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1. Introduction

Due to the prospects of using systems with nonlinear 
dynamics in information and communication networks, 
the study of synchronous work of systems with nonlinear 
dynamics is important and promising in various fields of 
modern science [1], despite the fact that the methods of 
solving differential equations with nonlinear functions are 
already known. It should be noted that the known methods 
for solving differential equations by linearization technique 

do not exclude the possibility of having incorrect solutions 
in the process of system buckling analysis. Lyapunov and 
Sylvester stability criterion is one of the best known criteria.

In addition, the use of linearization techniques provides 
the study of only complete synchronization of the two sys-
tems, the essence of which is that over time solutions of the 
main and controlled systems are identical. Herewith, the 
phase space will have a fixed point.

Phase synchronization will occur in case of solutions 
to differential equations that describe the behaviour of the 
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main and controlled system and form closed trajectories in 
the phase space.

The case when the solutions to the systems of differential 
equations with nonlinear right-hand side form an attractor 
in the phase space is feasible for systems with nonlinear 
dynamics. Synchronization is not possible in case of an un-
limited increase of the distance between phase trajectories.

2. Literature review and problem statement

The study of synchronization of systems with nonlinear 
dynamics is in the scope of interest of experts in various 
scientific and technical fields.

In [1, 2] there is given the study of synchronization of 
magnetically coupled electronic circuits, the dynamics of 
which is subject to Colpitt’s and Van der Pol’s models. The 
authors consider only complete or phase synchronization. 
All possible variants of interaction between magnetically 
coupled electronic circuits may appear to be important in 
the analysis of unauthorized information leakage by means 
of interaction through an electromagnetic field.

In [3, 4] the method of checking the controlled system is 
considered, and the processes of complete synchronization are 
investigated. The authors emphasize the importance of con-
trolling the process of synchronization in the process of design-
ing powerful data processing systems. At the same time, they 
were using classical methods of controlling synchronization 
that are based on constructing Lyapunov functions. Herewith, 
more complicated cases of synchronization, namely the topo-
logical nature of the phenomenon, are not taken into account.

In [5] there is given a generalized approach to description 
of coherent motion of the two systems, and com-
parison of phase and complete synchronization is 
made. In accordance with the elaborated concept, 
there exists a weaker type of coherent motion – 
topological synchronization.

The authors of [6] investigated the synchroni-
zation of Rössler and Rikitaki systems only in the 
case of complete synchronization by means of the 
method of Lyapunov function construction. Other 
types of synchronization were not considered.

In [7] there is given an analysis of the so-called 
“projective synchronization” on the example of Liu 
system. Herewith, there is introduced a special 
scale factor that helps analyze the possible syn-
chronization error, caused by a linear combination 
of variables of the main and controlled systems, 
the behaviour of which can be nonlinear.

The literature review shows that a significant 
number of problems in the theory of nonlinear sys-
tems can be solved in the framework of the theory 
of linear approximation. Herewith, more compli-
cated types of synchronization, unlike phase and 
complete one, can not be considered with the help 
of methods of linearization of differential equations.

3. The aim and objectives of the study

The aim of the paper is to study the behaviour of systems 
with nonlinear dynamics in the phase space and establish com-
plete, phase and topological synchronization between them.

In achieving this aim, the following objectives have been 
addressed:

– to classify the solutions of ordinary differential equa-
tions that describe the behaviour of systems with nonlinear 
dynamics;

– to improve the model of synchronized systems by 
means of applying matrix synchronization;

– to study the so-called topological synchronization of 
systems with nonlinear dynamics according to the obtained 
attractors in the phase space.

4. Modelling synchronized systems with the help of 
synchronization matrix

Research of synchronous oscillations in systems with 
nonlinear dynamics is a fairly complex mathematical problem.

