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1. Introduction

There are a number of applied problems in which it is 
necessary to take into account the dynamic component of 
the process or phenomenon including the fact that the load is 
applied not instantaneously but in time. For example, during 
continuous rolling, there are such combinations of mechani-
cal systems in which action transfer from one rolling stand to 
another via the strip occurs with some delay. This is reflect-
ed in the transient processes and the strip gripping capacity 
in adjacent continuous mill stands. The strip between the 
mill stands is in an elastic state. When the rolls start acting 
on it during gripping in the subsequent stand, they transmit 
disturbance to the strip in a form of oscillations or in a form 
of a stationary action. In this period, strip gage variation ap-
pears reducing dimensional accuracy of the rolled product, 
i. e. the product quality worsens.

2. Literature review and problem statement

It is of practical and theoretical interest to consider the 
wave problem as the process of propagation of the initial 
deviation and the initial velocity. At the same time, a need 
of defining general schemes (both linear and spatial ones) of 
solving dynamic problems arises.

Reference book [2] outlines general approaches to solu-
tion of the simplest dynamical problems. In one of the classic 

papers [3], loads that vary in time are considered. In solving 
the dynamical problem, unknown scalar functions φ and 
ψ were introduced for consideration. Their choice is deter-
mined by solving differential equations of the form:

2
2 2
1 2с 0;

t
∂ φ

⋅Ñ ⋅φ − =
∂

 2
2 2
2 2с .

t
∂ ψ

⋅Ñ ⋅ψ − = −ψ
∂

Each differential equation corresponds to a certain type 
of waves. In seismology, such waves are called primary and 
secondary waves: wave P and wave S (shear wave), respec-
tively. It should be emphasized that the vector solution 
takes place when the selected functions satisfy the reduced 
differential equations and actually are argument-functions. 
However, analysis shows that this is not enough for a number 
of applied problems. It is necessary to establish a differential 
relationship between these scalar argument-functions.

Solution of the wave equation also assumes dependences 
on coordinates and time, which ensure a smaller Rayleigh 
wave amplitude according to the exponential law [3]. 
Such a structure of solution can be useful in considering 
dynamic problems in the field of equipment for continuous 
rolling mills during the roll bite when the pulse action of 
the rolls applied to the elastic strip in the inter-stand space 
is represented as a variable in time and space. It should be 
added that the solution presented does not imply its use in 
other applied examples. There are no general laws governing 
determination of unknown functions under new boundary 
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conditions associated with new processes and equipment 
operation.

It is noted in monograph [4] that the problem in the 
dynamics of the elasticity theory consists in formulation 
of the boundary problem variants and assessment of their 
application field. Homogeneous and inhomogeneous solu-
tions of dynamic problems for hollow bodies were proposed. 
Although the work repeatedly emphasized the diversity of 
dynamic problems in the elasticity theory and the variety of 
boundary conditions to which the new solutions correspond, 
the solutions were restricted by the dynamic problem for 
hollow bodies.

Another approach to the determination of solutions of 
the dynamic problem for boundary elements with distrib-
uted loads was presented in publication [5]. Influence of 
impact loading on the indices of the stress-strain state of an 
elastic medium was shown. The method of boundary integral 
equations was used. It is indicative that the author limited 
himself by solution of an applied problem, found necessary 
theoretical basis and obtained the result acceptable for prac-
tice. In this case, there are no recommendations for using the 
proposed solution in applied problems with other or similar 
boundary conditions.

Quadratures of solutions for the third dynamic problem 
with mixed boundary conditions were constructed in work 
[6]. Displacements are specified on one part of the surface, 
and forces on the other part. Construction of the solution 
extends the possibilities of its use in applied problems with 
mixed boundary conditions but such generalizations are 
not enough for their use in the first and second dynamics 
problems for boundary conditions associated with a variable 
damped effect on the elastic medium.

