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1. Introduction

The use in energy equipment of fuel with variable compo-
sition [1, 2] instead of the certified constant formulation leads
to an increase in the number of transient modes. A change in
calorific fuel capacity, amount of products of combustion, their
thermophysical properties predetermines the non-stationary
processes of heating-cooling the elements of power equipment
design, as well as nonstationary processes of heat transfer
through the heat exchange surfaces. As a consequence, in
the processes of energy conversion a more important role is
played by its variable accumulation — release in all equipment
components in contact with the combustion products. The
accumulation of energy (heating — cooling) affects inertness
in the processes of heat transfer and, therefore, manageability
of the process of energy transformations. In turn, the magni-
tude of energy accumulation is determined by temperature of
the elements of design. Thus, determining the non-stationary
temperature and, as a result, the nonstationary magnitude of
energy accumulation, is an important element in solving the
problem on optimal control of power equipment under condi-
tions of using a non-certified fuel of variable composition.

2. Literature review and problem statement

Analytical solution is a reliable and universal means to
calculate parameters of the nonstationary heat exchange

process. But at the same time, its application is cumbersome
and covers only particular cases. As a rule, they are confined
by the description of the process of heating-cooling the bodies
of simple shapes: infinite plate, cylinder, and sphere. Such
solutions have been known for a long time, but up to now they
have been applied only for a similar kind of processes. Only
the object of application has changed in favor of contempo-
rary equipment as, for example, in [3], where the problem on
cooling a display is solved. Article [4] examines a process of
cooling the plate with an internal heat source. The difference
is that the examined plate is a multilayer one. A special fea-
ture of paper [5] is the application, instead of the frequently
utilized Fourier expansion, the Trefftz functions. In this case,
only the approximate solution is obtained. The problem of
nonstationary heat transfer is of practical interest and it does
not have the analytical solution.

Numerical methods are more universal and can be used
to solve any problems on heat transfer. From the above enu-
meration of simple shapes of bodies, a plate appears the most
important one. It has two surfaces, which corresponds to the
process of heat transfer. Furthermore, for the case of coaxial
cylinders (a pipe) at the ratio between outer and inside diam-
eters of dy/d;<2, heat transfer through the cylindrical wall
with an error less than 4 % can be described using the model
for a flat wall. Such a relationship of diameters corresponds
to the majority of variants of tubular heat exchangers. Heat
transfer is predetermined by taking account of the combined
processes of heat exchange at the surfaces of a plate. These




processes in general are difficult to describe. But in many
practically important cases this description is confined by
assigning a generalized (integral) magnitude — heat-trans-
fer coefficient. Here arises a contradiction between relative
simplicity of problem statement on the nonstationary heat
transfer through an infinite plate and the use of sophisticated
universal numerical methods. Thus, [6] proposes a transition
from the distributed model to the concentrated in the form
of a system of ordinary first order differential equations. Its
considerable effectiveness is emphasized in this case rela-
tive to the finite-difference and finite-element methods. A
well-known fact is indirectly highlighted here of the need to
maintain certain ratios between the size of computational grid
and the calculation step by time: in order to provide for the
necessary accuracy, the computational grid is lessened with
a simultaneous decrease in step by time to ensure stability of
the numerical calculation. This leads to an avalanche-type in-
crease in the number of computations and to the accumulation
of errors in calculations. For a practical application in the en-
gineering calculations, in most cases, it is sufficient to consid-
er a problem in the one-dimensional setting. This is justified
in view of the smallness of thickness of the heat-transmitting
surface in comparison with its other geometric dimensions.
A confirmation of this can be found, for example, in [7]. It is
demonstrated here that, when solving a nonstationary inverse
problem on heat transfer, good results are obtained when us-
ing the one-dimensional model in particular.

A solution in the form of functional dependence is one
of the advantages of analytical methods over numerical. It
is necessary to obtain the solution only once. It can be sub-
sequently used for any arguments. In this case, in the form
of this dependence, the interrelation of all phenomena, taken
into account in the model, is reflected analytically. Results
of numerical calculations lack these properties. In order to
somewhat improve this situation, it is possible to use the
models and, accordingly, numerical solutions based on them
in a generalized (made dimensionless) form. The obtained
advantage manifests iteself most vividly in complicated cas-
es. Thus, in [8], when examining the magnetohydrodynamic
flows, using the similarity transformations, it was possible to
reduce the Navier-Stokes equations to ordinary differential
equations. Such a result is possible due to the representation,
when rendering dimensionless, all terms of equations in
the uniform form and obtaining the possibility of running
a fractional analysis. In [9], it was possible in this way to
obtain approximated analytical solutions of the systems of
ordinary differential equations. However, this approach, as a
rule, is not applied to the simpler problems, although it can
also yield a positive effect.

Therefore, the nonstationary problem on heat transfer
can be solved with the aid of numerical methods. A large
number of similar practically important processes can be
described using relatively simple one-dimensional models.
The problem is in the mismatch between simplicity of the
model and complexity of its proposed numerical realization.
When employing simple models, additional possibilities to
generalize the results of solution by representing the model
in a dimensionless form are not used.

