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There are a number of applied problems in which it is
necessary to take into account the dynamic component of
the process or phenomenon including the fact that the load is
applied not instantaneously but in time. For example, during
continuous rolling, there are such combinations of mechani-
cal systems in which action transfer from one rolling stand to
another via the strip occurs with some delay. This is reflect-
ed in the transient processes and the strip gripping capacity
in adjacent continuous mill stands. The strip between the
mill stands is in an elastic state. When the rolls start acting
on it during gripping in the subsequent stand, they transmit
disturbance to the strip in a form of oscillations or in a form
of a stationary action. In this period, strip gage variation ap-
pears reducing dimensional accuracy of the rolled product,
i. e. the product quality worsens.

2. Literature review and problem statement

It is of practical and theoretical interest to consider the
wave problem as the process of propagation of the initial
deviation and the initial velocity. At the same time, a need
of defining general schemes (both linear and spatial ones) of
solving dynamic problems arises.

Reference book [2] outlines general approaches to solu-
tion of the simplest dynamical problems. In one of the classic

papers [3], loads that vary in time are considered. In solving
the dynamical problem, unknown scalar functions ¢ and
v were introduced for consideration. Their choice is deter-
mined by solving differential equations of the form:
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Each differential equation corresponds to a certain type
of waves. In seismology, such waves are called primary and
secondary waves: wave P and wave S (shear wave), respec-
tively. It should be emphasized that the vector solution
takes place when the selected functions satisfy the reduced
differential equations and actually are argument-functions.
However, analysis shows that this is not enough for a number
of applied problems. It is necessary to establish a differential
relationship between these scalar argument-functions.

Solution of the wave equation also assumes dependences
on coordinates and time, which ensure a smaller Rayleigh
wave amplitude according to the exponential law [3].
Such a structure of solution can be useful in considering
dynamic problems in the field of equipment for continuous
rolling mills during the roll bite when the pulse action of
the rolls applied to the elastic strip in the inter-stand space
is represented as a variable in time and space. It should be
added that the solution presented does not imply its use in
other applied examples. There are no general laws governing
determination of unknown functions under new boundary




conditions associated with new processes and equipment
operation.

It is noted in monograph [4] that the problem in the
dynamics of the elasticity theory consists in formulation
of the boundary problem variants and assessment of their
application field. Homogeneous and inhomogeneous solu-
tions of dynamic problems for hollow bodies were proposed.
Although the work repeatedly emphasized the diversity of
dynamic problems in the elasticity theory and the variety of
boundary conditions to which the new solutions correspond,
the solutions were restricted by the dynamic problem for
hollow bodies.

Another approach to the determination of solutions of
the dynamic problem for boundary elements with distrib-
uted loads was presented in publication [5]. Influence of
impact loading on the indices of the stress-strain state of an
elastic medium was shown. The method of boundary integral
equations was used. It is indicative that the author limited
himself by solution of an applied problem, found necessary
theoretical basis and obtained the result acceptable for prac-
tice. In this case, there are no recommendations for using the
proposed solution in applied problems with other or similar
boundary conditions.

Quadratures of solutions for the third dynamic problem
with mixed boundary conditions were constructed in work
[6]. Displacements are specified on one part of the surface,
and forces on the other part. Construction of the solution
extends the possibilities of its use in applied problems with
mixed boundary conditions but such generalizations are
not enough for their use in the first and second dynamics
problems for boundary conditions associated with a variable
damped effect on the elastic medium.

Work [7] describes algorithms of the R-function method
for solving dynamic problems in the elasticity theory for
bodies of finite dimensions deformation of which proceeds
in an elastic region. Using the theory of R-functions, the
problem of constructing coordinate (trial) functions was
solved constructively which made it possible to open the
possibilities for practical application of the variational and
projection solution methods. Variational and difference
methods are used to search for new structures introduced
into consideration. As the authors suppose, a universal tool-
kit is presented that allows one not only solve mechanics of
the deformed solid and the problems of mathematical physics
but also the problems having relation to the development of
new technological processes. Very attractive is the fact that
a powerful mathematical apparatus for result generalization
was proposed and that it can be applied in finding new
solutions for dynamic problems of the elasticity theory. It is
necessary to clarify some details of the proposed approach.
Coordinate test functions were introduced. They can play
role of the proposed argument-functions. However, their
definition by variational or other methods may appear to be
not the exclusive option. Not so fundamental but more intu-
itive and practical options are possible.

Spatial self-oscillations of orthotropic plates were con-
sidered in the presence of an internal viscous resistance,
in proportion to the velocity of the medium points [8]. By
applying the asymptotic method, equations for longitudinal
and shear oscillation frequencies were obtained. The use of
new boundary conditions determines a new result and equa-
tions of longitudinal and shear oscillation frequencies are
obtained. The discussed example is a partial result, which
does not apply to solutions for other boundary conditions.

The problem of determining stresses on the boundary
of an elastic half-space from the given displacements was
shown in [9]. The solution was found by the method of La-
place and Fourier integral transforms. The initial data were
reduced to a system of three integral Fredholm equations.
Numerical solutions were obtained. Introduction to the con-
sideration of transforms allows one to approach the problem
solution by a numerical method as one of the variants of the
problem under consideration. Variation of boundary and
obvious conditions change the solution approaches and the
result obtained. However, there are no generalizing relations
that are superimposed on the closing equations for obtain-
ing a series of partial solutions and a possibility of a broad
analysis of the boundary conditions of new applied problems.

In work [10], abilities of another method are considered.
It is the method of potentials and the theory of multidimen-
sional singular integral equations for solving three-dimen-
sional stationary and non-stationary boundary problems in
the theory of elasticity.

