into account the final sizes of the corrective weights, 
the radius and the quantity of the corrective weights in the 
auto-balancer to minimize the duration of the transition 
processes.

4. Methods of researching the dependence of  
the balancing capacity of an auto-balancer and  

the duration of the transition processes on  
the parameters of the corrective weights

Rotor systems with typical one-row auto-balancers hav-
ing corrective weights in the form of identical balls or cylin-
drical rollers are investigated.

To obtain the general formula of determining the balanc-
ing capacity of an auto-balancer applicable to both even and 
odd quantities of corrective weights, the study will make use 
of the known trigonometric identities.

The balancing capacity of the auto-balancer will be 
considered as a function of many variables. The influence of 
each parameter on the value of this function will be investi-
gated. The balancing capacity of the auto-balancer will be 
investigated for extremum quantities and radius of correc-
tive weights in auto-balancers. The obtained results will be 
evaluated from the engineering point of view, and abstract 
mathematical results will be rejected.

From the form of the root (1), it follows that the dura-
tion of the transition processes (the velocity of achieving 
auto-balancing) can be estimated by the function

a=(1–p)mn. (3)

The duration of the transition processes is shorter if we 
have bigger a(p,n,m). Therefore, auto-balancing will start 
faster at a reduced parameter p and at increased mass m and 
quantity n of corrective weights in the auto-balancer.

While determining the limits of the parameter p, it will 
be taken into account that corrective weights have a finite 
radius and cannot move one through another.

5. Results of researching the dependence of  
the balancing capacity of an auto-balancer and  

the duration of course of the transition processes on  
the parameters of the corrective weights

5. 1. Justification of using at least three corrective 
weights in an auto-balancer

By now, the theory of auto-balancing a rotor by means of 
a two-ball auto-balancer has been developed quite well. It is 
based on the theory of stability of isolated motions.

In practice, however, it is typical to use auto-balancers 
with many corrective weights, which makes it possible:

– to increase the balancing capacity of the auto-balancer 
or to reduce its dimensions;

– to minimize the reaction time of the corrective weights 
to changes in the static unbalance of the rotor.

Let’s illustrate the latter by an example of balancing an 
elementary static unbalance of an auto-balancer with two 
and three corrective weights (Fig. 1).

            a                        b                      c                       d

Fig.	1.	The	positions	of	corrective	weights	while	balancing	
an	elementary	static	unbalance	of	a	rotor	with	the	help	of	an	

auto-balancer	having	two	and	three	corrective	weights:		
a,	b	show	the	positions	of	the	corrective	weights	under		
the	initial	rotor	unbalance;	c,	d	illustrate	the	positions	of		

the	corrective	weights	under	a	shift	of	the	rotor	unbalance	by	90º

In an auto-balancer with two corrective weights (Fig. 1, a), 
the latter always take the only possible position in which they 
balance the static unbalance of the rotor, and in an auto-bal-
ancer with three corrective weights (Fig. 1, b), the latter always 
take one of the possible positions from a one-parameter family 
in which they balance the static unbalance of the rotor.

If the elementary static unbalance of the rotor shifts by 
90º, the corrective weights will take the positions shown in 
Fig. 1, c and Fig. 1, d, that is:

– the two corrective weights will turn around the center 
by 90º (Fig. 1, c) and will cover considerable distances on 
the track;

– the three corrective weights will make elementary 
shifts (Fig. 1, d) and will stop in one of the auto-balancing 
positions from the one-parameter family of such positions.

Thus, in an auto-balancer with three corrective weights, 
the process of auto-balancing happens much faster. With 
more corrective weights (n>3) in the auto-balancer, there is 
an (n–2)-parameter family of auto-balancing positions, and 
auto-balancing can happen even faster.

