| =,

IIpedcmasneno cmeopenns ma pea-
J3AUit0 MeXaHizMy CRPOuLeHOl KOMYHi-
xauii (MCK) ons éipmyanvnozo xaac-
mepa 6 sucoxonpooyxmusnomy cloud’i,
axull € oinapno cymichum 0as dooam-
Ki6 31 cmanoapmmuum coxemnum inmep-
Qeiicom. MCK peanizosanuii na 6asi
Xen 3.2 ma aopa Linux 2.6.18. i npeo-
cmaense npouec, nodionuil 0 coxe-
mie UNIX DOMAIN

Knrouoei crosa: mexanizm cnpouse-
HOT KOMYyHIKauil, 6UCOKONPOOYKMueHa
006pobra danux, dinapna cymichicmo,
Kaacmep

T u |

IIpeocmasneno cozdanue u peanu-
3aUUs Mexanusma YnpoueHHol Kom-
mynuxayuu (MYK) onn eupmyanvnozo
Kaacmepa 6 6vlCOKONPOU3B00UMET -
nom cloud’e, xomopouii aensemcsa ou-
HAPHO COBMeCMUMbBIM O0JI1 NPUIONCE-
HUL CO CMAHOAPMHBLIM COKEMHBLIM
unmepeticom. MCK peanuzoean na
oasze Xen 3.2 u sopa Linux 2.6.18, npeo-
cmasasowuil npouecc, n000OHLLL KaK
u o cokemos UNIX DOMAIN

Knioueevie cnosa: mexanusm ynpo-
WEHHOU KOMMYHUKAUUU BbLCOKONPO-
uzeooumenvnas obpabomrxa oanmvix,
ounapnas coemecmumocmo, Kaacmep

u] =,

1. Introduction

At present, the development of high-performance
computations (HPC) has gained considerable traction in
different fields of its application. However, as the obtained
scientific data confirm [1—4], it still suffers from many
technical shortcomings: low throughput and network per-
formance, both externally and within the cluster of HPC,
as well as increased time delay. Addressing these defi-
ciencies was carried out in the implementation of various
technical and programming mechanisms. Thus, in order
to improve the inter-domain communication, authors of
article [1] proposed the com-sockets, which contributed to
improving the network throughput and reducing the time
of message delay. In paper [2], authors, in order to solve a
similar problem of data exchange between clouds in the
scientific medicine, employed java-sockets with a single
copy of the protocol when reusing the fulfillment threads
and special libraries of quick messaging, which contrib-
uted to the improvement of network characteristics in
data exchange. Other works investigated the issue of the
influence of high-performance sockets on the intensity of
data processing and the implementation of analyzer for
detecting the interaction between java- and other appli-
cations and the network. All these studies emphasized,
for HPC and network interaction, the network costs, use

|DOI: 10415587/1729—4061.2017.98896|

IMPLEMENTATION OF THE
SIMPLIFIED COMMUNICATION
MECHANISM IN THE CLOUD

OF HIGH PERFORMANCE
COMPUTATIONS

V. Melnyk

PhD, Associate Professor®

E-mail: melnyk_v_m@yahoo.com

N. Bahnyuk

PhD, Associate Professor®

E-mail: bagnjuk_n@rambler.ru

K. Melnyk

PhD, Associate Professor®

E-mail: ekaterinamelnik@gmail.com

O. Zhyharevych

Assistant*

E-mail: oz_lutsk@mail.ru

N. Panasyuk

PhD, Associate Professor**

E-mail: Natalyalutsk85@hotmail.com
*Department of Computer Engineering***
Department of Computer Technology*
***Lutsk National Technical University
Lvivska str., 75, Lutsk, Ukraine, 43018

of memory, the scalability and reliability of data transfer.
However, one of the most relevant issues was improving
the performance efficiency (throughput) of the network
on its different sections.

Today, from the point of view of end users or system ad-
ministrators, sometimes there is a question how to bypass
or “ruin” already working traditional models of applying
HPC, with the purpose of understanding and creating
more flexible and more efficient management and the use
of known resources. Their implementation for HPC is re-
quired by increasingly sophisticated needs of practical use,
and, at the same time, by the growing interest of scientists
to address this range of issues.

There is also growing interest to the high-performance
cloud computation and the systems, which are quite active-
ly implemented in different areas of human activity. Arti-
cles [3, 4] emphasize the issue of improving the network
performance, delivery and fast data processing to increase
the working ability of applications in science and medi-
cine. In order to solve the above problems, more and more
researchers recommend and choose cloud-computing as a
new high-speed tool for data management. These papers
pay attention to the effective use of HPC resources. All this
range of research is aimed at making this communication
link highly effective between the infrastructures of HPC
and their applications.

Constructing the HPC of clouds that employ traditional
HPC resources not only opens up new benefits associated
with solving the above-mentioned problems but also brings
with it a lot of interesting studies and tasks. One of these
tasks is to reduce the load on the network of a virtual cluster
in HPC cloud.

2. Literature review and problem statement

By the research conducted and the results obtained, the
authors of articles [5-7] clearly proved that the Linux Xen
guest domain demonstrates considerably lower network per-
formance than the native Linux. This problem is addressed
in paper [8] under conditions when the application on a vir-
tual machine communicates with another virtual machine
on another physical machine. Authors of the aforementioned
studies have found a marked decrease in productivity by a
factor of 2—3 for the input load. A similar reduction by a fac-
tor of 5 was observed also for the output load on the network.
They also prove that the TCP/IP protocol, developed for the
comprehensive Internet environment, is not applicable for
the environment of a virtual cluster.

