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1. Introduction

The task of finding (or localization) of the roots of alge-
braic and transcendental equations belongs to the important
problems of applied mathematics. The need for solving such
a problem arises in many fields of physics, mechanics and
natural science in the broadest sense of this word. That is
why this is a relevant topic today.

Finding the zeros of a function is the most important
procedure when exploring and constructing different func-
tions of dependencies, when examining continuous process-
es. Finding the zeros of functions comes down actually to a
gradual approximation to the region in which the function
becomes zero and to the study of it.

In the framework of the task on finding the roots of alge-
braic and transcendental equations, the following problems
are applied:

1. A problem on the localization by modulo of the roots of
algebraic polynomials with real or complex coefficients. For
such polynomials, the formulas are derived for determining
the upper and lower limits of the roots. Sufficient conditions
are also established of the existence of “maximum” annular
regions where there are no roots, as well as the “minimum”
annular regions that have a defined number of roots.

2. A problem on the localization of the true roots of al-
gebraic equations with real coefficients. For such equations,
there are derived formulas for determining the boundaries of
roots and established sufficient conditions for the existence
of “maximum” intervals where there are no roots.
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3. Tterative methods for refining the real roots of alge-
braic and transcendental equations. These methods imply
that there are fairly small neighbourhoods that are known
in advance, each of which contains only one root and in this
neighborhood certain conditions hold. In order to find a
certain root with a given accuracy, it is necessary to choose
one of the points from the neighborhood, which contains the
root, as the initial approximation and to employ appropriate
iterative process.

2. Literature review and problem statement

Note that for finding the roots (both real and complex)
of algebraic equations, there are direct methods. These meth-
ods do not require additional information about the location
of the roots. These include methods of the Lobachevsky-
Greffe type [1]. However, these methods do not have a wide
practical application in connection with the growth to infin-
ity of coefficients of equations, derived using the process of
taking the square roots.

Great progress in the polynomial liquidation was pro-
vided by the calculation of real roots of poorly determined
polynomials of high level (over 1,000). Article [2] presented
the result of algorithmic complexity relating to the isolation
of the roots of integer one-variant polynomials.

Paper [3] presented the classic methods for finding the
zeros of functions, in particular, the Newton’s method and
showed the advantages and disadvantages of the methods.




Article [4] proposed an improvement to the iterative
process of the Ostrovsky method, which increase the local
order of convergence. However, in this method it is required
to calculate a derivative of the function, as in the Newton’s
method, which sometimes is very difficult or long. Fairly
fast methods are based on the Newton’s method. Paper [5]
proposed the method of fourth order based on the Newton’s
method. In [6], authors built an efficient method for finding
the roots based on the multiplicative computations. These
methods require a derivative of the function, which, as was
already mentioned, is quite difficult to calculate.

Article [7] built a new method for finding the root of a
function. The method is very fast and reliable, but searches
for only one root at a given interval.

In [8], authors constructed an apparatus of nonclassical
Newton majorants and diagrams of functions, given in the
tabular form. This apparatus is used to approximate the
functions, to build numerical methods for calculating cer-
tain integrals, numerical methods for solving the Cauchy
problem for ordinary differential equations and systems.
This apparatus is also employed for functions precise on cer-
tain classes, to optimize the smooth and nonsmooth concave
functions of one and many real variables.

A nonclassical approach to building the apparatus of
Newton’s majorants and diagrams of functions given in the
tabular form differs from the classical one practically by the
point of mapping. If the nonclassical approach employs, as a
point of representation, points

P, (XV,—ln|aV |),
where a, are the coefficients of the appropriate series, then

in the nonclassical case, the points of representation are
taken as

where f(x) is the arbitrary function, set on certain interval
[a,b], and points x, satisfy the condition

P, (xv,—ln|f(xv)

a<x, <x,<...<x,<b.

The apparatus of nonclassical Newton’s minorants was
used in [9] for constructing the numerical optimization
methods of nonsmooth concave functions of one, two and
many real variables.

In [9], authors for the first time built the apparatus of
nonclassical minorants of the Newton’s functions of one,
two and many real variables given tabularly. The apparatus
is used for the approximation of functions and the develop-
ment of numerical methods of optimization of smooth and
nonsmooth convex and arbitrary functions of one, two and
many real variables.