5. 2. Calculation of the balancing capacity of an auto- 
balancer

Let’s consider an auto-balancer with n corrective weights 
(Fig. 2). Let us define that:

– the radius and the mass of the corrective weights are 
equal to r and m, respectively;

– the radius of the racetrack of the corrective weights is 
equal to R;

– the corrective weights are densely pressed to each 
other and symmetrically located relative to the vertical axis.
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Let’s introduce the angle α:

j j 1arcsin[r / (R r)] O OO / 2,+α = − = ∠  / j 1,n 1/ .= −  (4)

Fig.	2	Determination	of	the	balancing	capacity	of		
the	auto-balancer	

Then:

j 1O Ox O Ox 2 (j 1)

(n 1) 2 (j 1) (n 1 2j),

∠ = ∠ + α − =

= −α − + α − = −α + − / j 1,n /=

and the balancing capacity of the auto-balancer is equal to: 

{ }
n

AB jj 1

n

j 1

S m(R r) cos O Ox

m(R r) cos[ (n 1 2j)]sin / sin .

=

=

= − ∠ =

= − α + − α α

∑
∑

After applying the trigonometric identity and summa-
tion we receive:

{ }n

AB j 1
S m(R r) sin[ (n 2 2j)] sin[ (n 2j)] /sin

m(R r)sin n /sin .

=
= − α + − − α − α =

= − α α

∑                         
                                             

(5)

Taking into account (4) equation (5) takes the following 
form:

2
ABS m(R r) / r sin{n arcsin[r / (R r)]}.= − ⋅ −

The mass of a ball or a cylindrical roller, respectively, is 
equal to:

(b) 3m 4 r / 3,= π γ  (r) 2m r h ,= π γ  (6)

where γ is the density of the material of which the corrective 
weights are made, h is the height of a cylindrical roller. Then, 
the balancing capacity of the ball or roller-type auto-balanc-
er, respectively, is equal to: 

(b) 2 2
AB

4 2 2

4 r
S r (R r) sin n arcsin

3 R r

4
R (1 ) sin n arcsin ;

3 1

π  = γ − =  −

 π ρ
= γ ρ − ρ  − ρ 

(r) 2
AB

4 2

r
S hr(R r) sin n arcsin

R r

R (1 ) sin n arcsin ,
1

 = πγ − =  −

 ρ
= πγ hρ − ρ  − ρ 

  

(7)

where ρ=r/R, h=h/R – dimensionless parameters.
Thus,

(b) (b)
AB ABS S ( ,R, ,n),= γ ρ  (r) (r)

AB ABS S ( ,R, , ,n),= γ h ρ

which means that the balancing capacities of the ball and 
roller-type auto-balancers, respectively, are analytical func-
tions of four or five variables.

If in the ball and roller-type auto-balancers the race-
tracks have identical widths and the corrective weights fill 
them completely, then h=2r. Herewith,

(r) (b)
AB AB/ 3h / 4r 5S S ( ) 1, .= =

Thus, the roller-type auto-balancer has a balancing ca-
pacity that is 1.5 times higher in comparison with the ball 
auto-balancer.

5. 3. Research to determine the highest balancing ca-
pacity of an auto-balancer

The balancing capacities of both types of auto-balancers 
are monotonously increasing functions based on the param-
eters γ and R. Therefore, to obtain an auto-balancer of the 
highest balancing capacity, it is necessary to make corrective 
weights of a material of the biggest specific weight and to 
produce the racetrack of the largest possible radius.

The balancing capacity of the roller-type auto-balancer 
monotonously increases with an increase in h. Therefore, the 
highest balancing capacity is achieved when the cylindrical 
rollers have the maximum possible height.

Let us study the maximum balancing capacities with 
regard to the parameters n and ρ.

5. 3. 1. Choosing the quantity of the corrective 
weights for the condition of achieving the highest balanc-
ing capacity of an auto-balancer

Let us assume that the geometrical sizes of the race-
track and the corrective weights have been determined 
and the material to produce the corrective weights has 
been chosen. Then in formulae (7) the parameters γ, R, 
h, ρ are constants. Let’s find the quantity of the correc-
tive weights to maximize the balancing capacity of the 
auto-balancer.

From formulae (7), it is obvious that the balancing ca-
pacity of the auto-balancer is formally the highest when the 
expression 

sin{n arcsin[ / (1 )]}ρ − ρ�  

is equal to 1 or

n / {2arcsin[ / (1 )]}.= π ρ − ρ�  (8)

Since n is an integral number, the quantity of balls should 
be determined by the formula n [n],= �  where [n]�  is a func-
tion of rounding n�  to the nearest integral number.