Work [7] describes algorithms of the R-function method 
for solving dynamic problems in the elasticity theory for 
bodies of finite dimensions deformation of which proceeds 
in an elastic region. Using the theory of R-functions, the 
problem of constructing coordinate (trial) functions was 
solved constructively which made it possible to open the 
possibilities for practical application of the variational and 
projection solution methods. Variational and difference 
methods are used to search for new structures introduced 
into consideration. As the authors suppose, a universal tool-
kit is presented that allows one not only solve mechanics of 
the deformed solid and the problems of mathematical physics 
but also the problems having relation to the development of 
new technological processes. Very attractive is the fact that 
a powerful mathematical apparatus for result generalization 
was proposed and that it can be applied in finding new 
solutions for dynamic problems of the elasticity theory. It is 
necessary to clarify some details of the proposed approach. 
Coordinate test functions were introduced. They can play 
role of the proposed argument-functions. However, their 
definition by variational or other methods may appear to be 
not the exclusive option. Not so fundamental but more intu-
itive and practical options are possible.

Spatial self-oscillations of orthotropic plates were con-
sidered in the presence of an internal viscous resistance, 
in proportion to the velocity of the medium points [8]. By 
applying the asymptotic method, equations for longitudinal 
and shear oscillation frequencies were obtained. The use of 
new boundary conditions determines a new result and equa-
tions of longitudinal and shear oscillation frequencies are 
obtained. The discussed example is a partial result, which 
does not apply to solutions for other boundary conditions.

The problem of determining stresses on the boundary 
of an elastic half-space from the given displacements was 
shown in [9]. The solution was found by the method of La-
place and Fourier integral transforms. The initial data were 
reduced to a system of three integral Fredholm equations. 
Numerical solutions were obtained. Introduction to the con-
sideration of transforms allows one to approach the problem 
solution by a numerical method as one of the variants of the 
problem under consideration. Variation of boundary and 
obvious conditions change the solution approaches and the 
result obtained. However, there are no generalizing relations 
that are superimposed on the closing equations for obtain-
ing a series of partial solutions and a possibility of a broad 
analysis of the boundary conditions of new applied problems.

In work [10], abilities of another method are considered. 
It is the method of potentials and the theory of multidimen-
sional singular integral equations for solving three-dimen-
sional stationary and non-stationary boundary problems in 
the theory of elasticity.

Classical solutions of a linear dynamical problem are pre-
sented in work [11]. The linear wave equation has the form:

2 2
2

2 2

u u
a .

t x
∂ ∂

= ⋅
∂ ∂

		 (1)

Write an equation of characteristics for (1):

2 2 2dx a dt 0.− =

There are two equations in new variables:

x at,ξ = − x at.η = +

The oscillation equation (1) is converted to a simpler 
expression:

u 0.ξη =  			    (2)

The common integral of equation (2) is:

1 2u(x,t) f (x at) f (x at).= + + − 			   (3)

Taking into account the boundary conditions, expres-
sion (3) is transformed to the form:

x at

x at

(x at) (x at) 1
u(x,t) ( )d .

2 2a

+

−

φ + + φ −
= + ⋅ ψ α α∫ 	 (4)

Expression (4) is called the d’Alembert formula. It should 
be emphasized that the fraction on the right side of (4) is a 
function of both the coordinate and the time. In this case, 
the function φ is not defined which makes it impossible to 
instantiate the boundary conditions of the applied problem.

A method of separation of variables or the Fourier meth-
od is known. The solution is represented as:

u(x,t) X(x) T(t).= ⋅

Substitution of the proposed form of solution in (1) gives 
the following:

'' ''
2

1
X T X T

a
⋅ = ⋅ ⋅  or 

'' ''

2

X 1 T
.

X a T
= ⋅ = −λ
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Ordinary differential equations for determination of X 
and T functions:

''X X 0,+ λ =  '' 2T a T 0.+ λ =

A partial solution is known:

n n n n n

n n n
u (x,t) X T cos at sin at sin x

l l l
π π π = ⋅ = Α ⋅ + Β ⋅ ⋅ ⋅  

.  (5)

Expression (5) satisfies the boundary and edge con-
ditions and equation (1). In the general case, by virtue of 
linearity and homogeneity, the sum of the partial solutions 
of (5) is:

n
1

n n
1

u(x,t) u (x,t)

n n n
cos at sin at sin x.

l l l

∞

∞

= =

π π π = Α ⋅ + Β ⋅ ⋅ ⋅  

∑

∑
	

(6)

The constants of integration in (6) are determined by the 
boundary conditions of the problem. The class of functions 
that define boundary and edge conditions for the expres-
sion (6) is limited. There are difficulties in using solution (6) 
in practical problems. It is necessary to develop approaches 
enabling determination of conditions for existence of several 
solutions corresponding to the specified boundary and edge 
conditions of various applied problems.