3. The aim and tasks of the study

The aim of present work is to develop a simplified dis-
crete analog, designed to calculate the process of nonstation-

ary heat transfer through the infinite plate (one-dimensional
model). This will make it possible:

— to represent the discrete analog and, therefore, results
of the calculations in the dimensionless form with the possi-
bility of their appropriate generalization;

—to obtain the discrete analog that makes it possible
to carry out calculations with the required accuracy on the
rough computational grids (with a small number of com-
putational nodes) and at large steps in time retaining the
stability of numerical calculations.

To achieve the set aim, the following tasks are to be
solved:

— to substantiate the choice of method for constructing
the simplified discrete analog;

— to construct a discrete analog in the dimensionless form;

— to prove working ability of the developed analog and
evaluate the accuracy of calculations based on it by their
comparison with the analytical solutions for the known
particular cases;

— to determine the limits in the applicability of the ana-
log at a decrease in the magnitude of computational grid and
an increase in the steps of calculation in time.

4. Method for constructing the discrete analog

Underlying the solution of the set problem is the control
volume method (CVM) [10, 11]. It combines the benefits
of other numerical methods and is deprived of their many
shortcomings. Thus, the desired discrete analog in CVM is
built as easy as in the finite-difference method. The desired
parameters are calculated in the isolated points (nodes). In
this case, with the aid of appropriate profiles, similar to the
method of finite elements, we consider possible character of
change in the calculated parameter between the nodes of
a computational grid. Moreover, a discrete analog is built
based on the compliance with conservation laws in each par-
ticular control volume. This makes it possible to obtain phys-
ically noncontradictory results on the grid of any roughness,
which, in contrast to the finite-difference method, for exam-
ple [12], allows using computational grids of small size. The
merits of CVM contribute to its application at present by
many authors [13, 14].

The use in the development of a discrete analog of the a
priori-profiles of change in the desired magnitude, similar
to an exponential, agrees with the use of profiles in the form
of exponents in the method of integral coefficients [15]. It
should be noted that CVM underlies the construction of
such a universal programming product as SolidWorks.

[10] emphasizes the development of universal two- and
three-dimensional analogs. Only the principle of their con-
struction is explained on the example of one-dimensional
analog, but the possibility of solving the one-dimensional
variant of the problem based on dimensionless magnitudes
is not examined.

Universalism also manifests itself in the fact that even
a one-dimensional analog includes the source term that
considers sources or sinks of heat fluxes inside the heat
exchange surfaces. In the overwhelming majority of cas-
es, in the thermal-power equipment, the sources and the
sinks of energy are found outside the body, through which
heat exchange is conducted. Therefore, for the simpler
algorithm of sources, the term should be excluded from
consideration.



Within the framework of CVM, the examined space,
similar to the method of finite elements, is split into separate
small elements — control volumes. In a three-dimensional
orthogonal coordinate system, these are the “orthogonal”
elements, in the Cartesian — parallelepipeds, in the one-

layers (Fig. 1).
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Fig. 1. Calculation scheme for the one-dimensional discrete
analog

dimensional model —

Inside these layers are the nodes, which, similar to the
finite-difference method, are assigned with the values of
calculated magnitudes. Geometric characteristics of the
calculated region represented in this way are: 8x are the
distances between the grid nodes; Ax are the dimensions of
layers (elements), into which the region is split. Positions of
the nodes inside different layers may differ. The very dimen-
sions of layers may be different, too. That is why, in a general
case, both 8x; and Ax; are different from each other. Further-
more, in general, 8x#Ax. In the considered case, at constant
thermophysical properties of heat exchange surfaces byn
their thickness, in order to simplify the discrete analog, let
us assume:

Ox; =const; Ax,=const; 0x=Ax. )

In CVM, on the boundaries of calculated region, there
are the nodes of computational grid (points “1” “N” Fig. 1).
They are surrounded by incomplete boundary control vol-
umes. Taking into account (1), their magnitude in the exam-
ined case is Ax/2. This must be considered when recording
the discrete analog for nodes on the boundaries of calculated
region. Furthermore, for these nodes, in contrast to the
internal, it is necessary to consider boundary conditions at
the corresponding surfaces. Thus, discrete analogs for the
internal and boundary nodes do not differ, but they must
have common character of their record for the possibility of
their regular solution.

Let us examine a discrete analog for the internal points.
Based on common constructions from [10] for internal point
“Py”, taking into account parameters in points “W;” and “E;”
(Fig. 1), it is possible to write in order to calculate tempera-
tures:

a, - T,=a, -T,+ay Ty +b, 2
where

a,=a,+ay + ~c~§'a _ M a _

R L AT 8TV 8y

b=p-c *TO 3

Here p, ¢, A are the density, heat capacity and thermal
conductivity of material of the heat exchange surface; At is
the step of calculation by time; Tp, Tg, Ty are the calculated
(current) temperatures in the corresponding points; Ty is
the value of temperature in point P from the previous step

of calculation by time. At the first step of calculation is the
value from the initial condition (initial temperature profile).