In [10], authors built a numerical method for finding all
points of the extremum of arbitrary smooth and nonsmooth
functions of one real variable.

The theory of Newton majorants and diagrams, de-
signed for power series of functions of one complex variable,
was widely used in [11]. Further development of this the-
ory covered the Laurent and Dirichlet series, generalized
power series, and numerical sequences [12]. The theory
was also employed in the power series, the Laurent and
Dirichlet series of functions of two complex variables [13,
14]. Using the apparatus of the Newton majorants helped

obtain important results in various areas of mathematics
and cybernetics.

A question was raised: is it possible to apply the appara-
tus of non-classical Newton's minorant of functions, given
in the tabular form, to find zeros of functions as well? How-
ever, the new method should search for zeros for arbitrary
functions and would not need to separate the roots because
it is a resource-intensive process. As mentioned above, such
methods already exist (methods of the Lobachevsky-Greffe
type), but are not commonly applied because of the infinite
growth of equation coefficients. As it turned out, by using
the apparatus of classical Newton’s minorants, it is possible
to overcome this problem, and then it is not required to
calculate the derivative of the function for which zeros are
to be found.

Here we consider the construction of a numerical method
for finding zeros of both smooth and nonsmooth arbitrary
functions of one real variable. The basis of the method is the
so-called apparatus of nonclassical Newton’s minorants of
functions, given in the tabular form, which does not need
additional information on the location of roots, as well as has
many advantages over other methods for finding the zeros of
functions.

3. The aim and tasks of the study

The aim of present work is to construct a numerical
method for finding the zeros of a function that would not re-
quire imposed conditions both on the function and its roots.

To achieve the set aim, the following tasks are to be
solved:

— to devise a new numerical method for finding the zeros
of a function of both smooth and nonsmooth functions;

— to give examples and to estimate the speed of finding
the zeros of functions based on the constructed method.

4. Materials and methods of research into finding the
zeros of both smooth and nonsmooth functions

4.1. The apparatus of non-classical Newton majorants
and minorants of functions, given in the tabular form

Consider a function of real variable y=f(x), which is set
by its values in some points x; , i=0,1,...,n:

f(Xi):yp i=0, 1, vy 0L (1)
Assume
ly|=a, <M, i=0,1 ..,n, a,-a, 0, @

where M is a constant.

Definition 1. Point Pi(x;, —Ina;) with coordinates x=x;,
y=-Ina;, in plane xy is called a representation point of the
value of function y=f(x) in point x=x;.

Suppose that representation points P; of the values of
function y=f(x) in points x;, i=0, 1,..., n in the xy plane have
been built. From each point P; we shall draw a half-line in
the positive direction of the Oy axis, perpendicular to the
Ox axis. A set of points of these half-lines will be denoted
through S, and its convex shell — through C(S).

For each XE[XO, xn], the point B, (X, Xx) is defined,
where



x, = inf y.

(xy) € ()

A set of points Bx(x, Xx)’ xe[xo, Xn], forms line &,
which limits C(S) from below. This line is a continuous,
convex polyline and its equation takes the form

y=1(x),

Xe [XO, Xn],
where ¥(x)=x,.

Definition 2. The polyline &, defined on the interval [xo,
Xy], is called a nonclassical Newton’s diagram of function
y=f(x) on the given interval.

The Newton’s diagram &; of function y=f(x) has the fol-
lowing properties:

— each vertex §; is in one of the representation points P;
of the value of function y=f(x) in point x;, i=0, 1,..., n;

— each representation point P;, i=0, 1,.., n, is on &; or

above it.
Denote

M, (x)=exp (-x(x)), xe[x, x,].
Then for each x;, i=0, 1,..., n, equality holds
|f(xi)| =a, <M(x,).
In fact, from the construction of d, it follows that
~In|f(x,)] 2 x(x))
or
(< (x(x)) =M (x)
In addition,
M (x,)= |f(x0)| M (x,)= |f(x)

Definition 3. Function y=M(x), defined on the interval
[x0, Xu], is called the Newton’s majorant of function y=f(x) on
the given interval.

Let

M;(x,)=T, i=0,1,.., n.