We shall consider autonomous systems for which in 
differential equations there are no terms that are functions 
of time:

( )

( )

1 1 1 2 n 1 n

n n 1 2 n 1 n

x F x ,x , ,x ,x ,

x F x ,x , ,x ,x ,

-

-

 =


 =









 (1)

where (x1, x2, …, xn) – variables of the system; (F1, F2, …, Fn) – 
certain functions from the variables of the system.

Further, we shall consider differential equations with 
three variables. We shall analyze the properties of solutions 
to the system by the given classification (Fig. 1), which can 
be used to study the processes of synchronization of two 
dynamic systems with nonlinear dynamics.

The solutions to systems of linear differential equa-
tions can be found by the roots of the characteristic 
equation.

Under such conditions, solutions to the system (1) can 
be classified according to the following properties (Fig. 1):

– unlimited exponential growth in time with positive 
real part of the exponential index;

– frequency for the case of existence of complex conju-
gated roots of the characteristic equation, the real part of 
which equals zero;

 
Fig. 1. Classification of solutions to the systems of ordinary differential 

equations
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– exponential time dependency with negative real part 
of the exponential index with an attractor formed as a fixed 
point;

– form a cyclic attractor – if solutions are a sum of ex-
ponentially time-dependent solutions and trigonometric 
functions.

If the right-hand side of differential equations contains 
nonlinear functions, the following two types of solutions 
can occur:

– limited non-recurrent solutions that do not form an 
attractor;

– limited non-recurrent solutions that form a strange 
attractor.

The latter two types of solutions, which, by their nature, 
are complex nonlinear oscillations, are the most promising 
for practical application.

Let us consider one of the known methods of studying 
the synchronization process, the essence of which is to 
replace the variables in the right-hand side of the differ-
ential equations that describe the controlled system, with 
the corresponding variable values of the main system 
[2]. This method will be further called a replacement  
method.

The generalized mathematical model for synchronizing 
two identical systems with nonlinear dynamics, which is 
realized by replacing variables, can be set by a system (2) of 
2×n equations, where n is the order of synchronized systems 
described by equations (1).

In differential equations (2) variables x0j are variables 
of the main system, and variables x1j are variables of the 
controlled system. Synchronization matrix ||δij| | with n×n 
dimension determines the choice of variables, according 
to which the main and the controlled systems are synchro-
nized. The elements of the matrix are Kronecker symbols 
that can take on a value of “1” – if there occurs replacement 
of variables of the controlled system, otherwise – “0” – if 
no replacement occurs. The first index of the Kronecker 
symbol in the synchronization matrix means the number of 
the equation, and the second – the number of the variable 
in this equation.

Research of synchronization of the two systems with 
nonlinear dynamics is convenient to be carried out in the 
phase space, the coordinates of which are presented by the 
difference of values of the corresponding random oscillations 
of the main and controlled systems: 

where ei=x1i–x0i.
Herewith, the study of the synchronization process can 

be reduced to the solution of the problem of stability by Lya-
punov by the technique of a linearized system [1]. Lyapunov 
stability theory postulates the necessary and sufficient 
conditions for the stability of zero solution to the system 
of differential equations by real parts of the eigenvalues of 
the linearized system. Provided that the real parts of the 
eigenvalues are negative, the solution to the system is stable 
for small disturbances. This corresponds to the case of the 
so-called complete synchronization at which, over time, the 
systems will have similar solutions.

To study the systems with nonlinear dynamics, it is 
necessary to consider the options of processes of interaction 
between the two systems, in which not only complete, but 
also more complicated types of synchronization occur.

5. The study of synchronization in two Rössler systems 
with similar parameters

Establishing of synchronous oscillations and their sta-
bility were studied on the example of Rössler system, which 
is one of the simplest systems capable of generating complex 
oscillations and, under certain conditions, forming a strange 
attractor. The mentioned system is a third-order system with 
one nonlinearity (4):

( )

x y z,

y x a y,

z b x r z.

 = - -


= + ⋅
 = + - ⋅







 (4)

Nonlinear oscillations occurred when 
the values of the parameters of the sys-
tem (4) were a=b=0.2 and r=5.7. Here-
with, solutions to the system (4) form 
a band attractor of the Rössler system 
(Fig. 2).