Classical solutions of a linear dynamical problem are pre-
sented in work [11]. The linear wave equation has the form:
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Write an equation of characteristics for (1):
dx? —a’dt* =0.

There are two equations in new variables:
&=x-at, n=x+at.

The oscillation equation (1) is converted to a simpler
expression:

u, =0. (2)

n
The common integral of equation (2) is:
u(x,t)=f(x+at)+f,(x—at). 3)

Taking into account the boundary conditions, expres-
sion (3) is transformed to the form:
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u(x,t)=

Expression (4) is called the d’Alembert formula. It should
be emphasized that the fraction on the right side of (4) is a
function of both the coordinate and the time. In this case,
the function ¢ is not defined which makes it impossible to
instantiate the boundary conditions of the applied problem.

A method of separation of variables or the Fourier meth-
od is known. The solution is represented as:

u(x,t) = X(x)- T(t).

Substitution of the proposed form of solution in (1) gives
the following:
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Ordinary differential equations for determination of X
and T functions:

X +AX=0, T +a’AT=0.

A partial solution is known:
u,(x,t)=X,-T, = (Ancosnln- at+ aninnln‘at) : sin%~ x. (9)

Expression (5) satisfies the boundary and edge con-
ditions and equation (1). In the general case, by virtue of
linearity and homogeneity, the sum of the partial solutions
of (5) is:

u(x,t)= iun(x,t) =

=2(AncosnlnAat+B“sinnln~at)-sinnln~x. (6)
1

The constants of integration in (6) are determined by the
boundary conditions of the problem. The class of functions
that define boundary and edge conditions for the expres-
sion (6) is limited. There are difficulties in using solution (6)
in practical problems. It is necessary to develop approaches
enabling determination of conditions for existence of several
solutions corresponding to the specified boundary and edge
conditions of various applied problems.

Work [12] expands the scope of solutions but it does not
show convincing general schemes for determining required
dependencies taking into account practical diversity of the
initial and boundary conditions.

Monograph [13] does not show the abilities of using
complex initial and boundary conditions determining the
non-stationary action on the strip such as ones occur-
ring, e. g. during rolling in adjacent continuous mill stands.

In applied work [14], non-stationary problems are consid-
ered with reference to the metal forming equipment. However,
the rolling features in the transient processes associated with
loading during the period of strip gripping are not disclosed.

It should be mentioned that one of the first works
where the method of solving applied problems using argu-
ment-functions was applied was paper [15]. The solution is
presented in the theory of plasticity with no consideration of
the loading dynamic component.

The method of argument-functions with examples from the
applied theory of plasticity and elasticity was given and gener-
alized in [16], but the possibility of its use in solving dynamic
problems of the theory of elasticity was not demonstrated.

Complication of the problem with the use of argu-
ment-functions [17] indicates potentials of the method but
the dynamic problem was not considered.

The first generalizations of the dynamics results were
given in [18] but their further use for various boundary con-
ditions and obtaining a new result was not stated.

As analysis of the papers presented shows, there is a wide
use of various approaches and methods for solving dynamic
problems in the elasticity theory. These include the method of
potentials, the method of integral transformants, variational
and asymptotic methods. Besides, the theory of R-functions,
the method of boundary integral equations, d’Alembert meth-
od, Fourier method, the method of argument-functions, etc. can
be mentioned. Most of them are used to solve specific problems

while having no mathematical generalizations for their further
use. In work [4], one of the most important problems of the
dynamic theory of elasticity was emphasized: it is formulation
of variants of boundary problems and estimation of the field of
their application. Practical implementation of such approaches
broadens the possibilities of using the resulting solutions by
linking and selecting for them boundary conditions of various
technological processes and equipment operating conditions. In
the course of their development, works appeared which imple-
ment such generalizations and algorithms and not just dynamic
tasks, e. g. papers [3, 6, 7, 9, 15]. Scalar functions [3], R-func-
tions (tested) [7], integral transformants [9], argument-func-
tions [15] are used, which determine not the functional depen-
dencies themselves but the conditions for their existence.

In the latter case, the stages of the further, closing solution
are considered. But this is just another problem. In the first
approximation, one can restrict his attention to solving the
simplest invariant differential relations. They are of interest
since in many respects they, as a special case, coincide with
the known classical solutions.

As it follows from works [3—18], application of argu-
ment-functions involves introduction into consideration of the
main functional dependences, which can include exponential,
trigonometric, hyperbolic, logarithmic, complex, etc. func-
tions. Their arguments are also functions depending on co-
ordinates and time. These closing unknown coordinate-time
relationships are determined in the process of solving the
problem, more precisely, conditions for their existence are
found. Ultimately, the conditions for the existence of a number
of basic functions of the problem being solved are determined.

With this statement of a question, it becomes possible to
define a whole class of unknown functions the implementa-
tion of which expands abilities of the method under consider-
ation, which has been repeatedly emphasized in the course of
analysis. Examples of successful use of such approaches are
listed in the list of literature in question.

3. The study objective and tasks

This work objective was to determine common approach-
es or conditions of existence of various solutions, which are
determined by differential equations of the dynamic problem
and boundary conditions.

To achieve this objective, the following tasks were set:

— development of general approaches to solution of dif-
ferential wave equations using argument-functions, various
boundary conditions of problems in the theory of elasticity;

— definition of conditions for existence of trailing partial
solutions using invariant differential relations and equations
for argument-functions;

— development of a dynamic model of the transient pro-
cesses taking place during rolling in adjacent continuous
mill stands.