Work [12] expands the scope of solutions but it does not 
show convincing general schemes for determining required 
dependencies taking into account practical diversity of the 
initial and boundary conditions.

Monograph [13] does not show the abilities of using 
complex initial and boundary conditions determining the 
non-stationary action on the strip such as ones occur-
ring, e. g. during rolling in adjacent continuous mill stands.

In applied work [14], non-stationary problems are consid-
ered with reference to the metal forming equipment. However, 
the rolling features in the transient processes associated with 
loading during the period of strip gripping are not disclosed.

It should be mentioned that one of the first works 
where the method of solving applied problems using argu-
ment-functions was applied was paper [15]. The solution is 
presented in the theory of plasticity with no consideration of 
the loading dynamic component.

The method of argument-functions with examples from the 
applied theory of plasticity and elasticity was given and gener-
alized in [16], but the possibility of its use in solving dynamic 
problems of the theory of elasticity was not demonstrated.

Complication of the problem with the use of argu-
ment-functions [17] indicates potentials of the method but 
the dynamic problem was not considered.

The first generalizations of the dynamics results were 
given in [18] but their further use for various boundary con-
ditions and obtaining a new result was not stated.

As analysis of the papers presented shows, there is a wide 
use of various approaches and methods for solving dynamic 
problems in the elasticity theory. These include the method of 
potentials, the method of integral transformants, variational 
and asymptotic methods. Besides, the theory of R-functions, 
the method of boundary integral equations, d’Alembert meth-
od, Fourier method, the method of argument-functions, etc. can 
be mentioned. Most of them are used to solve specific problems 

while having no mathematical generalizations for their further 
use. In work [4], one of the most important problems of the 
dynamic theory of elasticity was emphasized: it is formulation 
of variants of boundary problems and estimation of the field of 
their application. Practical implementation of such approaches 
broadens the possibilities of using the resulting solutions by 
linking and selecting for them boundary conditions of various 
technological processes and equipment operating conditions. In 
the course of their development, works appeared which imple-
ment such generalizations and algorithms and not just dynamic 
tasks, e. g. papers [3, 6, 7, 9, 15]. Scalar functions [3], R-func-
tions (tested) [7], integral transformants [9], argument-func-
tions [15] are used, which determine not the functional depen-
dencies themselves but the conditions for their existence.

In the latter case, the stages of the further, closing solution 
are considered. But this is just another problem. In the first 
approximation, one can restrict his attention to solving the 
simplest invariant differential relations. They are of interest 
since in many respects they, as a special case, coincide with 
the known classical solutions.

As it follows from works [3–18], application of argu-
ment-functions involves introduction into consideration of the 
main functional dependences, which can include exponential, 
trigonometric, hyperbolic, logarithmic, complex, etc. func-
tions. Their arguments are also functions depending on co-
ordinates and time. These closing unknown coordinate-time 
relationships are determined in the process of solving the 
problem, more precisely, conditions for their existence are 
found. Ultimately, the conditions for the existence of a number 
of basic functions of the problem being solved are determined.

With this statement of a question, it becomes possible to 
define a whole class of unknown functions the implementa-
tion of which expands abilities of the method under consider-
ation, which has been repeatedly emphasized in the course of 
analysis. Examples of successful use of such approaches are 
listed in the list of literature in question.

3. The study objective and tasks

This work objective was to determine common approach-
es or conditions of existence of various solutions, which are 
determined by differential equations of the dynamic problem 
and boundary conditions.

To achieve this objective, the following tasks were set:
– development of general approaches to solution of dif-

ferential wave equations using argument-functions, various 
boundary conditions of problems in the theory of elasticity;

– definition of conditions for existence of trailing partial 
solutions using invariant differential relations and equations 
for argument-functions;

– development of a dynamic model of the transient pro-
cesses taking place during rolling in adjacent continuous 
mill stands.