Fig. 2. Band attractor of the Rössler system 
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The research was conducted in the following sets of solu-
tions to the system of equations 

x 9.1;11.43 ;Î -    y 10.8;7.8 ;Î -    z 0.01;22.8 .Î  

Time diagrams of variables x and z of the Rössler systems 
are shown in Fig. 3.

а                                                 b 

Fig. 3. Time diagrams: a – variables x of the Rössler system; 
b – variables z of the Rössler system

Generalized differential equations that describe the cou-
pled main and controlled systems with nonlinear dynamics 
can be written as follows:

where (x0, y0, z0) and (x1, y1, z1) – values of chaotic oscil-
lations generated by the main and controlled systems, δij – 
Kronecker symbols

The order of the synchronization matrix of the system 
(5) will be as follows:

12 13

ij 21 22

31 33

*

* ,

*

δ δ
δ = δ δ

δ δ
 (6)

where insignificant elements of the matrix are marked 
with *.

Let us consider the variables that are equal to the 
difference of values of oscillations, generated by the main 
and controlled systems. Then the system (5) will be as 
follows:

( ) ( )
( ) ( )

( )( ) ( )( )
( )

x 12 y 13 z

y 21 x 22 y

z 31 0 31 1 33 0 33 1

33 z 0 0

e 1 e 1 e ,

e 1 e 0.2 1 e ,

e x 1 x z 1 z

5.7 1 e x z .

 = - - δ ⋅ - - δ ⋅


= - δ ⋅ + ⋅ - δ ⋅


= δ ⋅ + - δ ⋅ ⋅ δ ⋅ + - δ ⋅ -


- ⋅ - δ ⋅ - ⋅







 (7)

In the linear approximation, the phase space that corre-
sponds to the above-listed variables will be called the dif-
ference space. Neglecting the term (1–δ13)·(1–δ31)·ex·ez, we 
will obtain a linearized system (8), which has the following 
matrix form (9):

( ) ( )
( ) ( )
( ) ( ) ( )

x 12 y 13 z

y 21 x 22 y

z 31 0 x 33 0 z

e 1 e 1 e ,

e 1 e 0.2 1 e ,

e 1 z e 1 x 5.7 e ,

 = - - δ ⋅ - - δ ⋅
 = - δ ⋅ + ⋅ - δ ⋅


= - δ ⋅ ⋅ + - δ ⋅ - ⋅
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( ) ( ) ( )

x 12 13 x

y 21 22 y

31 0 33 0z z

e 0 1 1 e

e 1 0.2 1 0 e .

1 z 0 1 x 5.7e e

- - δ - - δ
= - δ ⋅ - δ ×

- δ ⋅ - δ ⋅ -







(9)

Let us consider the process of synchronization of the main 
and controlled oscillators in the case of replacing all vari-
ables of the controlled oscillator δ12=δ13=δ21=δ22=δ31=δ33=1.

In this case, the system (9) has a sustainable over time 
trivial solution:

ex=Cx; ey=Cy; ez=Cz,  (10)

that depends only on the difference of the initial conditions 
of the main and controlled systems у. 

Cx=x1(0)–x0(0); Cy=y1(0)–y0(0); Cz=z1(0)–z0(0). (11)

Dependencies between variables of 
the main and controlled systems for 
this case of synchronization are shown 
in Fig. 4.

When the values of the matrix 
elements are δ12=0; δ13=δ21=δ22=δ31= 
=δ33=1, the solutions to the system (9) 
will be as follows:

ex=Cx– Cy·t; ey=Cy; ez=Cz. (13)

From the above-stated solution, it follows that syn-
chronization will be stable only if Су=0. When Су≠0 the 
difference of oscillations x0 and x1 of the main and controlled 
systems will have a linear growth in time.

Fig. 4. Phase trajectories of the main (solid curve) and 
controlled (dotted curve) systems at replacement of all 

variables of the controlled system

The trajectories of systems in the phase space of variables 
are shown in Fig. 5.