4. Approaches and solution of dynamical problems of
the elasticity theory

4.1. Approaches of analytical solution of dynamical
problems of the elasticity theory with the use of argu-
ment-functions

The totality of solutions of concrete differential equa-
tions is a practical necessity with the purpose of choosing



the mathematical model that satisfies to the right degree
desired boundary conditions of the problem. Considering
their diversity, which is associated with the variety of ap-
plied problems, problems arise in obtaining the necessary
solution for the initial data. In this case, it is expedient to
obtain not the concrete result of solution but the conditions
for its existence, i.e. determine those restrictions that are im-
posed on the functions from the side of differential equations
and boundary conditions. Thus, the final result is not the
functions themselves but the conditions for their existence,
in other words, the invariants of the differential relations
of the argument-functions introduced into consideration.
This approach is partially described in literature. However,
the possibilities of transition from one boundary condition
to another are not indicated. Some examples of using argu-
ment-functions are given thereinafter.
Solution of a differential equation of hyperbolic type:
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was proposed to perform with the help of unknown 6, AF
argument-functions introduced into consideration [9—12]:

1=C-exp0-sinAd,

where 6 and AF are the argument-functions of the deforma-
tion-zone coordinates. In this case, differential constraints
on the argument functions introduced into consideration
are shown:

0, =FAD, 0, =*tAD, 0 +0 =0, AD_ +AD =0.

The conditions themselves determine the type of equa-
tions that must be used to find the unknown coordinate
dependences 0, AF. The simplest option of solution of the
Laplace equation for the AF function is:

1 , ,
AD.=AD, =0, AD=AA w1 0-an,(voy)

It should be emphasized that the argument-functions are
determined not only by Laplace’s equations but to a greater
extent by differential relations between adjacent dependen-
cies as well. The last expression 0 is also a harmonic function
satisfying the Laplace equation.

The same approach was used to solve the wave equations
of the elasticity theory. Restrictions are imposed on the side
of the differential equations themselves and boundary

4.2. Solution of a dynamic problem using argument-
functions

Solution of the dynamic problem in analytical form was
presented in [18]. With the help of argument-functions,
solution of a linear dynamic problem of a limited application
was presented.

Use the approaches formulated in these papers, write a
fairly simple relationship and introduce argument-functions 6,
AF into consideration:

u=C-sinf-sinAd, )

where C and A are constants characterizing the process;
©, ® are unknown argument-functions of time and coordi-

nate, continuous, having second derivatives in time and a
corresponding coordinate.

Substitution of expression (7) in (1) gives a differential
equation of the form:

(9tt -a’ -GXX)-cosG-sinA(D -
—[(6,+a-A®,)-(6,~a-AD,)+(AD, +26,)-(AD, 28, ) ]x
Xsin@-sinA® +2(0, A®, —a’0, A, )cos6-cosAD +

+(A®, —a"Ad, )] sind-cosA® =0, (8)

where following notations were in parentheses 6, =—

DAD . 9
o etc. Further analysis shows that equation (8)
X

will be substantially simplified if nonlinearity is eliminated
and the brackets taken equal to zero, i.e:

Ad =

0, =FaAd_, AD =xaf_. )

In this case, all the summed operators on the left-hand
side will be zero. On the basis of the result obtained, tak-
ing into account (9), solution can be presented in a more
general form:

u=C, (Cisine + C2c059)(C3sinA<D + C4COSA¢’), (10)
provided that the following relations exist for the argu-
ment-functions:

0, =FaAd_ , AD =7Fa0_,

t x’ t X

8,-a’-0, =0, AD —a’Ad _=0. 1)

The differential relations (9), (11) differ by signs from the
above Cauchy-Riemann relations. Hence, differential con-
straints of the functions introduced for consideration change
with the change in the form of the differential equations.
The trailing constraints (11) define the basic solution (10).
Besides, the unknown argument-functions become known
for the shown differential equations. The final result can be
represented as a superposition of solutions:

u= 1:2“ Cio (Cmsinﬁi +C, ,c080; )(CiyssinAiCIJi +C, ,cosA, D, ),

i=1

0, =FaA D, AD, =7Fab,, 12)

ei,tt _a'2 'ei,xx = 0’ Aq)i,tt _a‘zA(Di,xx = 0'

Solution (12) resembles Fourier solution since a product
of trigonometric functions takes place. However, there are
a number of fundamental differences. The arguments of
trigonometric functions are functions as well not of one vari-
able as in the method of separation but of two variables. In
addition, the differential dependencies of solution (12) show
the variants of new solutions without being tied to a specific
result but to the boundary conditions of the process.

The next version of solution of the linear wave equa-
tion (1) can be applied to other boundary conditions, e. g. to
damped, periodical influences on the elastic medium.

Consider the following variant of partial solution using
argument-functions. In this case, the 8 argument-function is



not in the trigonometric, but in the exponential dependence
for the displacement u.

u=C-exp6-cosAD, 13)

where the argument-functions 8, AF are to be determined by
solution of the problem. Substitute (13) into (1) taking into
account the fact that the indicated functions admit second
derivatives to obtain:

a*u, =Ca’expx
X[ (6., +62 —A®?)cosA® - (20, A, +AD, )sinAd

u, =C-expOx
X[ (6, +67 - A®?)-cosA® ~(20, - A®, + AD, ) sinA® |

Substitute the last differential relations into equation (1)
to obtain:

[—BLL +a’0, +a’0’ —a’AdD’ -0’ — A@f]cosAdJ -
—[2a%, - AD -20,-AD +a’Ad - AD, |sinAD=0.
There are operators in square brackets:
[(azexx -0, ) - (aQAdDi —AD’ ) + (aZGi -0’ )] COSAD —
~[(a?A® - A, )+2(a%,- AD, -0, -AD, ) [sinA®=0. (14)

Consider the case when the parentheses of the first oper-
ator are zero, that is,

2’07 -0’ = (a0, +6,)(a0,-6,)=0,
a’AD; — AD] = (aAD, +AD, )(aAD, —AD, )=0.