If n N,∉�  then, depending on the angle nα, the corrective 
weights can occupy slightly less or more than a half of the 
auto-balancer racetrack.

If n N,Î�  then n n,= �  the corrective weights fill exactly 
a half of the racetrack. Herewith, from (7) we receive the 
following:

(b) 4 2 2
ABS 4 / 3 R (1 ) ;= π ⋅ γρ − ρ  (r) 4 2

ABS R (1 ) .= πγ hρ − ρ

If equation (8) is solved relatively to ρ (at n n=� ), we 
receive:

sin[ / (2n)]/ {1 sin[ / (2n)]},ρ = π + π
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we find the ratio between the radiuses of the corrective 
weights and the racetrack at which n corrective weights 
occupy exactly a half of the racetrack.

5. 3. 2. The influence of the radius of corrective 
weights on the auto-balancing capacity of an auto-bal-
ancer

This influence will be studied with regard to the parame-
ter ρ. Let’s introduce the dimensionless functions:

{ }(r) 2
ABs ( ) (1 ) sin n arcsin[ / (1 )] ,ρ = ρ − ρ ρ − ρ

(b) (r)
AB ABs ( ) s ( ).ρ = ρ ρ  (9)

The balancing capacities of auto-balancers are directly 
proportional to these functions. Therefore, we shall further 
investigate these functions to determine the extremum.

Functions (9) are studied at fixed quantities of the cor-
rective weights. Table 1 shows the results: n is the quantity 
of corrective weights in an auto-balancer; ρ(b) and ρ(r) are the 
optimal values of the parameter ρ, respectively, for the ball 
and roller-type auto-balancers; φ(b) and φ(r) are the angles of 
the racetrack sector (in degrees) that is filled by the correc-
tive weights; (b)

ABs , and (r)
ABs  are the values of the dimension-

less functions that characterize the balancing capacity of 
the corresponding auto-balancer. A similar table, although 
without the angles of the sectors, was obtained in [2] on the 
basis of other formulae for calculating the balancing capacity 
of an auto-balancer.

Table	1

Dependence	of	the	balancing	capacity	of	the	auto-balancer	
on	the	quantity	of	the	corrective	weights

n

The corrective  
weights are balls

The corrective  
weights are rollers

ρ(b) φ(b) (b)
ABs ρ(r) φ(r) (r)

ABs

1 3/4 – 0,105 2/3 – 0,148

2 3/7 194 0,060 2/5 167 0,143

3 0,364 209 0,051 1/3 180 0,148

4 0,315 219 0,044 0,286 189 0,145

5 0,278 226 0,037 0,251 195 0,140

6 0,248 231 0,031 0,223 201 0,133

7 0,224 235 0,027 0,201 205 0,126

8 0,204 238 0,023 0,183 208 0,119

Fig. 3 shows examples of ball auto-balancers of the max-
imum balancing capacity (at the optimal radius of the ball) 
for various quantities of balls in the auto-balancer.

Table 1 and Fig. 3 show that the highest balancing capac-
ity of the ball auto-balancer (with a small number of balls: 
n<5) is achieved when the balls take slightly more than a 
half of the racetrack space. With a large number of balls 
(n≥5), it is possible to observe that the balancing capacity 
of the auto-balancer increases when the number of the balls 
is reduced by the following quantity: one ball when n=5÷8 
(Fig. 3, e–g), two balls when n=9÷11, more than two balls 
when n>11. For cylindrical rollers, it is possible to remove: 
one roller when n=8÷12, two rollers when n=13÷16, and 

more than two rollers when n>17. It is noteworthy that the 
possibility of such a notion as “excess” balls at n≥5 was first dis-
closed in [4]. That study, however, does not specify the number 
of such balls, nor does it present any analysis of the optimization 
task correctness from the technical point of view.

           a                        b                       c                       d

                        e                       f                        g

Fig.	3.	The	ball	auto-balancers	of	the	maximum	capacity	
under	a	varied	number	of	balls:	a	–	one,	b	–	two,		
c –	three,	d –	four,	e	–	five,	f –	six,	g	–	seven

The absolute highest balancing capacity is achieved 
when there is one ball or one roller. From the practice point 
of view, this result is useless. It and the presence of “excess” 
corrective weights (at n≥5) can be explained by a technically 
incorrect definition of the task.