Table 1 shows the solutions to the system of equations (9) 
at such values of the synchronization matrix elements, which 
provide the unlimited growth of the difference of coordi-
nates in time.
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Fig. 5. The trajectories of the main (solid curve) and 
controlled (dotted curve) systems in the phase space of 

values of generated random oscillations

Table 1

Solutions to the system (9) at the values of the matrix 
coefficients with no synchronization

Values of coefficients Solutions to the system

δ12=0; δ13=δ21=δ22=δ31=δ33=1 ex=Cx–Cy·t; ey=Cy; ez=Cz

δ13=0; δ12=δ21=δ22=δ31=δ33=1 ex=Cx–Cz·t; ey=Cy; ez=Cz

δ12=δ13=0; δ21=δ22=δ31=δ33=1 ex=Cx–(Cy+Cz)·t; ey=Cy; ez=Cz

δ22=0; δ12=δ13=δ21=δ31=δ33=1 ex=Cx; ey=Cy·exp(0.2·t); ez=Cz

δ21=0; δ12=δ13=δ22=δ31=δ33=1 ex=Cx; ey=Cy+Cx·t; ez=Cz

δ21=δ22=0; δ12=δ13=δ31=δ33=1
ex=Cx;  

ey=(5·Cx+Cy)·exp(0.2·t)–5·Cx; ez=Cz

δ12=δ21=δ22=0; δ13=δ31=δ33=1 ex(t)=A·exp(0.1·t)·sin( 99 t+α); 

ey(t)=A·exp(0.1·t)·sin( 99 t+α)

Fig. 7 shows the phase trajectories, obtained for the val-
ues of the synchronization matrix elements given in the last 
line of Table 1.

Fig. 6. The projection of phase trajectories onto a plane exey 
in the difference space at the values of the parameters of  
the synchronization matrix δ12=δ21=δ22=0, δ13=δ31=δ33=1

When parameter values are δ12=δ21=0, δ13=δ33=δ22=1 
and δ13=0 (Table 2), in the difference space we will have 
closed phase trajectories that correspond to phase synchro-
nization of the main and controlled systems. The systems 
will have synchronous oscillations. Phase synchronization is 
set between them.

Table 2

The solutions to the system of differential equations at the 
values of the synchronization matrix coefficients at which 

phase synchronization is observed

Values of  
coefficients

Solutions to the system

δ12=δ21=0, δ13=1, 
δ22=δ31=δ31=1

( ) ( )22 y
x x y

x

C
e C C sin t arctg ;

C

  
= + ⋅ +        

ez=Cz

δ12=δ21=0, δ13=0, 
δ22=δ31=δ31=1

( ) ( )22 y
x x y

x

C
e C C sin t arctg ;

C

  
= + ⋅ +       

( ) ( )22 y
y x y

x

C
e C C cos t arctg ;

C

  
= + ⋅ +       

ez=Cz

Attractors of the main and controlled system and the 
projection of phase trajectories onto the plane xy for this 
case are shown in Fig. 7.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
b 

Fig. 7. Phase synchronization of the main and controlled 
systems in the space of phase variables at the values of  

the synchronization matrix elements given in Table 2:  
a – attractors of the main (dotted line) and controlled 

system (solid line) in the space of phase variables;  
b – phase trajectory projection onto a plane exey in  

the difference space
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More complicated types of synchronization occur if the 
coefficients in the third equation of the system are equal 
to zero. In this case, there will be a complex dependency of 
coefficients of differential equations on the time, determined 
by time dependencies of variables x0 and z0. Analytical solu-
tions to the system of differential equations as a function of 
time are impossible.

It is obvious that the presence of coefficients with com-
plex time dependency is caused by nonlinearity of the pri-
mary system. The greater the number of nonlinear terms and 
equations, the more complicated attractors of the systems in 
the difference space are.