Definition 4. Magnitudes
1
R, =(1‘f] (i=12,..,1n; R,=0)

and

Di:% (i=1,3, .., n—1; D,=D, =e0)

i

are called, respectively, the i-th numerical slope and the i-th
deviation from the Newton’s diagram 3.

Definition 5. If the representation point P;, i=0,1,..., n, is
in vertex &, then index i is called the vertex index, and if it is
in &, it is the diagram index &;. Indices i=0 and i=n refer to
the vertex indices.

A set of all vertex indices will be denoted as I, and the set
of diagram indexes as G. It is obvious that Ic G and T;=a;
forall ieG.

The Newton’s diagram is constructed in Fig. 1 for the
function, assigned in nine points.

Fig. 1. Newton’s diagram for the function assigned in nine
points

Assume that representation points P; of the value of
function y=f(x) in points x;, i=0, 1,..., n in the xy plane have
been built. From each point P;, we shall draw a half-line in
the negative direction of the Oy axis, perpendicular to the
Ox axis. A set of points of these half-lines will be denoted as
S, and its convex shell through C(S). For cach xe [XO, X, |,
we shall define point D, (X, XX), where

Xe= Sup y.

() € (5
The set of points DX(X,XX), Xe[xo,xn], form a line &,

which limits C(S) on the top. This line is a continuous, con-
cave polyline and its equation takes the form

y=x(x), xe[xy.x,],

where

x(x) =1

Denote

m, (x)= exp(—x(x)), xe[xyx, J.

Then for each x;, i=0,1,...,n, the following equation holds
mf(xi)s|f(xi)| =a,.

In fact, from the construction of &, it follows that

—ln|f(xi)|SX(xi)

|f(xi )| > exp(—x(xi)) =m;, (xl)

In addition,

In[(xo)=|f(x0)|, In[(xn)=|f(xn)|.

Definition 6. The function y=m¢(x), defined on the inter-
val [xg, X,], is called the nonclassical Newton’s minorant of
function y=f(x) on the given interval, and the polyline &; is
its diagram.



Fig. 2 shows the Newton’s diagram of minorant of func-
tion, assigned in nine points

Fig. 2. Newton’s diagram of minorant of function assigned in
nine points

The diagram &; of Newton’s minorant of function y=f(x)
has the following properties:

1) each vertex &; is in one of the representation points P;
of the value of function y=f(x) in point x;, i=1,2,..., n;

2) each representation point P;, i=0,1,..., n, is on & or
below it.

Let

my (xi ) =t

i

i=0,1,...,n.

Definition 7. Magnitudes

1
n:(ﬁ) (i=12...n; 1,=co)

i

and

=" (i=12,..n-1 d,=d,=0)
T.

are called, respectively, the i-th numerical slope and the i-th
deviation from diagram ¢ of the Newton’s minorant.

Let f(x) is the concave function on the interval [a, b].
Choose on the interval [a, b] a system of points Xg, X1,...,Xp,
where

b-a

x=xo+tkh (k=0,1,...,n), xg=a, h=
and find the value of function y=f(x) in these points. Let

f(xi)zci, i=0,1,.., n.

Since f(x) is a concave function on the interval [a, b],
then the numerical slopes in the diagram of the Newton’s

majorant, built by values of the function in points xg, X1,...,Xp,
are determined by formula

1

h

Rk:(%J (k:1) 2yy n; ROZO)
Cx

In this case

R,<R,<...<R,.

Deviations Dy in the diagram of the Newton’s majorant
will satisfy the condition

D, >1 (k=12,..,n-1 D,=D, =<0).

If, for some index k (0<k<n), the conditions R, <1,
R,,,>1, hold, then point xj with accuracy e<h is the point
of the maximum of function f(x).

Let f(x) is a convex function on the interval [a, b]. We
select in a similar way a system of points xg, X{,...,Xx, on the
interval [a, b], where

X, =X,+kh (k=0, 1, .., n),
b-a

X,=a, h= ,
n

and find the value of function y=f(x) in these points. Let
f(xi)zci, i=0,1,.., n.

Since f(x) is a convex function on the interval [a,b],
then the numerical slopes in the diagram of the Newton’s
minorant, built by the values of function in points xg, X1,...,Xp,
are determined by formula

1
h
T, :(C"‘) (k=12,.., n; 1,=c0).