Let us substitute (3) into (2), divide all terms of the
equation by 1/8x. As a result, taking into account (1), we
shall obtain

[2 1Ay ] T,=T,+T, +1 (A)° T, 4%)
a At At

where a=\/(p-c) is the coefficient of thermal diffusivity.

Expression (4) is the one-dimensional discrete analog in
dimensional form for solving the problem on nonstationary
thermal conductivity. In order to bring it to the dimension-
less form, let us assume that thickness of the heat exchange
surface is equal to 2. Let us multiply second term in brack-
ets by (21)2/(21)>=1. Designate in this expression Ax/2l=
=5x/21=A. It is the dimensionless (relative) thickness of layer
of the discrete analog. We shall obtain, taking into account
further transformations:
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Here A(Fo) is the dimensionless step of calculation by
time — a step of a change in the Fourier number.

After carrying out analogous transformations for the last
addend in the right side of expression (4), we shall obtain:

(AT (6)

[ (A)]T =T+ Ty +A(F)

A(Fo)

Expression (6) is the dimensionless discrete analog for
internal points of the computed region.

Let us examine a discrete analog for the node of com-
putational grid on the boundary of calculated region, for
the certainty in point “1” on the left boundary (Fig. 1). In
order to compute temperature in point Py, it is necessary
to consider boundary conditions to the left of it, as well as
value in point E;. As the boundary conditions, let us examine
conditions of the third kind as the most general ones. Based
on general constructions from [10], it is possible to write for
the boundary point “1”

a, - T,=a, T, +b, (7)
where
a,=a.+0o, + C—Ax'a——x'
p=ag T0O;+p At ET 5y
Ax 1
b=oa,- +p-c-— —-TY. 8
1 T, TP 2 AL T (8

Here aq, Tampt are the heat transfer coefficient and am-
bient temperature from the corresponding side of a heat
exchange surface.

Similar to the previos case, let us substitute (8) in (7),
divide all terms of the equation by A/3x. As a result, taking
into account (1), we shall obtain

TR N GO
A a2 At
8x 1 (AX) 1
=T, +oa -T o 9
E 7\' Amb1 a 9 At P ( )



Let us multiply in expression (9) the terms, which con-
tain 8x, by (21)/(21)=1. The terms that contain (Ax)? shall be
multiplied by (21)2/(21)>=1. Consider that Ax/21=8x/2l=A.
Let us designate as

o2
r

the Biot criterion from the side of node “1” of the computa-
tional grid. As a result, we shall obtain:

[1+Bi1~(A)+1- !

3 AFo) & ]'T" -

=T, +Bii-T,, -(A)+1 1

2'A(Fo)'(A) T

(10)

Expression (10) is the dimensionless discrete analog for
the left boundary point of computed region (Fig. 1).

Upon carrying out transformations, analogous to (7)-
(10), but for the right boundary (node “n”, Fig. 1), we shall
receive the dimensionless discrete analog for the right
boundary point of computed region:

= 1 1

1+Biz-(A)+—- (AT, =

[ Q)+ 5y ¢ )] ;

=Ty +Bi2-T ~(A)+1~ ! (A Ty (11)
W 2 amb, 2 A(FO) P

Here Bi, T,,,;, is the Biot criterion and ambient tempera-

ture from the side of node “N” of of the computational grid.

5. Form of the discrete analog and algorithm of solution
based on it

Expressions (6), (10) and (11), taken together, represent
the dimensionless discrete analog for calculating the non-
stationary heat transfer through a flat plate at boundary
conditions of the third kind.

The algorithm of solution based on such discrete analog
can be realized with the help of TDMA (Tri-diagonal-
Matrix Algorithm) — the sweep method. Results of calcula-
tion are obtained in one “sweep”, without iterations, which
simplifies the computation. In order to facilitate the reali-
zation of the solution algorithm, let us write discrete ana-
log (6), (10), (11) in the index form, where the indices are
counted from the left to the right boundary of calculated re-
gion (Fig. 1):

— for internal points

a,-T,=b,- T, +c¢,-T_ +d, 12)
where

a, :2+ﬁ~(A)2; b,=1c=1d = A(;o) «(A)*-TS;

— for the left boundary

a,-T,=b,-T,+d, (13)

where

1

o 1
=1+Bi;- (A)+—- 'Az;bzi;
31 11( ) 2 A(FO)( ) 1
d, =B Ty -(A) o (A) T
1 amb 2 A(Fo) p
— for the right boundary
ay-Ty=cy Ty, +dNy (14)
where
= 1 1
= Bla (A5 L o (A o=
= 1 1
dN =Bi» .Tambz (A)+E A(FO) (A)2 Tg

The solution algorithm is built based on [10] as follows.