Table 3 shows solutions to the system of differential 
equations that describe the interaction between the main 
and controlled systems when exposed to the process of syn-
chronization of nonlinear terms in the right–hand side of the 
differential equations.

Table 3

Influence of nonlinearities on the process of synchronization 
of the main and controlled systems

Synchronization matrix coef-
ficient values

Solutions to the system

δ31=0; δ12=δ13=δ21=δ22=δ33=1

ex=Cx; ey=Cy; ez(t)=Cx·

( )
t

0 z
0

z d Cξ ξ +∫

δ33=0; δ12=δ13=δ21=δ22=δ31=1

ex=Cx; ey=Cy; ez(t)=Cz·

( )
t

0

0

x d
5.7 te e

ξ ξ
- ⋅

∫
⋅

δ31=δ33=0; δ12=δ13=δ21=δ22=1

ex=Cx; ey=Cy; ez(t)=Cx·

( )
( )

t

0

0

t x d
5.7 t

0 z
0

z d C e e
ξ ξ

- ⋅
∫

ξ ξ + ⋅ ⋅∫

We shall analyze the influence of the first term z0·ex on the 
process of synchronization when the values of the synchro-
nization matrix elements are δ31=0; δ12=δ13=δ21=δ22=δ33=1. 
For these values of the elements, the variable ez in the differ-
ence space is determined by the timing diagram of the coor-
dinate z, which has an impulse nature and is always positive 
(Fig. 3, b). Thus, the growth intervals of the variable ez in 
time will alternate with the intervals, where its values will 
remain constant (Fig. 8).

It is obvious that the influence of the second term x0·ez 
will be determined by the time dependency of the integral  
 ( )
t

0
0

x t dt∫  values (Fig. 9). From the time dependency of x 

(Fig. 3, a) it follows that the value of this integral is a priori 
less than 5.7. This indicates the stability of solutions to the 
system by Lyapunov, as evidenced by the diagram of the time 
dependency ez (Fig. 10).

Thus, when the values of the parameters are δ13=0; 
δ12=δ21=δ22=δ31=δ33=1, there occurs complete synchroniza-
tion, since variables ex, ey in the difference space (ex, ey) are 
constant, and the third variable ez asymptotically tends to zero.

Let us consider the conditions under which the systems 
with nonlinear dynamics realize a strange attractor. Here-
with, there occurs phase synchronization (δ12=δ21=0) on the 
variables x and y and consistent disturbance cycle (δ33=0). 
The values of parameters δ22 and δ33 are equal to one, since 
otherwise, the trajectories will indefinitely grow in time.

Fig. 8. Time dependency ez at the values of 
the synchronization matrix elements δ31=0; 

δ12=δ13=δ21=δ22=δ33=1

Fig. 9. Time dependency of the integral ( )
t

0
0
x dξ ξ∫  value

Fig. 10. Time dependency ez at the values of 
the synchronization matrix elements δ13=0; 

δ12=δ21=δ22=δ31=δ33=1

Phase trajectories at the values of the synchronization 
matrix coefficients (the first and second lines in Table 4) are 
shown in Fig. 11, 12, respectively.

Such type of synchronization is called topological syn-
chronization [8].

It should be noted that in the absence of communica-
tion between the systems (δ12=δ13=δ21=δ22=δ31=δ33=0), a 
strange attractor will also occur (Fig. 13).
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Table 4

Conditions of realization of a strange attractor  
(limited non-recurrent trajectories) in the difference space

Values of 
coefficients

Solutions to the system

δ12=δ21= 
=δ31=0; 
δ13=δ22= 
=δ33=1

( ) ( )22 y
x x y

x

C
e C C sin t arctg ;

C

  
= + ⋅ +       

( ) ( )22 y
y x y

x

C
e C C cos t arctg ;

C

  
= + ⋅ +       

( )
( )

t

0

0

x d
5.7 t

z ze t C e e
ξ ξ

- ⋅
∫

= ⋅ ⋅

δ12=δ21= 
=δ13=δ31=0; 
δ22=δ33=1

( ) ( )22 y
x x y

x

C
e C C sin t arctg ;