Consider some variants.
Variant 1:

a0, =0, aA® =Ad . (15)

Define the second derivatives from the relationships (15):

a’e, =ab,, 6,=ad,,

tx?

2PAD =aAd , AD =aAd ,

x?

substitute all relationships into the square brackets of the
first and second operators (14) to obtain the equality to zero
of the remaining parentheses:

a’e_-0,=a6,—ad_ =0,

A’AD_ —AD, =aAD —aAd =0,

2’0 -AD -0, -AD =2a’0 -AD -2a’0 -AD =0.

Thus, under the conditions of (15), equation (14) be-
comes an identity.

Variant 2:

a0, =0, aAD =—AdD . (16)

Define the second derivatives:

a’0_=-ab

XX e

0,=-ab

xt?

2’AD_ =-aAd , AD =-aAD_,

tx?

substitute in square brackets to get:

a’9, —0,=-af_ +ad, =0,

AP —AD =-aAD_+aAd =0,
a’0 -A® -0, -AD =2a’0 -AD -2’0 -AD =0.

Consequently, equation (14) also becomes an identity
when conditions of (16) are satisfied.

Variant 3:

a0 =0, aAd_=-AD,. A7)

In this case, signs between the differential relations are
opposite. For the second derivatives in the defining differ-

ential equations, the identity is maintained but the identity
does not hold in the third one. Really:

a’0 -A® -0, -AD =
=a’0,-AD, —(a6,)-(-aA® )=2a’0 - AD, #0.

The relationships (17) do not satisfy equation (14). Final-
ly, taking into account the first two variants, the following
can be written:

u=C, exp, (C1 -sinA,®, +C;, -cos A,®, ) +

+C, expGQ(C'2 -sinA,®, +C, ~cosA2<I>2). (18)

provided there are solutions for the argument-functions:

a6, =16

X 1t?

aA,®, =+A®

1t

a0, =10, aA,d, =+A,D,

t)

azeb(x _61LL = 0’ azll§1(l)1xx _A1q)1tt = O’

a’ A,®, =0.

2xx 222

-0,,=0, a’A,®

2xx

Proceed from partial solutions (13), (18) to a general
solution in the form:

u=3C, exph, (Cl -sin A,®@, + C/ cos Aid>i)+
1

+3C exp® (C/-sinA.® +C"cosA D 19
%Jepr(JstJ JcosJJ) 19)

under condition that:

a0, =%6,, s A®, =3A D ,
a0, =140;, a,A @, =+AD;,
aizeixx -6, =0, aizAi(Dixx -A®,, =0,

2 _ 2 —
a;0,,-6,=0, alAD, -AD, =0.

i jxx



Comparison of solutions (7) and (13) shows that the
argument-functions satisfy the same type of differential
equations (12) and (19). However, the differential relations
between the adjacent ones in solution are different. In many
cases, this feature is defining and basically distinguishes the
solutions shown.

Following the trends in developing methods for solving
dynamical problems as applied to changeable boundary
conditions, consider solution of a more complex problem, the
spatial problem [19]. Wave equation for the spatial problem
has the form:

E)Zu_cz(azu du E)Zu]

a  \ox’ oy’ oz

20
ox’ oy’ oz (20)

A unified approach to the solution with the use of argu-
ment-functions was formulated above. Represent the general
solution u in a form of a superposition of partial solutions u,
that simultaneously depend on one of the coordinates and
time. The following is obtained:

u=u,+u,+u,
wherein
u, =C,cosA,®,cosb,,
u, =C,cosA,D,cos0,,
u, = C,cosA,P,cos0,. (21)
Function:
A, =f(xt), 0,=f,(xt),
A, =f,(y,0), 6,=f(y,0),
A0, =1 (zt), 6,=1(z1).

Take the derivatives of (21) taking into account the func-
tional dependences:

9*(u, +u,+u,) _
T -C (A 0] )X sinA,®,cos0, —
1)i cosA, D cosO, +

@,) (8,) sinA,®sing, -

0,) cosA,®sind, +

6,) (A®,) sinA @ sin6, —

0)

cosA, P cos,; (22)

=-C, (A2d>2)yv sinA,®,cos0, —

q>2) cosA,®,cos0, +
Z(I)z) (62)y sinA,®,sinb, —
) cosA,D,sinb, +

2)\ (A2<132)y sinA,®,sin6, —
)

cosA,®,cos0,;

0 ) _C0sA;D,sind; +
93)7(A () ) sinA,®,sin6, —
0 ) cosA,P,cos0,.

(24)

82(u1+u2 +u3)_
ot’
=-C, (A1¢)1)11 sinA,®,cos0, -C, (A1¢’1)f cosA,®,cos6, +
+C (01) COSA <D1sin6+C1(91)t(A1<I>1)tsinA1<D1sin6—
—C,(A

(A ) sinA,®,c0s0,—-C (A 0] ) cosA,®,cos0, +

) cosA,®,sinB,+C, (6,) (A,®,) sinA,®,sin6, -

2

C, ) sinA;®@,cos8,—C, (A, ®. ) cosA,d,cos0, +

S( @) (6,), sinASCI>35in63—C3(G3)t cosA,®,cos0,. (25)