First, in the mathematical definition of the task, it is 
implicit that if it is an ball auto-alancer, the racetrack is a 
sphere, but if it is an roller-type balancer, the racetrack is a 
cylinder. In practice, auto-balancers are set on a rotor or a 
shaft and, therefore, their racetracks are torus-shaped. This 
limits the radii of the corrective weights from the top.

Second, when n≥5, there happens a false optimization. 
When the radius of the corrective weights is increased, the 
lower corrective weights (Fig. 3, e–g for the balls) boost the 
balancing capacity of the auto-balancer faster than it is re-
duced by the “excess” upper corrective weights.

A complete, rather than formal, optimization of the 
balancing capacity is carried out simultaneously for the 
quantity and the radius of the balls. To increase the balanc-
ing capacity, the ball radius increases continuously. When 
there appears a “excess” ball, it is removed immediately. The 
balancing capacity will grow faster in a “new” auto-balancer 
rather than in an auto-balancer with a “excess” ball.

Thus, when designing an auto-balancer, it is necessary to 
take into account the following:

1) for a steady performance of an auto-balancer and a 
faster achieving auto-balancing process, the auto-balancer 
should contain at least three correctiove weights;

2) to increase the balancing capacity of an auto-balancer, 
it is necessary:

– to use corrective weights of the largest possible radius;
– to choose the quantity of the correction weights so 

that they would take about a half of the racetrack, and their 
centers of mass would be under the horizontal axis passing 
through the center of the auto-balancer.

It is noteworthy that a sphere can contain a non-classical 
corrective weight in the form of a hemisphere having the 
radius of the sphere [3]. Such a corrective weight (one) can 
counterbalance a static unbalance in the cross plane cross-
ing the rotor longitudinal axis in the center of the sphere. 
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The balancing capacity of the hemisphere is πR4γ/4 [3]. The 
balancing capacity of one ball at ρ=3/4 is equal to 9πR4γ/64. 
Thus, the balancing capacity of the auto-balancer increases 
16/9 times by replacing the ball with the hemisphere, which 
makes the auto-balancer completely functional.

In a cylinder, the highest balancing capacity is achieved 
with a corrective weight in the form of a semi-cylindrical 
sector. The balancing capacity of such a corrective weight 
is S=2R3hγ/3 [3]. The balancing capacity of one roller at 
ρ=2/3 is equal to 4γπR3h/27. Thus, the balancing capacity 
of the auto-balancer increases 9/(2π)»1.43 times by replacing 
the roller with the semi-cylindrical sector. It is necessary to 
use two and more cylindrical sectors in order to make the 
sector auto-balancer functionally complete. These sectors all 
together should fill a half of the racetrack to maximize the 
balancing capacity.

5. 4. Increase of velocity of approach of the auto-bal-
ancing

We investigate expression (3) on to the largest value. 
For this purpose first, we will carry out assessment of the 
parameter p.

5. 4. 1. Determination of the largest value of the pa-
rameter p

In [17], with the assumption that the corrective weights 
do not impede each other’s movement, it is shown that the 
largest value of the parameter p is equal to 1. It is reached 
when the corrective weights are broken into two groups and 
are placed in diametrically opposite positions. There are 
[n/2] kinds of such cases: one position is taken by j corrective 
weights (j=0,1,2, …, [n/2]), and the other weights are in the 
diametrically opposite position. Each of these cases corre-
sponds to a certain value of the static unbalance, and it may 
take infinitely long for auto-balancing to start.

In real auto-balancers, corrective weights can only touch 
each other. Therefore, the case when p=1 can occur only 
with two correctiove weights and under absence of a static 
unbalance of the rotor. In all other cases, the parameter p is 
less than 1. Let us determine the dependence of the largest 
value of the parameter p on the quantity and the size of the 
corrective weights for real auto-balancers (interpenetration 
of the corrective weights is not allowed).