4. Approaches and solution of dynamical problems of  
the elasticity theory 

4. 1. Approaches of analytical solution of dynamical 
problems of the elasticity theory with the use of argu-
ment-functions

The totality of solutions of concrete differential equa-
tions is a practical necessity with the purpose of choosing 
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the mathematical model that satisfies to the right degree 
desired boundary conditions of the problem. Considering 
their diversity, which is associated with the variety of ap-
plied problems, problems arise in obtaining the necessary 
solution for the initial data. In this case, it is expedient to 
obtain not the concrete result of solution but the conditions 
for its existence, i.e. determine those restrictions that are im-
posed on the functions from the side of differential equations 
and boundary conditions. Thus, the final result is not the 
functions themselves but the conditions for their existence, 
in other words, the invariants of the differential relations 
of the argument-functions introduced into consideration. 
This approach is partially described in literature. However, 
the possibilities of transition from one boundary condition 
to another are not indicated. Some examples of using argu-
ment-functions are given thereinafter.

Solution of a differential equation of hyperbolic type:

2 2 2
2 2

2 2 2 k ,
x y x y

∂ τ ∂ τ ∂
− = − τ

∂ ∂ ∂ ∂

was proposed to perform with the help of unknown θ, AF 
argument-functions introduced into consideration [9–12]:

С exp sin ,τ = ⋅ θ⋅ ΑΦ

where θ and AF are the argument-functions of the deforma-
tion-zone coordinates. In this case, differential constraints 
on the argument functions introduced into consideration 
are shown:

x y ,θ = ΑΦ∓   y x ,θ = ±ΑΦ   xx yy 0,θ + θ =   xx yy 0.ΑΦ + ΑΦ =

The conditions themselves determine the type of equa-
tions that must be used to find the unknown coordinate 
dependences θ, AF. The simplest option of solution of the 
Laplace equation for the AF function is:

xx yy 0,ΑΦ = ΑΦ =  
6 x y,ΑΦ = ΑΑ ⋅ ⋅  ( )2 2

6

1
x y .

2
θ = ΑΑ −

It should be emphasized that the argument-functions are 
determined not only by Laplace’s equations but to a greater 
extent by differential relations between adjacent dependen-
cies as well. The last expression θ is also a harmonic function 
satisfying the Laplace equation.

The same approach was used to solve the wave equations 
of the elasticity theory. Restrictions are imposed on the side 
of the differential equations themselves and boundary 

4. 2. Solution of a dynamic problem using argument- 
functions

Solution of the dynamic problem in analytical form was 
presented in [18]. With the help of argument-functions, 
solution of a linear dynamic problem of a limited application 
was presented.

Use the approaches formulated in these papers, write a 
fairly simple relationship and introduce argument-functions θ, 
AF into consideration:

u C sin sin ,= ⋅ θ⋅ ΑΦ 		   (7)

where C and A are constants characterizing the process;  
Θ, Φ are unknown argument-functions of time and coordi-

nate, continuous, having second derivatives in time and a 
corresponding coordinate.

Substitution of expression (7) in (1) gives a differential 
equation of the form:

( )
( ) ( ) ( ) ( )

( )
( )

2
tt xx

t x t x t x t x

2
t t x x

2
tt xx

a cos sin

a a a a

sin sin 2 a cos cos

a sin cos 0,

θ − ⋅θ ⋅ θ⋅ ΑΦ −

 − θ + ⋅ ΑΦ ⋅ θ − ⋅ ΑΦ + ΑΦ + θ ⋅ ΑΦ − θ × 
× θ⋅ ΑΦ + θ ΑΦ − θ ΑΦ θ⋅ ΑΦ +

+ ΑΦ − ΑΦ ⋅ θ⋅ ΑΦ = (8)

where following notations were in parentheses t ,
t

∂θ
θ =

∂
  

 
x x

∂ΑΦ
ΑΦ =

∂
, etc. Further analysis shows that equation (8) 

will be substantially simplified if nonlinearity is eliminated 
and the brackets taken equal to zero, i.e:

t xa ,θ = ΑΦ∓  t xa .ΑΦ = θ∓ 	 (9)

In this case, all the summed operators on the left-hand 
side will be zero. On the basis of the result obtained, tak-
ing into account (9), solution can be presented in a more 
general form:

( )( )0 1 2 3 4u C C sin C cos C sin C cos ,= θ + θ ΑΦ + ΑΦ 	 (10)

provided that the following relations exist for the argu-
ment-functions:

t xa ,θ = ΑΦ∓  t xa ,ΑΦ = θ∓

2
tt xxa 0,θ − ⋅θ =  2

tt xxa 0.ΑΦ − ΑΦ = 		  (11)

The differential relations (9), (11) differ by signs from the 
above Cauchy-Riemann relations. Hence, differential con-
straints of the functions introduced for consideration change 
with the change in the form of the differential equations. 
The trailing constraints (11) define the basic solution (10). 
Besides, the unknown argument-functions become known 
for the shown differential equations. The final result can be 
represented as a superposition of solutions: 

( )( )i n

i,0 i,1 i i,2 i i,3 i i i,4 i i
i 1

u C C sin C cos C sin C cos ,
=

=
= θ + θ Α Φ + Α Φ∑

i,t i i,xa ,θ = Α Φ∓  i i,t i,xa ,Α Φ = θ∓ 		  (12)

2
i,tt i,xxa 0,θ − ⋅θ =  2

i,tt i,xxa 0.ΑΦ − ΑΦ =

Solution (12) resembles Fourier solution since a product 
of trigonometric functions takes place. However, there are 
a number of fundamental differences. The arguments of 
trigonometric functions are functions as well not of one vari-
able as in the method of separation but of two variables. In 
addition, the differential dependencies of solution (12) show 
the variants of new solutions without being tied to a specific 
result but to the boundary conditions of the process.

The next version of solution of the linear wave equa-
tion (1) can be applied to other boundary conditions, e. g. to 
damped, periodical influences on the elastic medium.

Consider the following variant of partial solution using 
argument-functions. In this case, the θ argument-function is 
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not in the trigonometric, but in the exponential dependence 
for the displacement u.

u C exp cosA ,= ⋅ θ⋅ Φ 	 (13)

where the argument-functions θ, AF are to be determined by 
solution of the problem. Substitute (13) into (1) taking into 
account the fact that the indicated functions admit second 
derivatives to obtain:

( ) ( )

2 2
xx

2 2
xx x x x x xx

a u Ca exp

cos 2 sin ,

= θ ×

 × θ + θ − ΑΦ ΑΦ − θ ΑΦ + ΑΦ ΑΦ 

( ) ( )
tt

2 2
tt t t t t tt

u C exp

cos 2 sin .

= ⋅ θ ×

 × θ + θ − ΑΦ ⋅ ΑΦ − θ ⋅ ΑΦ + ΑΦ ⋅ ΑΦ 

Substitute the last differential relations into equation (1) 
to obtain:

2 2 2 2 2 2 2
tt xx x x t t

2 2
x x t t xx tt

a a a cos

2a 2 a sin .

 −θ + θ + θ − ΑΦ − θ − ΑΦ ΑΦ − 
 − θ ⋅ ΑΦ − θ ⋅ ΑΦ + ΑΦ − ΑΦ ΑΦ  =0.

There are operators in square brackets:

( ) ( ) ( )
( ) ( )
2 2 2 2 2 2 2

xx tt x t x t

2 2
xx tt x x t t

a a a cos

a 2 a sin .

 θ − θ − ΑΦ − ΑΦ + θ − θ ΑΦ − 
 − ΑΦ − ΑΦ + θ ⋅ ΑΦ − θ ⋅ ΑΦ ΑΦ  =0.

	
(14)

Consider the case when the parentheses of the first oper-
ator are zero, that is,

( )( )2 2 2
x t x t x ta a a 0,θ − θ = θ + θ θ − θ =

( )( )2 2 2
x t x t x ta a a 0.ΑΦ − ΑΦ = ΑΦ + ΑΦ ΑΦ − ΑΦ =

Consider some variants.
Variant 1:

x ta ,θ = θ  x ta .ΑΦ = ΑΦ 			   (15)

Define the second derivatives from the relationships (15):

2
xx txa a ,θ = θ  tt xta ,θ = θ  

2
xx txa a ,ΑΦ = ΑΦ  tt xta ,ΑΦ = ΑΦ  

substitute all relationships into the square brackets of the 
first and second operators (14) to obtain the equality to zero 
of the remaining parentheses:

2
xx tt tx xta a a 0,θ − θ = θ − θ =

2
xx tt tx xta a a 0,ΑΦ − ΑΦ = ΑΦ − ΑΦ =

2 2 2
x x t t x x x xa a a 0.θ ⋅ ΑΦ − θ ⋅ ΑΦ = θ ⋅ ΑΦ − θ ⋅ ΑΦ =

Thus, under the conditions of (15), equation (14) be-
comes an identity.