Direct course of computation — auxiliary coefficients P
and Q are computed:

first from (13) Py and Qq

[ b, 1
P1—;1— = 1 1 S’
1+Bi-(A)+=———(A)
2 A(Fo)
= 1 1 15)
Bii:T . (A)+=————(A2-T
Q _d1 B L amby ( )+2 A(FO) ( ) P
Ta, = 11 ’
o i = (A
1+ Biy (A)+2 A(Fo) (A)
then from (12) and (15) P; and Q;
oo ,
) (A =P
* 2oy B
1 _— (16)
(AT +Q.
Q :di+ci'Qi—1 _ A(Fo) @ T+ Q.
boa-c Py 2+$'(A)2—PH
A(Fo)

Inverse course of computation — for the right boundary
b;=0. Consequently, Py=0. From (16):

— dN +Qi—1 —

QN aN_Pi—l
Bl T, (A)+ b b (AY-TV+Q
_ 2" Lamb, 2 A(FO) P N-1 (17)
= 1 1 , )
1+Biz-(A)+————(A)’ =P
()5 5 gy O P

Assume from (17)
T,=Q.. (18)

and then in reverse order

T=P T, +Q, 19)

Simplicity of the obtained algorithm (15)—(19) makes
the realization possible even based on Excel, to say nothing
of the more powerful computational tools.



6. Evaluation of adequacy of the obtained results by the
available solutions. Possibilities and constraints in the
application of the obtained discrete analog

An algorithm must qualitatively and quantitatively cor-
rect reflect the processes under investigation. Given this, the
estimation of physicalness and adequacy of the developed
discrete analog can be carried out in two ways:

1) after appropriate transformation, by the comparison
of analog itself with the exact solution in the extreme case
of stationary heat transfer through an infinite flat wall (esti-
mation of physicalness — qualitatively correct representation
of the examined process);

2) by comparing the results of numerical calculations
with the results of analytical solutions in a particular case of
the nonstationary process of symmetrical heating (cooling)
of an infinite plate (estimation of correctness of quantitative
representation of the studied process).

For both these cases, there are precise analytical solu-
tions.

1. Stationary heat transfer through a flat wall

When solving the problem on stationary heat transfer
through a flat wall, the heat flux through both surfaces of
the wall is assumed identical. For certainty, let us accept
(Fig. 2) that the ambient temperature to the left of the wall
exceeds temperature to the right, and the heat flux is direct-
ed from left to right.

Tamhl

"ramh2
0 X

Fig. 2. Minimal computational grid

This can be written in the form:

- q,=0,(T,,, —T,) is conditionaly for the left side of
the wall;

- qy=0,(T, -T,,,) is conditionaly for the right side
of the wall.

Here:

q1, q2 is the heat flux, respectively, entering from the en-
vironment from the left to the wall and exiting the wall from
the right to the environment;

ay, oy are the heat transfer coefficients on the left and
right side of the wall, respectively;

Tw1, Twa is the temperature of the left and right side of the
wall, respectively;

(Tambt, Tamb2) is the ambient temperature from the left
and from the right sides of the plate, respectively.

Taking into account the condition accepted qi=qs, we
shall obtain:

o, - (T,

amby

- ’Tw1 ) = OLz .(Twz - 'ramhz )

T, —T, , i,
(Twz - Tambz ) a1 B11

Here BI, Biy are the Biot criteria for the left and right
side of the wall.

The discrete analog in the form (17)—(19) is obtained
for the case of nonstationary heat transfer. But at constant
ambient temperatures from the left and right sides of the
wall and sufficiently long course of the heat transfer process,
the analog, if correctly constructed (17)—(19), must yield
the result, analogous to (20). Furthermore, in the examined
case, the profile of a change in temperature from Ty to Ty
(Fig. 2) inside the wall must be of linear character, and the
correctly constructed discrete analog also must reflect it.
Let us transform the analog (17)—(19) to test the feasibility
of these requirements.

Let us split the examined flat wall into three layers
(Fig. 2): two near-wall ones and one internal. In this case,
temperatures Ty, T3 of the analog correspond to tempera-
tures Ty, Tyo at the surface of the wall. Temperature
T, is the temperature in the central layer. The near-wall
layers in accordance with (Fig. 1) have a half thickness.
The choice of only three layers for the splitting is prede-
termined by the following considerations. The discrete
analog for temperatures T; in central cells (17) is built
with the use of temperatures in the adjacent cells Tiy and
Ti+1. Three layers allow us to construct a similar analog
for temperature T, taking into account temperatures
Twi,Two. The near-wall layers make it possible to employ
analogs (18), (19) for the left and right boundaries of the
plate. Thus, in order to evaluate correctness of represent-
ing the process of stationary heat transfer with the help
of the developed discrete analog, three calculated layers
will suffice and an increase in the number of inner layers
at partition adds nothing fundamentally new to the com-
putation.