First, we shall consider a marginal case when all correc-
tive weights are on one side of the auto-balancer (the rotor 
unbalance is equal to the balancing capacity of the auto-bal-
ancer). In this case, the sum in (2) is equal to:

{ }
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i 1
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i 1
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sin 2n / (sin 2 )

=
α α =  
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∑

and from (2) we receive:

p sin 2n / (n sin 2 ).= α α

If the corrective weights fill exactly a half of the race-
track, then α=π/n and p=0.

Now let us consider other critical cases. We shall consis-
tently transfer the corrective weights to the diametrically 
opposite side one by one. It will increase the parameter p. 
Fig. 4 shows the dependence of the parameter p on the quan-
tity of corrective weights j 0,[n / 2]=  in the diametrically 
opposite group at n=20 (curve 1), n=30 (curve 2) and n=40 
(curve 3) corrective weights in the auto-balancer.

Fig.	4.	Dependence	of	the	parameter	p	on	the	quantity	of	
corrective	weights	in	the	diametrically	opposite	position:		

1	–	20	corrective	weights	in	the	auto-balancer;		
2	–	30	corrective	weights	in	the	auto-balancer;		
3	–	40	corrective	weights	in	the	auto-balancer

From Fig. 4, it follows that the largest value that is ac-
quired by the parameter p is when the corrective weights 
are broken into two identical or almost identical groups at, 
respectively, an even number (n=2q) and an odd number 
(n=2q+1) of the corrective weights that are placed in diamet-
rically opposite positions.

Let us assume that the auto-balancer contains an even 
number of corrective weights and they are located symmet-
rically relative to the vertical axis of the symmetry (Fig. 5) 
(it is possibly only in the absence of a static rotor unbalance).

Let us specify that the sum (2) has four groups of sum-
mands:

Fig.	5.	Determination	of	the	largest	value	of	the	parameter	p

a) summands in which i=j, their number is equal to n and 
each of them is equal to 1, therefore 1 nΣ = ;

b) summands that contain corrective weights only from 
the bottom or only from the top group:

2

q

j 1

2 2 (q 1)cos4 (q 2)cos8

(q 3)cos12 ... cos4(q 1)

2 (n 2j)cos4j ;
=

Σ = ⋅ ⋅ − α + − α +
+ − α + + − α =

= − α∑
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c) summands that contain one corrective weight from 
the bottom and the other corrective weight from the top 
group, but they are not diametrically opposite:

{

}

3

q

j 1

2 [2 2(q 2)]cos4

[4 2(q 4)]cos8 [6 2(q 6)]cos12 ...

[2(q 1) 2(q 2(q 1))]cos4(q 1)

2 (n 2j)cos4j ;
=

Σ = + − α +

+ − α + + − α + +
+ − + − − − α =

= − α∑

d) summands with diametrically opposite corrector 
weights (|i–j|=n/2)

4 2 q n.Σ = ⋅ =

From items a–d we receive:
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By entering the latter expression into (2), we receive:

maxp 2sin n / (n sin 2 ).= α α  (10)

If the corrective weights fill a half of the racetrack, 
then: 

α=π/(2n) (11)

and

maxp (n) 2 /[n sin( / n)]= π , when n=2q. (12)

Let us assume that the auto-balancer contains an odd 
quantity of corrective weights, and they are located sym-
metrically relative to the vertical axis. Herewith, in the 
lower position, there are q+1 corrective weights, and in the 
top position, their number is q (it is possible under a small 
static rotor unbalance, which is balanced almost by one 
corrective weight).

Similarly to the even quantity of corrective weights, the 
sum in (2) is broken into three groups of summands (there 
is no fourth group of summands for diametrically opposite 
corrective weights). The sums for the first two groups are the 
same. For the third group, we have:
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Thus, for an odd quantity of corrective weights we re-

ceive:
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By entering the latter expression into (2), we receive:

maxp sin n / (n sin ).= α α  (13)

If the corrective weights fill a half of the racetrack, we 
receive: 

maxp (n) 1/ {n sin[ / (2n)]}= π  when n=2q+1. (14)

Remark 1. It is possible to show that the right parts in 
(10) and (13) at n>2 are monotonously decreasing functions 
concerning the angle α (or a dimensionless parameter ρ) in 
their definition range.