Cy

In this case
L>T,>...>T,.

Deviations di in the diagram of the Newton’s minorant
will satisfy the condition

0<d, <1 (k=12,..,n-1 d,=d, =0).
If, for some index k (0<k<n), the conditions ri>1, rj+<1

hold, then point xi with accuracy e<h is the point of a min-
imum of function f(x).

3. Results of research into finding the zeros of both
smooth and nonsmooth functions

5. 1. Algorithm of the method for finding the zeros of
both smooth and nonsmooth functions

Assume one has to find all the roots (zeros) of function
f(x) on the given interval [a, b], that is, we shall search for
the solution of equation f(x)=0. If f(x)=0, then [f(x)|=0. Let

f(x)z 1+|f(x)|,
?(Xi):ai (i=0,1,...,n).

We shall construct representation points P, (Xi,—ln ai) of
the values of function y= f(x) in points x;,1=0,1,...,n, in
the xy plane. From each point P,, we shall draw a half-line
in the negative direction of the Oy axis, perpendicular to
the Ox axis.

The algorithm of the method consists of four steps. The
first step is to check whether points x=a and x=b are the
roots of function f(x). If point x=a is the root of function
f(x), then we take i=0, x;=a and proceed to the fourth step.
Otherwise, proceed to the second step, at which we compute



1

h
sz[akiJ L k=12...n-1

ay

until for some k=I the following conditions are satisfied

1

>, F,, <1.
If, in this case, |f(x;)|<h, then point x; with accuracy h
is taken as zero of function f(x) and we proceed to the fourth
step. If condition |f(x;)|<h is not met, then we proceed to
the third step.
At the third step we compute

Fo= A 1212, n—i-1

a‘i+l
until for some | the following conditions are satisfied

I

i+l 2 1’ 5

i+ < 1’ ‘ f(XH-I ) |< h (3)

If conditions (1) are fulfilled, then point x4 is zero of
function f(x) with accuracy h and we proceed to the fourth
step. If the conditions (1) are not satisfied at any 1, then func-
tion f(x) has no zeros, unless x=a and x=b.

At the fourth step, we select as a starting point the point
xj, found at some of the previous steps. T,, is calculated by
formula:

F=— k=12..n-i-1.
ai+k
Then if

|1_fi+k| <h, |1_fi+k+1| >h,

then point x4 is taken as the root of function f(x) with ac-
curacy h.

Since the algorithm is employed once at each partition,
then finding the zeros of function f(x) by the above algorithm
must take O(n) time units.

Theorem 1. Let x" is the first zero point of function f(x).
If function f(x) is continuous and has consistent derivative
in the vicinity of zero, then it is always possible to find this
point with precision |f(X)| <h by the above algorithm.

Example 1. Find zeros of the function:

f(x)=x2=9. (4)

f(4) on the interval [-5; 5]. Function graph (4) is shown
in Fig. 3.

9,
61
3,

S 43200 1
3t
-6+

-Of

2/345 x

Fig. 3. Function graph (4)

Assume

h=0.01, [a,b] = [—5;5],

n=1000, x, =a+ih, i=0,...,1000.

First, we modify function (1). We have:

f(x)=1+[f (x)[ = 1+[x*-9). (5)
Construct representation points of function (4). Let

A

f(x;)=a, (i=0,1,...,1000).

We have
1
B ak,1 h
fo=l—=|, k=12,...,1000.
Ay

Fig. 4 shows function graph (5).
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Fig. 4. Function graph (5)

At the first step of our algorithm we check whether
points x=a or x=b are the roots of function f(x). We receive

f(a)=f(-5)=16, f(b)=f(5)=16.
Thus, points x=a and x=b are not the roots of func-

tion f(x).
At the second step, we receive:

1 1
h 0.01
o =( 17 )001=1.8029,
a,) 169001
1 1
h 0.01
P,=| =(16'9001)001=1.807.
a, ) ~\16.8004

Since 1, >1,F, >1, then we compute &,,,... until for some
1 (I>1) the following conditions are fulfilled: F 21, T, <1.

We receive:
1 1
h 0.01
£ = (3199] = (10601) =342.518,
Ay 1

1 1
b 0ol
Ty = T |~ (1)001 =0.00298.
Ay, 1.0599

Now we check condition [f(x,,)|<h. We obtain:



f(x,00)=(-3) ~9=0<0.01.