In the analog (17)—(19), magnitudes T}?.’ T&, Tfn,uti—
lized in coefficients d;, dy, d,,, are the temperatures in the cor-
responding nodes of computational grid from the previous
step of calculation by time. In the computation of heat trans-
fer process over a prolonged time interval and its reaching
the stationary state, temperatures from the previous step of
calculation by time must be equal to the estimated tempera-
tures currently in the corresponding points. We obtain for
the case of three layers in question:

T =T, T=T; T’ =T, 1)

We shall obtain from (17) upon the substitution of ex-
pressions for all coefficients:

1
A(Fo)

, 1 ,
(AT, =T+ T+ ————(4)" T,

2-T,+
A(Fo)

(22)

Taking into account equality T, =T, from (21), we shall
receive the equality of terms from the left and right sides of
expression (22):

1 .
A(Fo)

1 (A)2T0

(4) .T2=A(FO) Py’

and after their reduction:



2-T,=T,+T, or T2=¥.

(23)

After carrying out analogous transformations for the
analogs of left (18) and right (19) boundaries, we shall
obtain:

— for the left boundary

T,+Bi,-(A)- T, =T, +Bi,-(A) T, ; (24)
— for the right boundary

T,+Bi, (A) T, =T, +Bi, (A) T, . (25)

Substitute expression for Ty from (23) to (24) and (25).
Carry out transformations and, as a result, we shall obtain:

— for the left boundary

BB () T B () T, (26)
— for the right boundary

BB (4) T, B (W) T, @7)

In expressions (26) and (27), the left sides are equal.
Equate in these expressions the right sides, reduce by A:

B7i1'(T1_T'mb1):B712'(T _T3)

a amb,

or

Bi, (T, ~T)=Bi,(T,~T,,,) (28)
we receive as a result:

(Tamb. -T) _Ezﬁ. (29)

(T,-T,,) Bi, o

Comparing the expressions (29) and (20) reveals their
concurrence, which confirms correct construction of the
analog (17)—(19) in this part.

Let us consider the second part of the test — representa-
tion with the help of the proposed discrete analog of the form
of temperature profile inside a flat wall. For this purpose, let
us determine the tangents of temperature profile angles of
inclination in sections (T1—T3) and (T»—T3):

— from (Fig. 2) for the section between temperatures
(T1-T,) taking into account (24):

tg(¢1,2 )= = Bih'(Tamh -T),

— from (Fig. 2) for the section between temperatures
(Ty—T3) taking into account (25):

(Tz _Ta)

A 3D

tg(q)z,s) = = E(Ts - Tamh2 )-

The equality of right sides in expressions (30) and (31)
follows from (28). Hence, the left sides are equal in them:

tg(¢1,2)= tg(q)z,s)- (32)

Thus, in the process of stationary heat transfer the sec-
tions of profiles of temperatures, represented using the ana-
log (17)—(19), have a common point T4 and identical angles
of inclination (32). Consequently, they are one straight line.
This agrees with the analytical solution and confirms cor-
rect construction of the analog (17)—(19) in this part as well.

2. Symmetrical heating of an infinite plate.

The accuracy of numerical calculations, executed with
the help of the discrete analog proposed, can be evaluated by
comparing their results with the available analytical solu-
tions. The case of bilateral symmetrical heating of an infinite
plate is one of a few that exist. Let us examine a variant when
at the initial moment of time (t=0), initial temperature in
the plate is distributed evenly. Under these conditions, the
proposed analytical solution takes the form of summation of
a series. The indicated articles note that at Fo>0.3 a series
starts so rapidly converging that the temperature distribu-
tion is determined accurately enough by the first term of a
series in the form:

2-sinp,

0=1- -cos(l, - X)-exp(—p Fo). (33)

L, +sinp, -cosp,

Here © is the relative (dimensionless) temperature of
a plate; X is the relative (dimensionless) coordinate of the
point in question. It is counted from the center of the plate
to its surface;

Fo=(a-t)/(8%) — Fourier number;

where a is the coefficient of thermal diffusivity;  is the half
thickness of the plate.

Relative temperature of plate ® is determined by rela-
tionship

_TX)-T,

S )
Tamb - TO

(34)

where T(X) is the current temperature in the corresponding
point of plate; Ty is the initial temperature, evenly distrib-
uted in the plate; T,y is the ambient temperature, to the
magnitude of which the plate is heated.

Relative temperature of the plate changes in the range
of ®€[0...1].

Relative coordinate is determined from relationship
X=x/8 and changes in the range of Xe[0...1]. Here x is the
absolute coordinate that is counted from the center of the
plate to its surface.

Magnitude p is the root of transcendental equation
ctg(w)=p/Bi. Equation (33) is the first term of a series.
Therefore, it employs py — the first positive root of the tran-
scendental equation.

In order to compare results of the analytical and numer-
ical calculations, one should consider that:

— biot criterion in the analytical solution is computed
for the half thickness of the plate (because of its symmetry).
However, in the numerical calculation, taking into account
the possibility of solving the non-symmetrical problems, it
is determined for the full thickness of the plate. Thus, it is
necessary to apply relationship

@1 )nc = (ﬁz )nc = 2 Bia’ (35)



where (Bii1),.,(Bi2),. are the Biot criteria for the corre-
sponding sides of the plate in the discrete analog (numerical
calculation) for the case of symmetrical heating; (Bi), is the
Biot criterion in analytical calculations;

— the Fourier number due to the above noted reason also
differs for the cases of analytical and numerical solutions.
Comparing the results, which correspond to the identical
moments of dimensionless time, should be conducted based
on relationship:

4-Fo, =Fo,. (36)
where Fo, is the Fourier number in the analytical calcula-
tion; Fo,. is the corresponding Fourier number in the nu-
merical calculation.