C

  
= + ⋅ +       

( ) ( )22 y
y x y y z

x

C
e C C cos t arctg C C ;

C

  
= + ⋅ + - +       

( )
( )

t

0

0

x d
5.7 t

z ze t C e e
ξ ξ

- ⋅
∫

= ⋅ ⋅

Fig. 11. Strange attractor of the coupled systems with 
nonlinear dynamics at the values of the synchronization 

matrix elements δ12=δ21=δ31=0, δ13=δ22=δ33=1

Fig. 12. Strange attractor of the coupled systems with 
nonlinear dynamics at the values of the synchronization 

matrix elements δ12=δ21=δ13=δ31=0, δ22=δ33=1

Fig. 13. Strange attractor in the difference space of  
Rössler uncoupled systems

This means that the Rössler systems with different initial 
conditions can be synchronized even in the absence of com-
munication between them.

6. Discussing the results of research of  
synchronization processes in  

Rössler systems

Based on the analysis of the behaviour of systems with 
nonlinear dynamics, there was made a classification of 
solutions of ordinary differential equations and there were 
improved models of synchronization processes of the sys-
tems under analysis by means of matrix synchronization. 
With the help of the obtained models, the trajectories in the 
phase space of the above-mentioned equation systems were 
analyzed and classified.

The processes of synchronization of oscillations in the 
main and controlled nonlinear systems were studied by 
means of replacement and transition to a linearized system 
of variables equal to the difference of phase variables of the 
main and controlled systems.

As a result of the analysis, there were determined the 
values of the synchronization matrix elements in which there 
are different types of synchronization: complete, phase and 
topological. It was discovered that topological synchroniza-
tion occurs even in the absence of communication between 
Rössler systems in the difference space of phase variables of 
the main and controlled systems with nonlinear dynamics. 
Herewith, in the phase space, there is formed an attractor 
with low spatial complexity that is an uncoupled trajectory 
with limited values. The criterion for the absence of synchro-
nization of nonlinear systems is the unlimited growth of the 
phase variables difference.

The disadvantage of the proposed research method is 
the lack of quantitative analysis of complex synchroni-
zation methods and the conditions under which they are 
possible.

The obtained results can be used in modelling nonlinear 
electronic circuits, coding and cryptographic protection of 
information flows in telecommunication systems.

The work is a continuation of thematic studies of nonlin-
ear processes [9–11], done at the Department of Radio Engi-
neering and Information Security under the theme adopted 
by the MES of Ukraine in the line of further improvement of 
the proposed method.
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7. Conclusions

1. By means of synchronization matrix, it was discovered 
that in the difference space of Rössler systems, there are 
observed trajectories corresponding to complete, phase and 
topological synchronization. Even a relatively simple system 
with one nonlinearity has almost all possible solutions of 
ordinary differential equations in accordance with the exact 
classification (except those that do not form an attractor 
because of being constrained).

2. Taking for the basis the synchronization matrix, there 
were analysed, by means of replacement, the synchronization 
processes of Rössler systems. The analysis can serve as a pro-
totype for the development and implementation of software 
algorithms in the study of differential equations with nonlin-
ear functions. It was discovered that nonlinear links in the 

right-hand side can cause a variety of solutions to equations 
and the absence of a unique algorithm for classification and 
search for solutions in a given system.

3. It is shown that in the difference space of phase 
variables in Rössler uncoupled systems, there exists an 
attractor with low spatial complexity that enables the 
establishment of coherent oscillations even in the absence 
of communication between the systems with nonlinear 
dynamics. In particular, this means that analysis of syn-
chronization processes will require other methods that are 
not related to the analysis of the spectrum of Lyapunov 
exponents and construction of Lyapunov functions. This is 
especially true when chaos is used to protect information 
in television and information and communication systems, 
as hereat, little coherence could allow unauthorized access 
to information.
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