Remark 2. Formulae (12) and (14) produce identical 
values of pmax if the quantity of corrective weights in them is 
equal, respectively, to n1=2q+1 and n2=2(2q+1), q=1, 2, 3… 
Fig. 6 shows examples of such pairs of auto-balancers for q=1 
and q=2.

           a                       b                        c                       d

Fig.	6.	Examples	of	auto-balancers	with	odd	and	even	
quantities	of	corrective	weights	and	the	same	value	of		
the	parameter	p:	a	and	b	show	three	and	six	corrective	
weights	in	the	auto-balancer;	c	and	d	show	five	and	ten	

corrective	weights	in	the	auto-balancer

In (12) and (14), the function pmax(n) is monotonously 
decreasing, and its smallest (extreme) value is equal to:

maxn
lim p 2 / 0,637.

→∞
= π »

Since pmax(3)=0.667, then the value of pmax can be suffi-
ciently reduced by placing three corrective weights in the 
auto-balancer. Herewith, the parameter pmax exceeds its 
extreme value by 4.7 %.

5. 4. 2. Determination of the smallest value of the 
parameter p

In the absence of the static rotor unbalance and with 
more than two corrective weights in the auto-balancer, the 
value of pmin is always equal to 0.

Indeed, if n corrective weights are arranged in the tops 
of a regular n-angular shape, then the angles iψ�  in (2) are 
equal to i 2 (i 1) / n, / i 1,n /ψ = π − =�  and
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When there appears and increases a static rotor unbal-
ance, the value of pmin depends on the value of the static 
unbalance and on the quantity of the corrective weights. 
With an increase in the quantity of the corrective weights, 
the number of their positions at which pmin=0 increases 
significantly.

5. 4. 3. Determination of the shortest possible dura-
tion of transition processes depending on the radius and 
the quantity of corrective weights

Let us consider a case when there is no rotor unbalance 
(at an even quantity of corrective weights) or when the rotor 
is balanced by one corrective weight (at an odd quantity of 
corrective weights), i. e. when p=pmax.

Taking into account (3), (6), (10), and (13), we shall 
enter such dimensionless functions as (r)a ( ),ρ�  and (b)a ( ),ρ�  
characterizing the duration of the transition processes, re-
spectively, in roller-type and ball auto-balancers. For the odd 
quantity of corrective weights, they have the form of (15), 
but for the even quantity, they have the form of (16):

{ }
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= ρ − − ρ ρ − ρ ρ  

�
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(16)

A larger value of these functions corresponds to a faster 
achieving of the auto-balancing. 

Functions (15) and (16) at any fixed n>2 are monot-
onously increasing in the area of ρÎ[0; 0.5]. Formally, ρ 
can change from 0 to ρmax(n) at which n corrective weights 
completely occupy the racetrack. It is possible to show that 
ρmax(n)=1/[1+csc(π/n)] at n≥2.

Fig. 7 displays a dependence of the values of func-
tions (15) and (16) on the quantity of corrective weights 
in the auto-balancer at the corresponding values of the 
parameter ρ from Table 1. All these values are less than the 
corresponding ρmax(n), and they formally ensure the highest 
balancing capacity of the auto-balancer. The graphs are 
correct in the points of n=2, 3, 4 for balls and n=2, 3,…, 7 for 
rollers. The values of functions (15) and (16) are overstated 
for the other n since the radius of the corrective weights from 
Table 1 is larger than the actual optimal radius (at which the 
auto-balancer has the highest balancing capacity, and there 
are no “excess” corrective weights).

From Fig. 7, it follows that the shortest duration of the 
transition processes is provided by three balls or five cylin-
drical rollers.

Fig.	7.	Dependence	of	the	functions	that	
characterize	the	duration	of	the	transition	

processes	on	the	quantity	of	the	corrective	
weights	in	the	auto-balancer

6. Discussion of the research results about the influence 
of the parameters of corrective weights on the balancing 
capacity and the duration of the transition processes in 

an auto-balancer

1. The balancing capacity of ball and roller-type auto- 
balancers for any quantity of corrective weights is de-
scribed by an analytical function that is subdued to ana-
lytical research.