Fig. 3 shows results of computation based on analytical
expression (33) and discrete analog (12)—(14). Since the
analytical calculations are carried out for the dimension-
less temperature (34), then the numerical solutions are
obtained based on it. Fig. 3 shows results that cover the
broad range of change in the Biot criterion. In the brackets
is its value for the numerical calculations based on (35).
Each figure presents results for the two moments of time.
Magnitudes of the Fo numbers corresponding to them are
bound by relationship (36). Maximum relative error € in
the numerical results from all estimated points by thick-
ness of the plate is given for each moment of time. All in
all, 21estimated points were considered. Relative error was
determined relative to the range of change in temperature
0¢e|0...1].

A comparison of results of the numerical and analytical
calculations reveals their good concurrence. However, sim-
ilar accuracy at a large number of estimated points can be
attained by other numerical methods. The employed meth-
od of control volumes differs by abiding the conservation
laws on computational grids of any accuracy. In order to
evaluate an influence of the number of estimated points on
the computation error, we performed calculations using the
maximally small grids — with three nodes only (Fig. 2). The
obtained results and their comparison with the analytical
and numerical calculations on a large grid (21 nodes) are
given in Table 1. Here, similar to Fig. 3, the magnitudes
of Bi and Fo that relate to the numerical calculations are
given in brackets. The values of Bi and Fo in the analytical
and numerical calculations, similar to the previous case,
are bound by relationships (35), (36). The first three lines
show the values of relative temperatures for Fo=0.4(0.1).
In this case:

—in the first line are the temperatures in the analytical
calculations;

— in the second line — in the numerical calculations on a
grid with 21 nodes;

—in the third line — in the numerical calculations on a
grid with 3 nodes.

The next three lines show relative errors in determining
the relative temperatures, represented in the previous lines.
In this case:

— in the line, designated by €51, are the errors of results in
the numerical calculations on a grid with 21 nodes relative to
the analytical calculations;

— in the line, designated by &3, are the errors of results in
the numerical calculations on a grid with 3 nodes relative to
the analytical calculations;

— in the line, designated by €,1.3, are the errors of results
in the numerical calculations on a grid with 3 nodes relative
to the numerical calculations on a grid with 21 nodes.

Further in the table, the order of results arrangement is
analogous.

—@®a, Fo=5 —0a, Fo=1
===0nc¢,Fo=1.25,6=0.01 ---0n¢,Fo=0.25,6=0.01
—®a, Fo=30 —0a, Fo—4
===0nc,Fo=7.5,e=0.03 ==-=-®n¢,Fo=1,¢=0.01
1.0 ® 1.0 o)
0.8 0.8 = e
0.6 ——1———— 0.6
0.4 0.4 S
\‘“—/
0.2 0.2
X
0.0 X o0
0.0 0.5 1.0 0.0 0.5 1.0
a b
— ©a, Fo=04 — ©a, Fo=04
-==0nc,Fo=0.1,6=0.001 === Onc.Fo=0.1,=0.01
— ®a, Fo=1 — B2, Fo=1
=== 0nc,Fo=0.25,6=0.001 === OncFo=0.25,6=0.02
1.0 1.%
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Fig. 3. Relative temperature ® dependent on
the relative X coordinate and relative moment of time Fo for
the analytical ®, numerical ©,. calculations: a — Bi=0.004
(0.008); b — Bi=0.5 (1.0); ¢ — Bi=5 (10); d — Bi=50 (100)

Relative errors do not exceed 3.5 % in all given points.
The magnitudes of Bi=5 and Bi=50 are selected because of
the maximal relative error received in this case. At Bi=0.04
and Bi=0.5, an error in the numerical solution does not
exceed 1 %. The magnitudes of the noted errors do not ex-
ceed permissible values for the engineering computations
(<5 %). This testifies to the applicability of the developed
discrete analog for solving the problems on nonstationary
heat transfer.

Let us examine an example of solving a problem on
the nonstationary heat transfer. The absence of analytical
solution is its special feature. Assume that at the initial
moment of time body temperature and ambient tempera-
ture are in equilibrium. Let us designate it similar to the
previous cases, Ty. At a certain moment of time, tempera-
ture of the environment from one side of the plate rises
abruptly to magnitude T,,, From the other side of the
plate, ambient temperature remains equal to T. We shall
examine a nonstationary process of change in the tem-
perature inside the plate during heat transfer. We shall
perform the computation for relative temperature @, de-
termined in accordance with (34) using the relative node
coordinates of grid X. Some results for the computational
grid with 21 nodes at different values of the Fo numbers
are shown in Fig. 4. The value of Fo=0 corresponds to the
initial moment of time.