Present work set the task of implementation and discus-
sion of two types of examples of communication between
virtual machines in a virtual cluster (Fig. 1). It was necessary
to implement an inter-domain communication as communica-
tion between virtual machines deployed on a single physical
machine. Fig. 1 shows this communication between virtual
machines 1 and 2 and between virtual machines 3 and 4. Ex-
tra-domain communication link should be implemented as a
link between virtual machines deployed on different physical
machines. This link is shown between virtual machines 1
and 3 or between virtual machines 2 and 4 (Fig. 1). In order
to solve the above-specified problem, we also propose here a
mechanism of simplified communication (SCM) for network
performance in the environment of a virtual cluster. We also
set the task to verify complete binary compatibility with ap-
plications that use the interface of standard sockets.

First of all, we would like to introduce a simplified
communication protocol, adapted to the environment of
network of a virtual cluster, as opposed to TCP/IP, in order
to improve its performance efficiency. This protocol is char-
acterized by not only a low time delay and high throughput
of communication network, but also a full dual compatibility
for the applications written using the interface of standard
sockets. There is no need to rewrite or recompile acting ap-
plications to ensure productivity of the protocol of simplified
extra-domain communication. It should be clearly noted that
this protocol is used solely for the internal non-extra-domain
communication, inside a virtual cluster. However, any virtu-
al machine in a virtual cluster that is communicating with a
machine (physical or virtual) outside the virtual cluster still
requires the TCP/IP protocol.

At the same time, we also set the task to integrate the
XenLoop [9] into machine with simplified communication
with the aim of improving the performance of an inter-
domain network. In order to obtain a better performance of
communication in an inter-domain network, the XenLoop
intercepts outgoing network packets before the network
level. It then detects those of them that are meant for virtual
machines, united by a high-speed channel of distributed
memory and, at the same time, bypasses the interface of a
virtualized network.

VIRTUAL CLUSTER

Extra-cluster communication

———— —
Virtual Virtual
machine 1 machine 2

T'imepsizop Kcena

Virtual
machine 3

Virtual
machine 4

Xen hypervisor

Fig. 1. Example of communication between virtual machines
in a virtual cluster

In the course of analysis of the scientific studies, we
discovered materials that describe the reduction of overhead
expenses of network input/output virtualization, which
affects the performance of intensive network applications.
One of the most affordable ways is to launch a high-speed
communication channel between the domains. In partic-
ular, in article [10], high performance is achieved through
the circumvention of TCP/IP-stacks, bypassing the costs
of turning pages and providing a direct boosted communi-
cation channel between the domains in the same machine.
High-performance cross-domain communication mecha-
nism, referred to as XWAY, intercepts related calls between
the INET- and TCP-level. It has a switch in order to deter-
mine whether the destination domain is located in the same
physical machine, or in the other. If it is in the same machine,
the switch tries to create an XWAY Canal and link it to the
XWAY-socket. In other words, from the level of switch, it
sends the INET-request to the TCP level. External commu-
nication in the network is not affected as the XWAY-channle
does not exist for it. In addition, XWAY supports full binary
compatibility for applications written for the sockets with a
standard interface, however, it is meant only for the intra-do-
main communication. Many network intensive applications
in virtual clusters, such as, for example, those designed for
high-performance parallel computation, use an intra-domain
example of hybrid communication, rather than extra-do-
main communication. Thus, according to the Amdahl’s law
[11], the optimization of communication only between the
domains will not improve significantly performance of the
system as a whole.

The mechanism of XenLoop [9] is an open source proj-
ect under the GPL-law. Similar to XWAY, the XenLoop
mechanism is aimed at obtaining better communication
performance in the environment of virtual machines inside
a domain. It is sensitive to the problem of transparency at
the level of the user, and still achieves high productivity of
communication between virtual machines — co-residents.
It checks incoming network packets on the network level
and tracks packets, sent for the virtual machines deployed
on a single physical machine. This is done via a high-speed
channel of distributed memory between the given virtual
machines, bypassing a virtualized network interface. Us-
ing the XenLoop mechanism, a virtual machine-guest can
transparently migrate between machines without violating
the current network communication and flawlessly switch
between the usual network path and the XenLoop channel.

The entire mechanism of XenLoop is realized in the
form of Linux kernel modules in Xen-domain “0” and guest

domains so that any of the virtual machines in the domain
is capable of loading the XenLoop dynamically in operating
mode. The assessment conducted through several non-modi-
fying tests proved that XenLoop can reduce the time delay of
the full round-trip between virtual machines by 5 times and
increase the throughput by 6 times [9]. However, the draw-
back is that by using the presented XenLoop mechanism,
it is possible to optimize communication performance only
inside the domain, similar to using the XWAY. As XenLoop
on the network level intercepts outgoing network packets
that arrive, it testifies to the additional utilization of CPU
resources for the TCP/IP processing. Fig. 2 shows architec-
ture of the XenLoop mechanism in the domain of the user.

| 2
I| Applications User’s Applications |
: domain :
| Socket Socket |
: level level :
|
: Transport Transport |
: level level :
: Network Network :
: level level :
: Communication channel :
| XenLoop ‘between virtual machines XenLoop |
: level Tt Domaino "7 level :
: i Tracking ! :
: Bridge for [* i > el ™| Bridge for :
| Xel_lLo_op XenLoop |
: applications " | |applications :
|
: N " TE Domain 0, '§ N N I
I etfzvor l»- ~] bridge for { ~ etwor '
I driver Hesiiens driver '
I PP :
|___________-_--__;-_-;__-L___-_-;___ __________