Substituting (22)—(25) into equation (20) and making
simple transformations by grouping beside the trigonometric
functions, obtain a nonlinear second-order partial differen-
tial equation with a possible repeated simplification scheme:

c{(ae

—[((A1<I>1 ¥ -c(0,) )+(e1 f-¢ (A1d>1)i]~cosA1<D1 086, +

), —¢ (A, )XX:|~sinA1<I>1 -c0s6, —

+2[ AD,) 91 —C (A CD) (91)X]~sinA1d>1~sin91—
(91 ] cosA,®,sind }
C, [( A D ) ]smA ®,cos0, -

[((AZCDZ) 2(921)i)+(6 ) *(A0,)) ]cosA ®,c0s0, +
+2[(A2<D2)L(92)L—c2(AZGDZ)y(ez)y]sinAzd)Zsinez—

—[(92 ), —<*(6, )yy]cosAz(Dzsinez}—

im0 -
(@) - (o)) +(0):-

~c(A®,) (8,), [sinA,@sin6, -

*(A,@,) ]sinA:5<I>;; cos0, —
(A [0) ) ]COSA ®,cos6, +

H©),~¢*(6,), Jeosa@;sine, }=0. (26)

Eliminating nonlinearity in (26), obtain variants of sim-
plifications with different signs:

L (A®), =¢(8,) , 0) =c(Ad,),

(A,@,), =c(62)y, (8,), =C(A2<D2)y, X))

(A,@,), = C(e:n)z NCHE C(A3(D3)Z'



2. (A®), =—c(8,) , (8,),=—c(AD,),
(A,@,), =—c(6 ) ,), = c(ACD) (28)
(A;@;), = _0(931)27 (0,), = _C(As‘bs)z .

With brackets eliminated, expression (26) will be writ-
ten as:

¢’ (A2<I>2 )w ] sinA,®, cosf, —
L —c(6, )yy ] cosA,@,sind, } -
*(A,@, )”]sinA3(I>3 cos, —

-{(8,), —¢* (91)XX:|COSA1(I)1SH161} =0. (29)

On the one hand, simplification of equation (26) has taken
shape, on the other hand, constraints on unknown argu-
ment-functions appeared in the form of (27), (28).

Second derivatives of equation (26) are determined
from (27) and (28) in the variants:

L (A®),=c(8,) , ©),=c(A®,) ,

Xt

AQ), = C(91)“ (61)lx:C(A1®1) )

XX

(A®,), =c(6,) . (8,), =c(A®,) .

(A,), =c(8,) , (8,), =c(A®,) , (30)
(A,®,), =c(8y) , (8,), =c(A,D,) ,
(A®,),=¢(6;) , (8,),=c(A,®,) ;

2. (A®), =—¢(6,) , (8),=—c(AD,) ,

(A®), =—(6,) , (8),=—(A®,) ,

(A®,), =—c(6,) , (8,),=—c(AD,)

(A®,), =—c(6,) . (8,), =—c(A®,) , (31)
(A,®@;), =—(8;) , (8,), =—¢c(A,D,) ,

(ADy), ==c(6,),, (8,),=—c(AD,) .

Using (30) and (31), define square brackets in equa-
tion (29). It can be shown that they are zero. Indeed, sub-
traction of the second derivatives gives defining differential
relationships of the form:

(A1(I)1)tt - C2 (Alq)1)xx = O’ (61)tt - C2 (61)x>\ =0
(A®,), —¢? (Azq)z)yy =0, (6,), ¢’ (ez)y‘ =0 (32)
(Asq’s)n =3 (A3<D3)zz =0, (GS)n -c’ (93)22 =0

Substitution of (32) into (29) results in a further simpli-
fication of the problem. Solution of the partial differential
equation (20) is represented as:

u=C,cosA,®,cos0, +

C,cosA,®,c080, + C,cosA ,®@,c0s0,. (33)

Expression (33) will also be valid for various combina-
tions of trigonometric functions taking into account (27),

(28), (30), (31):

u=C,(Cjsind, +C,cos0, )-(CsinA, @, +C,cosA,®, )+
+C,(Cysind, +Cycos0, ) (C,sinA, @, + CycosA, @, )+
+C;+(Cysind, + C,4c080, )-(C, sinA, @, + C ,cosA,@,),  (34)
under conditions:

). (8), =%c(A®,),

@), =0, (8),-¢"(8,), =0

©,), = c(A,®,) |

(A D )t _+C(
(A,

(A@,), -

(A,@,), —+c(62)

(A,), —c*(As®,) =
(A,@,), =%c(8,) , (8,), =%c(A,D,),

(Ascbs)tt -’ (AS‘DS)ZZ =0, (es)tt =3 (OS)ZZ =0.

Conditions for existence of various solutions in the form
of defining differential equations of hyperbolic type for the
arguments of trigonometric functions were shown. In gener-
al form, solution (34):

u= i C,- (C'isinei +Ccosb, ) : (C;”sinAi(I)i +C/ cosA,®, ) +
i=1

+i C; (C'J.sinej + C;(:ose2 ) . (C'j"sinAjCI)j + C'jmcosAjCI)j ) +

=

+i C, -(C'ksinek +C,cos0, ) . (C;sinAk(I)k + CL”cosAkd)k) (35)
=

under conditions:

(A D), =*c(6 ) (0,), =*c(A, q>l)x,

i

0, (8)),-<*(8),, =

(A @), =*c(6 ) (®), —+C(A,(I>J)V

0.(6),-<(6,), =

(0,), =+c(A®,) ,

z

c¢(8,) =0.

(Aiq>i)u -c’ (Aiq)i)xx =

(A®), - (a®) =

(AD,), =*c(6,) ,

(Ay), —c*(A®,), =0, (8,), -

Thus, the result (35) which was obtained is a superpo-
sition of the flat coordinate-time solutions. In this case,
each pair is determined by its differential constraints on
the argument-function. In this case, complication of the
problem is a kind of a generalizing factor of the proposed
approach.