2. To accelerate the process the achieving auto-bal-
bancing, it is necessary for the auto-balancer to contain at 
least three correctiove weights. To obtain the highest bal-
ancing capacity of an auto-balancer with a fixed volume, 
it is necessary for the corrective weights to fill almost a 
half of the racetrack.

The task of finding the radius of the corrective weights 
that would maximize the balancing capacity of the auto-bal-
ancer with a fixed diameter of the racetrack is not correct 
from the technical point of view. First, in the mathematical 
definition of the task, it is implicit that if it is an ball auto- 
balancer, the racetrack is a sphere, but if it is an roller- 
type auto-balancer, the racetrack is a cylinder. This leads to 
a practically useless result – a conclusion that the highest 
balancing capacity is achieved with one corrective weight. 
In practice, auto-balancers are set on a rotor or a shaft and, 
therefore, their racetracks are torus-shaped. This limits the 
radiuse of the corrective weights from the top. Second, when 
n≥5, there happens a false optimization. When the radius of 
the corrective weights is increased, the most remote correc-
tive weights boost the balancing capacity of the auto-balanc-
er faster than it is reduced by the “excess” corrective weights 
located closer to the horizontal line passing through the 
center of the auto-balancer. The only practically essential re-
sult of solving such a task is the requirement that corrective 
weights should have the largest possible radius.

It is noteworthy that the use of corrective weights of the 
largest radius increases the quality of balancing because it 
reduces the forces of resistance to swing.

3. The research on the duration of the transition process-
es for the smallest value has produced the following findings:

– the critical case (when p=1, it takes infinitely long 
for the process of auto-balancing to start) for real auto-bal-
ancers can occur only with two corrective weights in the 
auto-balancer and in the absence of a static unbalance;

– with an increase in the quantity of corrective weights 
in the auto-balancer, the maximum possible value of the pa-
rameter p decreases down to 2/π;
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– to accelerate the process the achieving auto-balbanc-
ing, it is necessary for the corrective weights to occupy 
nearly half of the racetrack;

– the shortest time of the auto-balbancing is achieved 
with three balls or five cylindrical rollers.

The advantage of the suggested approach of selecting the 
parameters of corrective weights for an auto-balancer is that 
it complies with the following three requirements:

– to increase the balance quality by reducing the forces 
of resistance to swing of the corrective weights;

– to achieve the highest balancing capacity with a fixed 
volume;

– to ensure the fastest possible the achieving auto-bal-
bancing.

The limitations of the suggested approach are as follows. 
The obtained results are not checked in natural or virtual 
experiments. There are no estimates on an increase in the ac-
curacy of auto-balancing or a reduced duration of transition 
processes for real rotors with auto-balancers.

The results of the study can be used in designing auto- 
balancers to balance fast-rotating rigid and flexible rotors 
on the run.

Further, it is planned to validate the obtained results by 
testing them on specific rotor machines with auto-balancers.

7. Conclusions

The study has revealed the optimum parameters of cor-
rective weights in ball and roller-type auto-balancers. It has 
helped achieve coordination of the following three require-
ments: to increase the balance quality by reducing the forces 
of resistance to swing of the corrective weights; to achieve 
the highest balancing capacity with a fixed volume; and to 
ensure the fastest possible the achieving auto-balbancing. 
The main results are the following:

1. The balancing capacity of ball and roller-type au-
to-balancers for any quantity of corrective weights is de-
scribed by an analytical function that is further subdued to 
analytical research.

2. To accelerate the process the achieving auto-balbanc-
ing, it is necessary for the auto-balancer to contain at least 
three correction weights. To obtain the highest balancing 
capacity of an auto-balancer with a fixed volume, it is nec-
essary for the corrective weights to fill almost a half of the 
racetrack and to have the largest possible radius.

3. To accelerate the achieving auto-balbancing, it is 
necessary for the corrective weights to occupy nearly half 
of the racetrack. The shortest time of the auto-balbancing is 
achieved with three balls or five cylindrical rollers.
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