Fig. 2. Architecture of the XenLoop mechanism

Another approach to optimize network performance,
proposed in article [12], implies the monitoring of packet
transfer between virtual machines. For this purpose, models
of virtualization for the input/output devices in the environ-
ment of virtual machines require the introduction of moni-
toring of virtual machines (MVM) and/or preferred virtual
machines. Monitoring is conducted for each performed
input/output operation, which can cause difficulties in the
network performance for systems with high input/output
requirements. These include systems that are equipped
with high speed modem channels between them, such as,
for example, InfiniBand. Monitoring the exchange of input/
output between virtual machines expands the passage con-
cept for the operating system, which comes from the notion
of user-level communication. This allows time-critical input/
output operations to be enabled directly on the guest virtual
machines without monitoring between virtual machines or
preferred virtual machines. By using the embedded intelli-
gence in modem high speed network interfaces, it is possible
to use the monitoring of exchange between virtual machines.
This can greatly improve input/output performance and the
communication efficiency between them without compro-
mising security or separation. Fig. 3 shows architecture of
monitoring the passage between virtual machines.

However, monitoring the passing between virtual ma-
chines can be implemented only in an environment whose

networking equipment supports the passing of an operating
system. And only those applications that are written in the
interface of passing the operating system can be satisfied
by the performance of monitoring of run between virtual
machines.

Virtual machine : Virtual machine

—_——— e — —

L Application | E | Application J'
Operation system i | N Cinesit il “ oS
i T ¥ i
. Atcess to the
Monitoring | Module of return run mnitoring of

for vufual v— |passing for virtual

machines | Module of privileges | Imachinep

1

o vV _
| Device I

Fig. 3. Architecture of monitoring the passing between
virtual machines

Remote memory access protocol (RMAP) is a specif-
ically designed window-like reliable datagram protocol of
simplified communication (SCP), designed to implement
a remote access to the memory in the same subnet. This is
exactly the module described in articles [13, 14]. It is a fully
transparent distributed system in the Xen environment for
virtual machines, which coordinates the use of wide-cluster
memory resources to support its large volume and intensive
loading for the input/output. In order to effectively transmit
a memory page, RMAP removes such functions of TCP as
stream-byte abstraction in the order of delivery, control of
overloading and functionality of IP-routing in the system of
a single subnet.

Thus RMAP bypasses the stack of TCP/IP protocols
and communicates directly with the driver of a network
device. RM AP focuses on transmitting the memory pages in
such a way so that ordinary socket programs may not obtain
performance improvement from it.

The project was realized on Xen 3.2 with Linux kernel
2.6.18. Before we show the design, let us present a brief
Xen-review and a review of the input/output architecture for
a Xen-network (Fig. 4).

Xen is a virtual x86 machine monitor, which makes it
possible for the multidirected operating systems to distrib-
ute common hardware equipment among themselves. This
allocation is done under a safe and resource-efficient mode,
but without any obstacle for the work or functioning of the
network. This is achieved by providing an idealized ab-
straction of virtual machines according to which operating
systems such as Linux, BSD, and Windows can be deployed
with minimal effort. When using Xen, several operating sys-
tems can run on one machine at the same time. Each operat-
ing system is referred to as a guest domain, while there is one
privileged hosting domain among them to control software
at the level of applications, which is referred to as domain 0.

In such Xen system, there are two types of virtualization.
Pair-virtualization represents the abstraction of hardware
equipment. It is similar, but not identical, to the modification
of subordinate physical hardware for the guest operating
systems. That is why certain operating systems, such as
Windows, cannot function under this mode. Full Xen-
virtualization provides complete abstraction of subordinate
hardware equipment that requires a processor support.

Domain 0 User’s domain

Application bridge

SCM Feedback Input/output || Direct com.
e driver channel driver
i
SCM Xen
driver

Fig. 4. Input /output architecture of a Xen-network

All network communications under Xen are executed
through the use of a virtual network interface. In the domain
of the user (Fig. 5), a network input driver (front driver)
must operate, and in domain 0 — a network output driver
(feedback driver). Each interface of a network input in the
guest domain is connected to the corresponding interface of
feedback or a network source end in domain 0. The drivers
of the source end are connected to a physical network card
through a software bridge. Network applications in the guest
operating systems send data to the input driver. The input
driver (front driver) sends a message to the source side (re-
verse) driver with a copy of the data or scrolling the pages.

As evidenced by the scientific data we already analyzed,
one can conclude that up to now reducing the additional
network costs particularly in a virtual cluster has been ad-
dressed only in separate scientific studies. A question of im-
proving the productivity of operation of the applications for
HPC in the cloud of virtual machines has not been investi-
gated up until now and it remains a topical issue. At the same
time, still unresolved are the tasks arising from the research
itself, such as the introduction of effective mechanisms of
communication and their impact to improve the operational
performance of intra-cluster and extra-cluster sections of a
network, as well as the binary compatibility of applications.

[e T e |
| | Applications User’s Applications | |
| domain |
| Socket Socket |
: level level :
: Simplified Simplified]|
|| communication communication ||
|| protocol protocol |
| |
| Transport Transport |
: level level]l
I Network Network Jl
| level level |
| Communication channel = |
| XenLoop between virtual machines XenLoop |
I level 3 Domain 0 : level :
! .

| : Tracking : |
! Ly module f—tf '
| Bridge for || i|1 Bridge for |
: XenLoop XenLoop |

s . L. |
| applications o 2 applications |
| = & |

= =
| 2 3 |
| Network = & Network |
> -

: driver driver :
| |

Fig. 5. Architecture of the mechanism of simplified
communication (SCM)

3. The aim and tasks of the study

The aim of present work is to represent a mechanism of
simplified (light) communication (SCM) for a virtual cluster
in the cloud of HPC that supports a binary compatibility for
the applications written using a standard socket interface.