5. Comparison of the study results

Validity of the presented result is determined not only by
finding a solution that satisfies the conditions of the problem
but also by comparing it with the solutions already known
in literature, assessed and tested. Consider a list of solutions
with the use of argument-functions for a flat problem of the
plasticity theory, namely (7) and (13).

Plasticity theory

7t 9t _, 9

— =2
ox> 9y’  oxdy

Vk*=1?, 1=C-exp0-sinAd.

(36)

Restrictions on expressions (36):

0, =FA®, 0 =+AD, 0 _+0 =0, AD_+AD =0.

y?

Linear dynamic problem with trigonometric solution and
constraints (11):

’u_ , d’u

e a ox*’

Solution has the form:
u=C,(Csin®+C,cos0)(C,sinAd +C ,cosAd). (37)
Restrictions on the expression (37):

0, =FaAd_, AD =7Fab ,

0,-2a’-0, =0, AD —a’Ad _=0.

Linear dynamical problem with a trigonometric and ex-
ponential form of solution (18):

u=C, exp6, (C1 -sinA®, +C, ~cosA1<I>1)+
+C, exp8,-(C, sin A,®, +C,-cos A,®, ). (38)

Restrictions on the expression (38):

ad, =10,, aA,®, =+A®,,
a0, =10,, aA,®, =*A,D,,

a’e, —-0,,=0, a’A®,_-Ad, =0,
a’e, —0,,=0, a’A,®, —A,D, =0.

The following results of solutions are obtained using dif-
ferential relationships between adjacent argument-functions
in all above variants (36)—(38). For each variant, the sim-
plest schemes of solutions of invariant differential equations
were considered.

Theory of plasticity

The simplest variant of solution (36) is taken:

AD =AD =0,
when 6, =FA® , 6, =+Ad, 0, +6, =0, AD_+AdD, =0.

Argument-functions: A®=AA;-x-y, 0= % (X2 - yz).

It can be shown that the 6 argument-function satisfies
the Laplace equation. Really:

S 1 , ,
aQe aze az |:5 ’ AAS ' (XZ - y2 )]
+—= +

ox* 9y’ ox’

82[%.AA5.(XZ —yz):|

oy’

+

=AA,—AA,=0.

There can be another, more complicated solution for the
AF function:

AD=AA,, x-y-(x*-y?),

through the Cauchy-Riemann relationships, the
ment-function has the form:

argu-
0=-AA,, [i(x“ +y4)—%x2 ~y2:|.

Substitute argument-functions into Laplace’s equations
to see that they are identically satisfied:

.20 (et

’AD J’AD
+
ox? oy?

=6-AA,; X' y—6-AA ;- X"y.

It is possible to obtain a more complex coordinate depen-
dence for the AF function:

A<I>=AA6~X~yiAA13~X-y~(X2—y2) and so on.

Multiple calculations of the stressed state of metal in
the processes of plastic metal working showed qualitative
and quantitative convergence of the presented results with
experimental data and data of other authors [16, 17].

It can be seen from the last examples that there can be
many solutions of the same differential equations and for
each of them there are certain boundary or initial conditions
that must also be ensured. Taking into account different
boundary conditions for different applied problems, it be-
comes possible to choose the required solution provided with
the method of argument-functions.

As noted above, the same problem is encountered in solv-
ing dynamic problems of the theory of elasticity.

Linear dynamic problem with basic trigonometric
functions

Expression (37) can be simplified and reduced to the
form:

u= (C1 -sinf+C, - cose) -sin Ad.

Argument-functions are defined by relationships (9),
(11), 1. e:
0, =FaAd_ , AD =7Fab_,

t x’ t X

8,-a’-0, =0, AD —a’Ad_=0.



To satisfy differential equations of hyperbolic type for ar-
gument functions, use the simplest case of equation solution
in the following form:

6,.=0,=AD_ =AD =0,

then one of the variants of the solution for the AF argu-
ment-function will be written as:

AD = AA,-x+AA,-t.

Taking into account differential relationships, pass to 6
function:

a-0=AA, x+f(t).or 8=a-AA - t+f(x),
AD, =aB _=AA, or a-0=AA, x+f(t).
Eventually:

AA

B=a-AA - t+AA, X, B=a-AA -t+——2.X, (39)
a

Expressions for argument-functions satisfy differential
equations of hyperbolic type (18), (19) and relationships
between adjacent functions. In further simplification, take
AA,=0 to obtain:

AD=AA X, 6=2a-AA, -t (40)

Demonstrate now that the expressions (40) are trailing
solutions for the functions obtained by the method of separa-
tion of variables or by Fourier method. Taking the boundary
conditions same as in [11] and relationships (18), (19) pre-
sented above, the following is obtained:

T-n

1 T, C1=A C2=Bn.

n’

In this case, the differential relationships (18), (19) are
also sustained, that is,

0, =aAd, =“1—n-a, AD, =20, =0.

The relationships are identically satisfied. Taking the
boundary and boundary conditions same as in [2] and us-
ing (39), (40), the following is obtained:

AA1:“1J, C,=A,, C,=B,.

Finally:

u= [A“cos(a-nint)+anin(a-nllnt)]-sin(ninx),

which corresponds to the solution (5) shown in work [11].
It follows that the solution obtained by the Fourier method
is a particular case of the solution obtained with the help of
argument-functions. In this case, simplifications in the com-
pared solution from work [11] are elementary and multiple
with respect to the argument-functions.