Therefore, we received the first root of function f(x) at
x=-3. Proceed to the fourth step. At the fourth step, we shall

receive one more zero of function:

- 0o _1_1
800 = =170
Ag00

[1—Ty| =0<0.01,

- a 1
T — 200 _

=200 - =0.9433,
A, 1.0601

[1-Ty,|=0.0567 >0.01.

And, accordingly, it took O(1,000) units of time.

Example 2. One has to find zeros for the Chebyshev poly-

nomial at n=5:

T5(x)=16x"-20x3+5x. (6)

We know that the Chebyshev polynomials of the n-th
power have n roots on the interval [-1; 1]. That is, there

should be 5 roots. Function graph (6) is shown in Fig. 5.

y
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Fig. 5. Function graph (6)

Assume
h=0.001,[a,b]=[-11],
n=2000, x,=a+ih, i=0,...,2000.

First, we shall modify function (6). We receive:

f(x)=1+]f (x)| = 1+]16x° — 20x" +5x . (7)

Construct representation points of function (7). Let

A

f(x,)=1, (i=0.1...,2000).

We receive:
1
a b
I = L T k=1,2,...,2000.
a4y

Fig. 6 shows function graph (7).

At the first step of our algorithm we check whether

points x=a or x=b are the roots of function f(x). We receive

(b)=F(1)=1.
Thus, points x=a and x=b are not the roots of func-
tion f(x).
y
2
1
3 N 0 i 3 x
-1

Fig. 6. Function graph (7)

At the second step, we receive:

1 1
h 0.001
il 3] o[ 2 )" 299033253,
a, 1.975

1 1
b o0l
T T (1'975)(”01 = 340791.38.
a, 1.95

then we compute T,,F,,... until for some I (I>1) the following
conditions are fulfilled

=11, <L

We receive:

1 1

h 0.001
Foof Qe | o[ LOL3 YO sag 40 19
*“\a, ) ~\1.0009

1 1
h 0.001
io=| e :(1.0()()9)0001:0.0000001.
a, ) (1017

Check now the condition |f(x,,)|<h. We receive:

f(x,4)=16(~0.951)" ~20(~0.951)" +
+5(~0.951)=0.0009 < 0.001.

Therefore, we received the first root of function f(x) at

x=-0.951. Proceed to the fourth step. At step 4, we obtain
four more zeros of the functions, which are given in Table 1.

Table 1
The roots of function (5) after the fourth step
i+k Xk T T et
412 -0.588 0.99957 0.0000001
1000 0 1.0009 0.9959
1588 0.588 0.99958 1.0
1951 0.951 1 0.9858




And, accordingly, it took O(2000) units of time.

The advantages of the method constructed are:

—no need to first isolate the roots, then refine them, as in
the classical methods;

— a function may be both smooth and nonsmooth, both dis-
continuous and discrete;

— simplicity and visual representation of the method.

As one can see, the method does not require additional
information about location of the roots, thus it can gain a
widespread application in numerical analysis. Nevertheless,
it is necessary to note an obvious shortcoming of the method
that is associated with the need to run many steps, the number
of which depends on the accuracy required. A direction for
further research may involve solving the systems of nonlinear
equations, as well as solving a Cauchy problem using the appa-
ratus of nonclassical Newton’s minorants of functions given in
the tabular form.

6. Conclusions

1. We constructed a numerical method for finding the zeros
of both smooth and nonsmooth functions. Underlying the meth-
od is the so-called apparatus of nonclassical Newton's minorant
and diagrams of functions, given in the tabular form. This meth-
od does not require the isolation of roots, in contrast to other
well-known methods of finding the zeroes of functions. We also
managed to overcome a problem of the growth of equation coeffi-
cients, typical for methods of the Lobachevsky-Greffe type, since
here we do not employ the process of taking the square roots.

2. The examples are given of finding the zeros of functions, as
well as the estimation of speed to find these zeros. As is shown,
the speed depends on the accuracy required when finding them.
However, by using modern computers, it will not be a problem.
Therefore, the method constructed might gain a widespread
application in the problems on finding the zeros of functions.
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