To achieve the set aim, the following tasks had to be
solved:

—to design a simplified mechanism of communication
(SCM) and confirm the improvement of network perfor-
mance in a virtual cluster of HPC. SCM should use the
proposed protocol for simplified communication and support
compatibility with network applications;

—in order to improve the performance of intra-domain
communication in the proposed system, to integrate Xe-
nLoop to intercept packets at the level below that of the
network. To examine the throughput between two virtual
machines using SCP, it is required to apply a reference test
with a set of NAS-tags [20] and make sure that a packet
should be sent through the FIFO channel, launched by
XenLoop;

—to prove experimentally that the throughput of in-
ter-domain communication improves for SCP and the proto-
col of remote memory access (RMAP).

4. Design and implementation of the system

Design of the system.

SCM is composed of two modules. The first one is a sim-
plified communication protocol module, which is responsible
for the extra-domain communication relative to a virtual
cluster. The second one is a XenLoop module, which launches
high-speed channel between virtual machines with the aim
of improving the intra-domain communication in a virtual
cluster.

A simplified communication protocol module (SCP) is
the main one and contains three sub modules. The first
sub-module is a section of the kernel. In order to intercept
network messages from the applications of top-level, while
maintaining the programming interfaces stable [15, 16], it is
necessary to make some changes in the Linux kernel of the
guest operating systems. The second sub-module is a simpli-
fied communication protocol (SCP). As is known, a TCP/IP
protocol consists of addressing, multiplexing, control over
connections, control of passing, overload prevention, packet
fragmentation/recombination, etc. It operates well in a com-
plex network environment, such as the Internet. However, in
such environment as a virtual cluster for the clouds of HPC,
where network infrastructure has much higher productivity
than the Internet, the functioning of the TCP/IP protocol
becomes complicated for processors.

These circumstances gave rise to the idea of develop-
ing SCP, which, instead of the TCP/IP protocol, operates
as a Linux kernel boot module in a guest operating sys-
tem in compliance with extra-domain communication.
It includes the initialization of the protocol, connection
set-up, buffering of data, algorithm of transfer and discon-
nection. Since the Linux kernel of a guest virtual machine
was corrected and improved, the proposed protocol can
intercept requests when the top-level applications trigger
the socket function for setting up a TCP connection. Sim-
ilar to TCP, in order to ensure reliable data transmission,
SCM also employs a timeout and a mechanism for repeat-

ed data transfer. Before sending a packet, a simplified
communication protocol computes a data checksum and
puts the result in the packet.

When a package of SCP is received, SCM first checks
its checksum. If the checksum does not match, SCM
would send a message in order to inform the sender of a
second dispatch of this packet. In order to improve the
throughput of network connection, SCP will receive mul-
tiple packets before sending its confirmation. The number
of sent packets before a confirmation depends on the
actual network environment. Several experimental runs
were executed to identify and confirm to a certain extent
the most accurate value. If the sender does not receive a
confirmation packet after a certain set time, the timeout
feature is enabled. The sender will resend the unconfirmed
data. By employing the SCP transfer algorithm, data
can be transferred effectively and reliably to a remote
machine. Therefore, the given protocol simplifies the
routing, prevents overloading and slow-start of the TCP
protocol, as well as implements an efficient and reliable
transmission of datagrams and increases the productivity
of extra-domain communication.

The third sub-module, a SCP module, is the module
(similar to the daemon module), which is in the user’s space
of the guest domain. At the stage of setting up a connection
with the help of SCP between two virtual machines, there
must be an exchange of some information. In this case, a
TCP channel is used to transmit such information as the
channel number, MAC-addresses, and after that, while
the connection is being set up, it is instantly destroyed.
Daemon listens to a certain TCP port and the inbound
requests to connect with SCP to exchange the necessary
information over the TCP channel. Fig. 6 shows the se-
quence of setting up a connection when SCP is engaged in
this operation.

The following is a description of the stages of
establishing a connection in the system with a
simplified communication protocol (SCP).

1. An application from a virtual machine trig-
gers the socket function to set up a TCP con-
nection.

2. An add-on to the Linux kernel intercepts
triggering such a function and transmits a specific
task for the function of determining to identify
whether the location of the virtual machine is
another physical machine.

3. The determining function returns a certain
result.

1. Triggering a function
of a TCP-connection

1 Call :

: intercep- : 2. Triggering a

: tion) functiqn of address [
_______ ! allocation
_______ A

I

i Add_ressed : "_|3_ Returning the

! dtestma— ! | | addressed result

1 tions |

: Datagram

1 Interception
1

1

4. Triggering a
function of
connection set-up

4. If the source and the destination of virtual machine
are deployed on different physical machines, the function of
setting up a connection with the help of SCP with the isola-
tion of the required data structures will be enabled.

5. The function of setting up a connection through SCP
returns the appropriate result.

SCP is aimed at optimizing the performance of extra-do-
main communication network in a virtual cluster. In order to
obtain a better performance for the intra-domain communi-
cation, we integrated the XenLoop module into the proposed
SCM, which intercepts outgoing network packets below the
network level.