If the solution is not simplified, then the following vari-
ant can be considered:

AA,

AD=AA, - X+AA,-t, 0=a-AA, t+——2.x,

Factoring out the AA, gives the following:

AD = AA, x+ 2B 0=AA,|a-t+ A% .
AA, a-AA,

Taking

AAizAAQ’
a

to simplify the result, obtain the following:

AD=AA (x+a-t), 0=AA (a-t+x). (41)

The argument-functions have the same coordinate-time
dependence (41).

Taking into account the last expressions for the argu-
ment-functions, write expression (37) as:

u= (C1 -sin@+C, ~c059)~sinAd> =

= {C1 -sin[AA1 (a-t+ x)]+ C, -cos[AA1 (a-t +x)]} X

><sin[AA1 (x+ a- t)]

The solution can be reduced to other coordinate-time
dependence if negative sign is used in relationships (18), (19).
Indeed, what is obtained is:

0,=—aAd,, AD, =-ad,,
from where:

0=—a-AA - t+f(x), a-0=—AA, -x+f,(t)

or

Z.x.

AA
AD=AA, - x+AA,-t, B=—a-AA, -t—

After simplifications, the following can be written by
analogy with (41):

AD=AA (x+a-t), 0=—AA (a-t+x). (42)

Solution (37) for (42) becomes:

u= {—C1 -sin [AA1 (a-t+ x)] +C,-cos |:AA1 (a-t+ x)]} X
Xsin [AA1 (X +a- t)]

The last variants of the argument functions (41) and
(42) represent a fragment of the d’Alembert formula (4).
Thus, a rather unexpected result was obtained. Maximum
simplifications of the argument-functions result in a Fourier
solution and the simplifications associated with smaller as-
sumptions lead to the d’Alembert solution. Moreover, in the



d’Alembert solution itself there are differences in (41) and
(42). It is easy to see that the solutions obtained correspond
to different boundary conditions.

Consider a variant of the analytic definition of the
d’Alembert formula using solution (38) and corresponding
differential constraints of the argument-functions.

Linear dynamic problem with basic trigonometric and
exponential functions

This version of the problem is of particular interest since
its solution can successfully represent the damped or in-
creasing effect of the rolling tool on the elastic strip during
the unsteady roll bite process.

Consider (38). There are elementary differential rela-
tionships that make it possible to simplify solution of hyper-
bolic equations of the form (38). Simplified equations are as
follows:

0 =0, =AD_=Ad

XX tt XX tt

=0.
The obtained solutions are in a form of (38)

u=C, exph, (C1 -sinA,®, +C, ~cosA1<I>1)+
+C, exp8, (C2 -sinA,®, +C, ~cosA2d>2).

Differential relationships of argument-functions are as
follows:

af, =106

1x T TV

aA, D, =+A,d

10
a0, =10,, aA,®, =1A,D,,

a’e,, —0,,=0, a’A®_ -A®, =0,

1xx 1tt

a262xx =6, = 0, a2A2(I)2XX -A,D,, = 0.

Solutions (38) and (37) feature a different differential
constraint which defines argument-functions. In (38), there
are relationships not with adjacent dependences of the form
as for (37) but between the partial derivatives belonging to
the same argument-function, i. e.:

a0, =40, aA,®, =+A,®

1t 1t

af, =10,, aA,», =+A, 0, .

2t

Solving the differential equations presented at the be-
ginning of this variant, one can obtain the following depen-
dences:

A® =AA, X+AA, t,

0,=AA; t+AA, X,

AD, =ALA, X+A,A,t,

0,=A,A, t+A,A,,X.

The form of the functions for adjacent argument-func-
tions is the same. Substitute the last expressions in the dif-

ferential relationships for the given solution:

aAd, =A D, =a-AA;=AA,

a0, =0, =aA A;=A A,
aA,®, =-A,D, =aA,A; =—-A,A,
a6, =-0, =aA,A,=-A,A,.

Taking into account the transformations, write the argu-
ment-functions:

A®@ =AA, x+aA A, t=AA, (x+a-t),

0, =aA Ay t+A A x=AA - (x+at). (43)
A,D,=AA - x—aAA,  t=AA, (x—at),
0, =—aA,A - t+A,A - x=A,A - (x—a-t). (44)

The argument-functions (43), (44) have the form of (3),
(4) from d’Alembert’s formulas.

Substitute the argument-function (43), (44) into expres-
sion (38) and obtain the final solution:

u=C, (epr1A6 (x+a- t)) X
X (C'1sinA1A3 (x+a-t)+CcosA A, (x+a- t)) +
+C, (exp ALA (x —-a- t)) X

x(C;sinA2A7(x—a~t)+C;cosA2A7(X—a-t)). (45)

The argument-functions for exponentials and trigono-
metric dependencies in (45) are the same. An analogy is
observed for the expressions (37) as well when taking into
account (41) and (42). The result obtained is of theoretical
and practical interest. Indeed, (45) can be written in a gen-
eral form as:

u=¢1((x+a~t))+¢2(x—a~t).

However, this general result is represented in expres-
sion (4) as the D’Alembert formula [11]. In this case, the @
function is represented by a concrete coordinate-time ex-
pression (45). Besides, the initial conditions of the form as in
[20] fit well into solution (45):

u’ =C°-exp(+bt)-(Csinkt +C,coskt).

This dependence is suitable for characterizing non-sta-
tionary impulse action on the elastic strip in the rolling mill.
Indeed, expression (45) can be simplified for:

x=0,a-AA;=b, k=A/A,a,
x=0,A,A,,=b k=A,Aa
u' =C, (exp(bt))-(C;sin (kt)+ C;cos(kt))+

+C, (exp(—bt))v(C;sin(—k~t)+C;cos(—kavt)). (46)
Variants (46) of increasing, decreasing functions or their
joint action appear. The latter solution is representative
when using argument-functions.
In the conditions of transient processes taking place
during rolling in adjacent stands, rolls as a system are the



source of a damped effect on the strip. The impact is trans-
mitted via the strip to the adjacent stand where a stationary
rolling process is realized. A dynamic splash in the last
stand appears. This leads to oscillations of the gap between
the rolls producing longitudinal thickness variation. Solu-
tion (45) makes it possible to evaluate this impact and in-
tervene in the rolling process in the mill stream to eliminate
defect formation.