Table 1

Results of the analytical and numerical calculations of relative
temperature ® at symmetrical heating of an infinite plate.
Magnitudes of error in the numerical calculations relative to
the analytical ones

results on a grid with 21 nodes (Table 2). The structure of
data here and in Table 1 is analogous.

Table 2

Results of the numerical calculation of relative temperature ®

at nonstationary heat transfer through an infinite plate. The

Fig. 4. Profiles of relative temperatures ® along the relative
thickness of plate X depending on different Fo numbers

In accordance with (34), for the accepted initial data in
this moment of time, the value of relative temperature in all
points of the plate is @=0. The value of Fo=1.7 models reach-
ing the state of stationary heat transfer.

For the estimated calculations of the nonstationary heat
transfer processes, of interest is the use of “rough” computa-
tional grids. Let us define a possibility of applying the meth-
od of control volumes at minimal computational grid, the
same as in the case of symmetrical heating (with 3 nodes).
For this purpose, let us compare results when using it to the

Bi Fo/e X magnitudes of error in the numerical calculations on a small
0.0 0.5 10 computational grid
0.4 0.842 0.378 0.842 X

(0.9 0.837 0.366 0.837 Fo /e 0.0 05 0

(0.1)3 0.873 0.393 0.873 O 0.710 0178 0.015
€1 0.005 0.012 0.005 0.12)

& 0.031 0015 0.031 : [Ch 0.718 0.177 0.024

5 o1 0,036 0027 0036 €1-3 0.009 0.001 0.009
(10) 1.0 0.944 0.779 0.944 O 0.790 0.336 0.047
(0.25)9 0.941 0.766 0.941 (0.26) 03 0.799 0.332 0.052

(0.25); 0955 0.765 0.955 €213 0.009 0.004 0.005
€1 0.003 0.013 0.003
€3 0.011 0.014 0.011 Errors in the calculations on the “rough” grid in compar-

e919 0.014 0.001 0.014 ison with results on the more detailed one are insignificant.

This accounts for its use in many cases. Insignificant errors
04 0985 0.507 0985 on such a “rough” grid can be explained based on the follow-

(0.1)2 0.984 0.487 0.984 ing considerations:

(0.1)3 0.991 0.528 0.991 —on one hand, the profile of change in the temperature
€1 0.001 0.020 0.001 inside the plate, both at its heating and at nonstationary
€3 0.006 0.020 0.006 heat transfer, is of exponential character. On the other hand,

50 913 0.007 0.041 0.007 as noted above, to determine temperature in the nodes, they
(100) 10 0.996 0.881 0996 use the profiles of its change between the nodes. In a general
(0.25); 0.996 0.868 0.996 case, the profiles can be any, including as parts of exponents.
In the considered case, in order to simplify the form of a dis-

(0.25)3 0.997 0.851 0.997 . . .. .
crete analog when using the implicit scheme of its construc-

€1 <0.001 0.013 <0.001 . . .
tion, we accepted a spasmodic character of change in tem-
&3 0.001 0.03 0.001 perature between the nodes. Nevertheless, such a simplified
213 0.001 0.017 0.001 character in the representation of change in the temperature
profile between the nodes of a computational grid does not in
1.0 ® general contradict the character of change in temperature in
the real process. In other words, the discrete analog satisfies
085 the physics of examined processes, which predetermines its
\\ Fo=0 accuracy on the “rough” computational grids;

0.6 Fo=0.12 — as it was noted above, the discrete analog is built based
\ — Fo=0.26 on abiding the conservation laws on the grids with any
04 \ N — Fo=17 “roughness”. In combination with the preceding point, this
o N also contributes to improving the accuracy of computations.
\\ It should be noted that in a general case stability and
0.2 accuracy of numerical methods depend on the relationship
\ between the step of calculation by time and a geometric
0.0 X dimension in the step of a computational grid. Thus, in order
0.0 05 1.0 to provide for the stability of computation when using the

explicit scheme in the finite-difference method, At is deter-
mined from relationship [10]:

2
At<w

XY 37)

Upon performing the transformations, applied to (5), we
shall obtain:

a-At
21

A(Fo) <%~(A)Q. 38)

In the above examined case of computation in the
relative coordinates with 21 nodes of computational



grid and, accordingly, 20 intervals between them, we
receive A=0.05. In accordance with (38), when applying
the finite-difference method, it would be necessary to
obtain A(F0)<0.0012. In the performed calculations, we
employed A(Fo)=0.005, which actually exceeds the noted
boundary.

Let us examine an impact of the magnitude of step by
time on the stability and accuracy of calculations. Results
at different steps are given in Table 3. Calculations were
carried out for 21 nodes, but, for visibility, the results are
given only for the points at the surfaces and in the center
of the plate. In order to compare, we took the same values
of Fo=0.12 and Fo=0.26, as those used in Table 2. Taking
into account A(Fo0)=0.005, the value of temperature at
Fo=0.12 was obtained in 24 steps, which is reflected in the
appropriate line A(Fo)94. The next lines contain results of

contains relative errors in the rough calculations relative
to those accepted as reference. The second part of the table
contains analogous data for the moment of time Fo=0.26.
The errors calculated demonstrate that when using the
discrete analog based on the method of control volumes
within the limits of engineering accuracy of computations,
it is possible to employ maximally “rough” grids and large
steps by time.