If the destination of the packet relates to the coresident
virtual machine, it bypasses the virtual network interface
and is transmitted via a high-speed channel of distributed
memory between virtual machines. XenLoop works as a
Linux kernel module and provides full compatibility for the
top-level applications. It can be typically downloaded at the
same time when the system is under working condition. This
module contains a bridge in the form of specialized software
for the guest machine, which is able to intercept each outgo-
ing package from the network level. It is also used to check
the title of the packet to determine the place of its destina-
tion. By using the information provided by the recognition
module, the XenLoop module can identify the packets that
belong to intra-domain communication. Every time two
guest virtual machines within a single physical machine
establish active network traffic, they dynamically create a
bidirectional data-transmission channel between themselves
using the “handshaking” protocol on both sides. Packets
that are sent to a coresident virtual machine run through
a high-speed FIFO channel between virtual machines.
Fig. 7 shows in detail a diagram of the sequence of intra-do-
main communication.

1. Sending out an IP
datagram

3. In the case of inter-
domain
communication, it uses]
the channel between
virtual machines

2. Defines inter-
domain
communication

[]

4. Returning the
result

Fig. 7. Sequence diagram of intra-domain communication

6. Returning the result
| i of connection

5. Returning the result

of connection

Fig. 6. Sequence diagram of setting up a connection in the presence of SCP

1. The IP protocol sends an IP datagram, which is inter-
cepted by the function of datagram interception.

2. The function of datagram interception, using the
information provided by a tracking message module, de-
termines whether its transfer relates to the intra-domain
communication.

3. If the datagram belongs to the communication inside
the domains, then it will be sent and through the channel
between virtual machines created by XenLoop.

4. Returning the appropriate result.

Implementation of the system.

We shall next focus on the details of implementing the
module of SCP, since other remaining modules for SCM are
described in detail in article [15]. Similar to XWAY, a SCP
(communication) module consists of three basic modules:
an application to the Linux kernel, loading module for the
kernel and the level of using daemon. The application to the
kernel is used to implement the binary compatibility with
socket applications and collaborates with the loading mod-
ule for kernel in the process of transferring the data using
SCP. The loading module for the kernel includes SCP while
daemon at the user’s level helps establish a connection with
this protocol.

Application of the kernel mostly

After that, the address Ip ring is assigned to the p_desc
member of appropriate structure /p_sock.

The user-level daemon that helps establish a simplified
connection is a socket software. It listens to the TCP port
and detects when SCP is triggered. If SCP receives a request
for a connection, it first checks the target machine whether
there is a virtual machine on another physical machine. If it
is required to employ SCP to send and receive data in the
communication, then this protocol first launches a connec-
tion through its own TCP channel to the user-level daemon
on the target virtual machine. After the user-level daemon
accepts a connection request, it will prescribe a file descrip-
tor that represents this connection to the device of a virtual
character called Ip_cdev and implemented in SCM. Due to
this device of virtual character, the file descriptor can be
transferred to the loading module in kernel space. After that,
these two kernel modules may share information necessary
for setting up a SCP connection via own TCP channel.

Each datagram of SCP contains a set of fields in a spe-
cific order so that the reader knows how to decipher and
read the stream of data obtained. The title of the simplified
communication protocol datagram contains eight fields. The
format of a datagram is given in the form of Fig. 8.

modifies two Linux kernel C-struc-

tures: inet_stream_ops i tcpyrot. They Checksum

Length of useful

Initial index part of a datagram

Sequence number

Serial number of
confirmation

both contain pointers that indicate
the functions that implement basic op-

Index number of

confirmation Type Channel number

erations of TCP network contingent

Useful part of a datagram

events, such as connection, receiving,
sending, and receiving and so on. These
pointers were replaced with the above
functions. There is always the assertion in each function that
determines whetherthe current operation should be processed
by SCP or by the original function of the kernel. If it is a sim-
plified communication, then it will be processed by SCP, oth-
erwise it will be processed by the TCP/IP original protocol.
Define C-structure called as Ip_sock in the applica-
tion to the kernel, which consists of the usual structure
TCP_sock and a pointer that refers to the structure named
IP ring. The structure IP_ring contains many data ele-
ments that are needed for the simplified communication,
such as information about the address of the other end
of a message, buffers for sending and receiving, channel
number and information on the status of communication.
We modified the field ‘.objsize’ of the structure tcp_prot
with field size Ip _sock instead of tcp_sock. At the stage of
creating a TCP-socket, field [p_sock will be created instead
of tcp_sock. The application to the kernel also includes the
other two C-files called Iproto.c and Iproto.h. The file Ipro-
to.c includes mainly determining the structures Ip_sock
and Ip_ring. The file Iproto.c includes the functions that are
defined by the fields of two modified structures. The kernel
boot module is responsible for establishing the connection,
data transmission and shutdown of connection. With the
help of daemon, at the user’s level, the connection between
two kernel modules is set up. They communicate with each
other and exchange data through the protocol of bilateral
“handshake”. First, two nodes equal in level share MAC-ad-
dresses, channel number, IP and information about the
ports. Each module must also select own structures lp_ring
for the pointer to the structure Ip_sock of the p_desc mem-
ber. They use information received from one another in or-
der to initialize the member-fields of the structure lp _ring.

Fig. 8. Format of a datagram for SCP

Fig. 8 shows:

— Checksum — allows SCP to detect datagrams with
damaged headers and useful part, and then to discard them.

— Sequence number that refers to the serial number of
the first data byte of a datagram.

— Initial index that refers to the index of a useful part of
a datagram in the sender’s buffer.

— Length of the useful parts of a datagram is the length
of the useful part of the message (submessage) in bytes.

— Serial number of confirmation is the next serial num-
ber, which the sender of datagram aims to receive.