6. Discussion of results: generalization using
argument-functions

Comparison of the results obtained in solution with the
use of argument-functions with known solutions shows that
the presented approach is quite acceptable for calculating
pulsed stressing of an elastic medium. In this case, it was not
the coordinate-time dependences of the argument-functions
that were defined but the conditions for existence of various
solutions of the problem that can fit any boundary condition.

It can be seen from the analysis that the result presented
in [11-14] was the simplest partial solution of differential
relationships for argument-functions. There is a prospect of
defining new dependencies for new tasks about which, per-
haps, nothing is known yet.

The initial differential equations and boundary condi-
tions determine the type of differential equations for the
argument-functions that close solution. On the one hand, ar-
gument-functions can be bounded by the Cauchy-Riemann
relations and the corresponding differential invariants and
on the other hand, by differential relations which lead to the

fact that the argument-functions are the same for adjacent
coordinate-time dependencies. Besides, analytic dependenc-
es on the parameters entering into the d’Alembert formula
were obtained.

7. Conclusions

The paper presents development of general approaches
to solving differential wave equations using argument-func-
tions. The known solutions of the dynamic problem are in
accordance with the proposed approaches and are their
partial solutions.

The result obtained is a superposition of flat coordi-
nate-time solutions. Besides, each pair is determined by its
differential constraints on the argument-function. In this
case complication of the problem is a kind of generalizing
factor of the proposed approach.

Conditions for existence of new solutions of the wave
problem that are restricted by boundary conditions of dif-
ferent processes were determined using known solutions:
plasticity theory, linear dynamic problem with trigonomet-
ric solution and constraints, and a linear dynamical problem
with basic trigonometric and exponential functions. Invari-
ant differential relationships for argument-functions are the
closing element of the solution.

A mathematical model of a dynamic problem with an
increasing or damped wave action upon an elastic medium
was developed which makes it possible to evaluate this effect
and intervene in the rolling process in the mill workflow and
consequently eliminate defect formation.
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u 0

3acmocosano emnipuunuli Kpumepii HACMAHHS ABMO-
banancysanns 0N eHYUK020 0CECUMEMPUHHOZO POMO-
pa, wo 6anancyemvcs n RACUBHUMU A6MOOANAHCUPAMU
0y0v-si020 muny. Bcmanogaeno, wo asmodanancysanms
Mosice 8100y8amucs mibKu Ha WEUOKOCMAX, W0 Nepesu-
WYIOMs N-10 KpUMuUUHY WEUOKICMb 00epmants pomopa.
3natideno dianazonu Kymoeux weuodxocmeii odepmanms
pomopa, HA AKUX HACMYnamume A6MOOANAHCYEAHHS.
3anponoHoeano cnocodu oNMUMAILHOZ0 6ANAHCYBAHHS
2HYUK020 pomopa

Kmouosi crosa: enyuxuii pomop, nacuenuii aemoéa-
Jancup, asmoodanancysants, Kpumepii HACMAanHsa asmo-
banancysanns, Kpumuini WeUOKOCMI eHYHK020 Pomopa

[m, |

IIpumenen smnupuneckuit Kpumepuii HacmMynienus
asmooanancupoeku 0as 2ubKoz0 0CeCUMMEMPUUHOZ0
pomopa, 6anancupyemozo n nACCUGHbLIMU A6MOOANAN-
cupamu 1106020 muna. Yemanoeaeno, wmo aemooana-
cupoeka molicem nPoucxooums moJbko Ha CKOPOCMAX,
NPeLIUAOUWUX N-10 KPUMUMECKYIO CKOPOCMb 6pauieHust
pomopa. Haiidenvt duanaszonvt yenoevix ckopocmeti epa-
wenus pomopa, nHa Komopvix Gyoem nacmynamo aémo-
oanancupoexa. Ilpednosicenvt cnocobvl onmumanvioi
banancuposxu pomopa
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Dynamics of rotors without auto-balancers is described

Many rotors of aircraft engines, gas turbine engines of
power plants, agricultural machines, etc. work at speeds
above the first critical one, and therefore behave as flex-
ible [1, 2]. The form and unbalance of the flexible rotor
depend on the current speed. In addition, during the
operation of such rotors, their unbalance can change due
to temperature, wear, dirt sticking, etc. Therefore, it is ex-
pedient to constantly balance flexible rotors in motion, in
the process of exploitation, by passive auto-balancers [3].
For application of passive auto-balancers, it is necessary to
know whether it is possible in principle and on what rotation
speeds to balance the flexible rotor installed on the certain
supports by them in motion.

by rather difficult differential equations of motion [1-5].
Introduction of auto-balancers (masses movable relative to
the rotor) to the system makes the equations even more com-
plicated [3, 6—16]. Therefore, an analytical determination
of the conditions for the occurrence of auto-balancing is a
complex mathematical problem.

Analytically, the conditions for the occurrence of au-
to-balancing are determined in [3—16]. At the same time, the
most general conditions applicable for auto-balancers of any
type and with any number of corrective weights, are received
using the empirical criteria [3—5].

Thus, it is actual to find the conditions for the occurrence
of auto-balancing in the case of balancing of the flexible
massive rotor by any number of auto-balancers of any type.