Table 4

Results of the numerical calculations of relative temperature
O in the nonstationary heat transfer process through an
infinite plate at different combination of the number of nodes
in a computational grid and the magnitude of calculation
steps by time

. X
the temperature calculation at the same 21 nodes and at the Fo A(Fo)/e = N
same moment of time Fo=0.12, but at other steps by time 0.0 0. 0
and, accordingly, different number of these steps (subscript): (0.005)2; 0.7097 0.1775 0.0145
A(Fo)g=0.015 and A(Fo)4=0.03.
b3 0121 (0.03)? 0.6863 0.1684 0.0230
able
Results of the numerical calculations of relative temperature € 0.023 0.009 0.009
©® in the process of nonstationary heat transfer through an (0.005) 0.7920 0.3362 0.0470
infinite plate at different calculation steps by time
~ (0-26) 1 (0.065)" 0.7797 0.3035 0.0473
Fo A(Fo)
0.0 0.5 1.0 € 0.012 0.033 <0.001
(0.005)24 0.710 0.178 0.015
(0.12) (0.015)g 0.704 0.173 0.015 The adequacy of computation on the “rough” grids can
(0.03);4 0.694 0.167 0.015 be used also in the numerical-analytical calculations of the
(0.005)s2 0792 0336 0,047 nonstationary heat transfer processes. The thing is that
(0.26) © 02)* 0.786 0328 0.046 the discrete analog on the grid with 3 nodes consists of
’ 0.06513 0'774 0.306 0'042 the system of 3 linear algebraic equations. For the current
(0.065)4 : : : time moment, it is possible to receive a sufficiently simple

Errors in the calculations at A(Fo)s and A(Fo), relative
to the variant at A(Fo)s4 are not indicated, though they can
be computed easily. The second part of Table 3 contains
analogous data, but for the moment of time Fo=0.26 at
steps, corresponding by the magnitude, and their number:
A(F0)50=0.005, A(F0)13=0.02 and A(F0),=0.065. A com-
parison of the given data demonstrates maintaining the
high accuracy of calculations also during the partition of
the assigned time interval into a maximally small number of
calculation steps.

Tables 2, 3 give the results that allow us to argue
about the stability of calculations when using the “rough”
computational grids and large steps by time. We, however,
examined the influence of these factors separately. Of prac-
tical interest is the possibility to perform calculations with
engineering precision at simultaneous influence of both
factors. Based on the example of data, given in Table 4, it is
possible to estimate the results of this kind of calculations
when comparing to the case of detailed grid and small step
by time. Results of the computation on a grid with 21 nodes
and at calculation step by time A(F0)=0.005 are accepted
as reference. The first part of the table, as previously, con-
siders time moment Fo=0.12. In order to reach this time
at selected step, 24 steps are required. Results for this
case are represented in the first line of the table. The sec-
ond line contains results of the calculation on a grid with
3 nodes and at step by time A(Fo0)=0.03, requiring 4 calcu-
lation steps to achieve the considered time. The third line

analytical solution of this system. However, the possibility
of using large steps by time allows based on this solution
rapid estimation of temperatures at the surfaces of a plate in
the nonstationary heat transfer process of and, accordingly,
heat fluxes on them. In line with the classical approach, the
energy accumulated in the plate is determined by integrat-
ing the temperature profile in it. In the examined case, it
suffices to find a difference in the heat fluxes at the surfaces
of a plate.

7. Conclusions

1. The method of control volumes selected for the dis-
crete analog is based on fulfilling the conservation laws on
computational grids of any size, including the smallest ones.
This corresponds in the best way to the set problem on de-
veloping a simplified discrete analog.

2. The use of the simplified, one-dimensional form of
the record of discrete analog made it possible to represent
it in the dimensionless form. Such approach contributes not
only to a decrease in the number of calculations, but it also
facilitates comparing their results with data of the existing
analytical calculations. The latter, as a rule, are represented
in the dimensionless form.

3. A comparison of results of the calculations based
on the developed analog to the available analytical data
demonstrates their good recurrence. Relative errors do not
exceed, and they are even substantially less than the per-



missible engineering accuracy (<5 %). Furthermore, this is
substantially lower than the errors in determining the initial
data — heat-transfer coefficients.

4.Based on the numerical calculations, using large
grids and small steps by time as the rererence, we evaluated
stability and accuracy of calculations on the rougher grids.

We demonstrated maintaining the engineering accuracy on
maximally small grids (to 3 nodes) and retention of stability
and accuracy at large steps by time, substantially larger than
the other numerical methods permit. Such special features of
the discrete analog can be used to solve the inverse problems
on heat exchange.
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