— Index number of confirmation is a verification number
that arrives after a start index in the sender’s buffer, then
the initial index is displaced to the location, indicated by the
number of the confirmation.

— Type is used to identify the type of a datagram. SCP
has two types of datagrams: one contains data while the
other contains control information.

— Channel number is the number of the buffer channel to
connect using SCP.

In order to ensure reliable transmission of datagrams,
the proposed SCP employs a window-like algorithm for data
transfer, which is in detail described in paper [17].

5. Discussion of results of examining SCM in
a cluster of HPC

We shall estimate the realization of a mechanism of
simplified communication (SCM) using data obtained from
the experiments described in article [18]. First, we shall
describe the experimental environment and the workload,

and then we shall present the experimental results. We shall
add to them the results of comparison of performance for the
intra-domain and extra-domain sections of a communication
network with a protocol of remote memory access (RMAP)
and a binary compatible SCM.

In the experiment, we used two identical physical ma-
chines. We executed experimental verification of the perfor-
mance of extra-domain communication between these two
machines and the performance of intra-domain communica-
tion on a single machine.

Each physical machine was equipped with a two-core
processor of 2.5 GHz, memory 4 GB, SATA-drive, the net-
work card Gigabyte and the Gigabyte Ethernet network
communication. The same software was deployed on both
machines: CentOS 5.0 with Linux kernel 2.6.18.8 and
Xen 3.2.0. Virtual machine is equipped with the following:
2 VCPU and 512 MB RAM.

Network performance evaluation was carried out with a
parallel set of NAS-tags and NETPERF-tags [19].

A test with a parallel set of NAS-tags [20, 21] is a set of
tags, which represents the CPU, cache, memory, and the
workload of the input/output system in a wide range of ac-
tual applications. A unit with a parallel set of NAS-tags con-
sists of five cores (EP, MG, CG, FT, IS) and three simulated
complex dynamically operated applications (BT, SP, LU).

For the tests, we chose a problem the size of class A.
Parallel set of NAS-tags illustrates a large variety for the
communication loads within the system. Data are obtained
starting from the exchange between the nearest neighboring
points to the exchange between points with coarse commu-
nication patterns considering all points of communication.
The module of tags NPB3.3-MPI was compiled in Open-
MPI-1.4.2 based on GCC 4.1.2.

Fig. 9 shows that the relative operation time for the tags
using SCP is smaller than for the TCP/IP protocol.

0- : I .
LU IS MG

[=]
0
[l

Passing time
(=]
ey
1

BT CG
m TCP/IP

Sp
Simplified communication protocol

Fig. 9. Test run time with a parallel set of NAS-tags for
class A

The test with a set of Netperf-tags was conducted in
the following way. The first virtual machine on a physical
machine worked as a Netperf server. The second virtual ma-
chine on another physical machine sent a large amounts of
data to the first virtual machine in the fastest possible way.

We ran several tests with different time of measurement
[22]. Result of the test, given in Fig. 10, indicates that the
throughput of SCP is somewhat higher than that for the
TCP/IP protocol. It is believed that the TCP/IP protocol
is rather well executed in such environment and there are
not so many “places” to optimize its operation. Improvement
in the throughput amounted to approximately 2.1 %. It is
believed that the improvement is mainly due to reducing the
time of launching and smaller size of the title packet.

A performance test of intra-domain network connection.
In order to improve the throughput of intra-domain network
communication, we integrated XenLoop into the system
of SCM, which consists of two modules: a detection mod-
ule and a XenLoop module. We launched several virtual
machines on a single physical machine, then downloaded a
detection plugin in domain 0 and the module of XenLoop on
each of the virtual machines.

770

~1

[

(=}
1

Throughput, MBit/s

1 2 375 10 20 30 40 50 60
Time, s

B TCP/IP W Simplified communication protocol

Fig. 10. Comparison of throughput for the protocols of
SCP and TCP/IP

First, let us compare the throughput of TCP protocol
between two virtual machines that employ Netperf between
the incoming and outgoing drivers of communication mech-
anism and the channel of XenLoop. Next, we check the
throughput of the local loop channel (described in the liter-
ature as loopback) and compare with the XenLoop channel
throughput.

Result shown in Fig. 11 demonstrates that the through-
put to transmit large amounts of data through a TCP pro-
tocol improves by about one and a half. We should also note
that the throughput between virtual machines deployed on
a single physical machine is slightly better than the through-
put for the local loop channel, loopback.

S 8
*
& 6-
=
B
B4
=
=}
=
=~
2-
O T TS TI0T 20730740 50" 60
Time, s
M XenLoop Loopback M TCP/IP

Fig. 11. Throughput of XenLoop, Loopback, and TCP /IP

Next, we shall perform a comparison of the obtained ex-
perimental data for a system with SCP and the system with a
protocol of remote memory access (RMAP). SCP and RMAP
are used separately to transmit a specified amount of data
from a virtual machine on one physical machine to another
virtual machine on another physical machine. Result shown
in Fig. 12 proves that the throughput in the case of apply-
ing SCP improves compared with the use of RMAP with a
growth by approximately 7.8-7.9 %.

§ 780
S
= 740
2
&
2 700
=
H

660

Amount of data, MB
B Simplified communication protocol [l RMAP

Fig. 12. Throughput of SCP and RMAP

Although SCP and RMAP send data in one packet to
their maximum capacity, but there is a difference among
them. RMAP-protocol is designed to transfer a page of
memory one by one. The final packet with the size of max-
imum page for transmission over the network cannot reach
the final point of destination. That is why the protocol of
RMAP compared to SCP must send several pages to trans-
mit a specified amount of data. And this proves the result of
improvement in the case of applying the protocol of SCM.

The system with SCM not only provides a better perfor-
mance (throughput), but also offers a binary compatibility
with existing network applications. In order to check binary
compatibility with the examined applications, it is necessary
to run many common network applications in the examined
system with SCM. To realize the study into compatibility of
applications, we launched such of them as SCP, APACHE,
WGET, NETPERF, MYSQL, VSFTPD, TELNET and

some others. All applications have passed the test. However,
those applications that do not employ a standard socket in-
terface cannot pass it.

7. Conclusions

1. The work presented a mechanism to optimize network
performance for a virtual cluster of HPC, referred to as the
mechanism of simplified communication (SCM), which can
improve both the intra-domain and extra-domain (external)
network throughput, offering at the same time compatibility
with the existing network applications. SCM makes it possi-
ble to avoid the slow start phase of the TCP protocol and to
use a smaller header for a data packet.

2. Experiments prove that the throughput between two
virtual machines using SCP is about 2.1 % higher than that
for TCP/IP while relative time of a reference test with a
set of NAS-tags [20] is lower. In order to improve the per-
formance of intra-domain communication, the system with
SCM integrated XenLoop, which can intercept a packet at
the level below the network and check whether the purpose
of the packet is a coresident virtual machine. If the packet is
sent between cooperating virtual machines, then it will be
sent through the FIFO channel opened exactly by XenLoop.

3. Result of the study proves that the throughput of the
intra-domain communication improves by about one and a
half. We compared the indicators for SCP and a protocol
of remote memory access (RMAP) that demonstrates that
SCP is 7.8-7.9 % faster than RMAP.

References
1. Melnyk, V. Design and implementation of inter-domain communication mechanism for high performance data processing [Text] /
V. Melnyk, P. Pekh, K. Melnyk, N. Bahnyuk, O. Zhyharevych // Eastern-European Journal of Enterprise Technologies. — 2016. —
Vol. 1, Issue 9 (79). — P. 10-15. doi: 10.15587/1729-4061.2016.60629
2. Melnyk, V. Influence of high performance sockets on data processing intensity [Text] / V. Melnyk, N. Bahnyuk, K. Melnyk //
ScienceRise. — 2015. — Vol. 6, Issue 2 (11). — P. 38—48. doi: 10.15587,/2313-8416.2015.44380
3. Melnyk, V. High production of java sockets (HPJ]S) for health clouds in science [Text] / V. Melnyk, O. Zhyharevych, K. Melnyk //
Proceedings of National Aviation University. — 2015. — Vol. 64, Issue 3. doi: 10.18372/2306-1472.64.9041
4. Melnyk, V. M. Significance of the socket programming for the laboratory with intensive data communications [Text] / V. M. Mel-
nyk, P. A. Pekh, K. V. Melnyk, O. K. Zhyharevych // Computer-integrated technologies: education, science and industry. —
2015. — Issue 20. — P. 67-71.
5. Barham, P. Xen and the art of virtualization [Text] / P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho et. al. // Pro-
ceedings of the Nineteenth ACM Symposium on Operating Systems Principles — SOSP '03. — 2003. doi: 10.1145/945445.945462
6. Pratt, I. Xen Virtualization [Text] / I. Pratt // Linux world 2005 Virtualization BOF Presentation. — 2007.
7. Chisnall, D. The Definitive Guide to the Xen Hypervisor [Text] / D. Chisnall. — 2-nd ed. — Prentice Hall, 2007.
8. Menon, A. Optimizing network virtualization in Xen [Text] / A. Menon, A. L. Cox, W. Zwaenepoel // In 2006 USENIX Annual
Technical Conference. — Boston, Massachusetts, USA, 2006. — P. 15-28.
9. Wang, J. XenLoop: a transparent high performance inter-VM network loopback [Text] / J. Wang, K.-L. Wright, K. Gopalan //
Cluster Computing. — 2009. — Vol. 12, Issue 2. — P. 141-152. doi: 10.1007 /s10586-009-0079-x
10. Kim, K. Inter-domain socket communications supporting high performance and full binary compatibility on Xen [Text] / K. Kim,
C. Kim, S.-I. Jung, H.-S. Shin, J.-S. Kim // Proceedings of the Fourth ACM SIGPLAN/SIGOPS International Conference on Vir-
tual Execution Environments — VEE 08. — 2008. doi: 10.1145/1346256.1346259
11. Amdahl’s Law [Electronic resource]. — Available at: http://home.wlu.edu/~whaleyt/classes/parallel /topics/amdahl.html
12. Liu, J. High Performance VMM-Bypass 1/O in Virtual Machines [Text] / J. Liu, W. Huang, B. Abali, D. K. Panda // USENIX
Annual Technical Conference archive. — 2006.
13. Hines, M. R. MemX [Text] / M. R. Hines, K. Gopalan // Proceedings of the 3rd International Workshop on Virtualization Tech-
nology in Distributed Computing — VTDC "07. — 2007. doi: 10.1145/1408654.1408656
14.

Deshpande, U. MemX: Virtualization of Cluster-Wide Memory [Text] / U. Deshpande, B. Wang, S. Haque, M. Hines, K. Gopa-
lan // 2010 39th International Conference on Parallel Processing. — 2010. doi: 10.1109/icpp.2010.74

15. Kim, J.-S. Design and implementation of a user-level Sockets layer over Virtual Interface Architecture [Text] / J.-S. Kim, K. Kim,
S.-1. Jung, S. Ha // Concurrency and Computation: Practice and Experience. — 2003. — Vol. 15, Issue 7-8. — P. 727-749. doi: 10.1002/
cpe.721

16. Son, S. SOP: A Socket Interface for TOEs [Text] / S. Son, J. Kim, E. Lim, S. Jung // In Internet and Multimedia Systems and
Applications. — 2004.

17. Clark, D. D. Window and acknowledgement strategy in TCP [Text] / D. D. Clark // RFC 813. Internet Engineering Task
Force. — 1982. doi: 10.17487 /rfc0813

18. Menon, A. Diagnosing performance overheads in the xen virtual machine environment [Text] / A. Menon, J. R. Santos, Y. Turner,
G. (John) Janakiraman, W. Zwaenepoel // Proceedings of the 1st ACM/USENIX International Conference on Virtual Execution
Environments — VEE 05. — 2005. doi: 10.1145/1064979.1064984

19. Network bandwidth testing [Electronic resource]. — Available at: http://semenushkin.ru/2010/07 /01/TecTupoBanue-mpoIry CKHOM-
CIocO6HOCTH

20. Bailey, D. H. The Nas Parallel Benchmarks [Text] / D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L. Carter, L. Da-
gum et. al. // International Journal of High Performance Computing Applications. — 1991. — Vol. 5, Issue 3. — P. 63-73.
doi: 10.1177,/109434209100500306

21. Overview of some cluster performance measurement systems [Electronic resource]. — Available at: http://www.ixbt.com/cpu/
cluster-benchtheory.shtml

22. Netperf: A Network Performance Benchmark. Revision 2.0 [Electronic resource]. — Hewlett-Packard Company. — Available at:

http://www.netperf.org/netperf/training/Netperf.html

0 =,

3anpononosano KoHuenuiio i po3podaeno anva-eepciio 2eo-
inpopmauiunoi cucmemu 0as euseaeHHs i pPo3e’azanns ypoa-
Hicmuunux npoonem. Bona npononyemovcsa ax oonomixncnuil
iHCmpYyMeHm 0Nl YnpasAiHHA PO3GUMKOM NOCMPAOAHCOHKUX
Mmicm Cxionoi €eponu. Bio ananoziunux cucmem ii iopisnse opi-
eNMauin Ha 6UAGJLEHH NPOOIIeM i 6CMAHOBIEHHA NPOMUPIY HA
mepumopii micma. Onucano ii cmpyxmypy, nepenix Qynxuii ma
mecmosux 0iNAnKaAxX 6UHAYMEHT 30HU 3 XapaKmepHumu ypoauic-
MurHUMU npoyecamu: 0HceHmpudiKauicro, Komepuianizauicro i
pesimanizauieto mepumopii micma. I[i dani nasedeno y xapmo-
epadiunii popmi

Kniouosi caoea: zeoingpopmauiiina cucmema, ypoanicmuxa,
PO3yMmHe MiCMO, nPOCMOPO8a MPanc@opmauis, MicoKuii npocmip,
Oxcenmpudpixauis, xomepuianizauis, pesimanizauis, kapma

T]

IIpeonoscena xonuyenuus u paspadomana anvpa-eepcus zeo-
UHPOPMAUUOHHOU CUCTEMbL Ol BbLAGTEHUSL U PeUleHUs Yypoanu-
cmuueckux npooaem. Ona npeoaazaemcs Kax 6CnOMO2AMeIbHbLIL
uHcmpymenm 0J11 YynpaeaeHus pazeumuem noCnco8emcKux 20po-
006 Bocmounoit Esponvt. Om ananozuvhvlx cucmem oHa omauua-
emcs opuenmavuell Ha 6vlsseHUe NPOOIeM U onpedeieHue npo-
mueopeuuti na meppumopuu zopoda. Onucana ee cmpyxmypa,
Haoop Qynxuuil u undopmauuontoe nanoanenue. B pesynoma-
me ee UCNLIMAHUI HA MeCMOBbIX YHACMKAX OnpedesieHbl 30HblL C
xapaxmeproimMu YypoaHucmuecKuMu npoyeccamu; 0xnceHmpudu-
Kauuell, KOMMEPUUANUIAUUET U PeCUMANUIAUUET MePPUMopu
20pooa. Imu dannvie npedcmasieno 6 kapmozpaduueckoil popme

Knioueevte caoea: zeounpopmayuonnas cucmema, ypoanu-
cmuKa, Ymuwlil 20p00, NPOCMPAHCMEEHHAST MPpaHcHopmauus,
20podcKoe npocmpancmeo, 0xiceHmpupurauus, KoMMepUuuaIu-
3auus, pesumanusayus, kapma

1. Introduction

|DOI: 10.15587/1729—4061.2017.98809|

DEVELOPMENT
AND USE OF A
GEOINFORMATION
SYSTEM FOR
REVEALING
URBAN
PROBLEMS

A. Oreshchenko

PhD

Department of economic and

social geography

Taras Shevchenko National

University of Kyiv

Volodymyrska str., 60, Kyiv, Ukraine, 01033
E-mail: logograd@ukr.net

I. Nesterchuk

PhD, Associate professor

Department of Tourism

Zhytomyr National

Agroecological University

Staryi blvd., 7, Zhytomyr, Ukraine, 10008
E-mail: nester_geoek@ukr.net

changes help determine the human impact on the environment

and identify problems involved and caused by this impact [2].

Transformations in areas of human life activity are a subject
matter of Social and Economic Geography studies [1]. These

Research is more detailed if it deals with a variety
(rather than intensity) of factor impact on a territory,