Variant 2:

x ta ,θ = −θ  x ta .ΑΦ = −ΑΦ 	 (16)

Define the second derivatives:

2
xx txa a ,θ = − θ  tt xta ,θ = − θ  

2
xx txa a ,ΑΦ = − ΑΦ  tt xta ,ΑΦ = − ΑΦ

substitute in square brackets to get:

2
xx tt tx xta a a 0,θ − θ = − θ + θ =

2
xx tt tx xta a a 0,ΑΦ − ΑΦ = − ΑΦ + ΑΦ =

2 2 2
x x t t x x x xa a a 0.θ ⋅ ΑΦ − θ ⋅ ΑΦ = θ ⋅ ΑΦ − θ ⋅ ΑΦ =

Consequently, equation (14) also becomes an identity 
when conditions of (16) are satisfied.

Variant 3:

x ta ,θ = θ  x ta .ΑΦ = −ΑΦ 	 (17)

In this case, signs between the differential relations are 
opposite. For the second derivatives in the defining differ-
ential equations, the identity is maintained but the identity 
does not hold in the third one. Really:

( ) ( )
2

x x t t

2 2
x x x x x x

a

a a a 2a 0.

θ ⋅ ΑΦ − θ ⋅ ΑΦ =

= θ ⋅ ΑΦ − θ ⋅ − ΑΦ = θ ⋅ ΑΦ ≠

The relationships (17) do not satisfy equation (14). Final-
ly, taking into account the first two variants, the following 
can be written:

( )
( )

' ''
1 1 1 1 1 1 1 1

' ''
2 2 2 2 2 2 2 2

u C exp C sin A C cosA

С exp C sin C cos .

= θ ⋅ Φ + ⋅ Φ +

+ θ ⋅ Α Φ + ⋅ Α Φ
	
	 (18)

provided there are solutions for the argument-functions:

1x 1ta ,θ = ±θ  1 1x 1 1ta ,Α Φ = ±Α Φ

2x 2ta ,θ = ±θ  2 2x 2 2ta ,Α Φ = ±Α Φ

2
1xx 1tta 0,θ − θ =  2

1 1xx 1 1tta 0,Α Φ − Α Φ =

2
2xx 2tta 0,θ − θ =  2

2 2xx 2 2tta 0.Α Φ − Α Φ =

Proceed from partial solutions (13), (18) to a general 
solution in the form:

( )
( )

n
'

i i i i i i i i
1

m

j j j j j j j j
2

u C exp C sin A C cosA

C exp C sin A C cosA

= θ ⋅ ⋅ Φ + ⋅ Φ +′′∑

+ θ ⋅ ⋅ Φ + ⋅ Φ′ ′′∑ 	 (19)

under condition that:

i ix ita ,θ = ±θ  i i iх i ita ,Α Φ = ±Α Φ

i jx jta ,θ = ±θ  i j jx j jta ,Α Φ = ±Α Φ

2
i ixx itta 0,θ − θ =  2

i i ixx i itta 0,Α Φ − Α Φ =

2
i jxx jtta 0,θ − θ =  2

i j jxx j jtta A A 0.Φ − Φ =
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Comparison of solutions (7) and (13) shows that the 
argument-functions satisfy the same type of differential 
equations (12) and (19). However, the differential relations 
between the adjacent ones in solution are different. In many 
cases, this feature is defining and basically distinguishes the 
solutions shown.

Following the trends in developing methods for solving 
dynamical problems as applied to changeable boundary 
conditions, consider solution of a more complex problem, the 
spatial problem [19]. Wave equation for the spatial problem 
has the form:

2 2 2 2
2

2 2 2 2

u u u u
c .

t x y z

 ∂ ∂ ∂ ∂
= + + ∂ ∂ ∂ ∂ 

		  (20)

A unified approach to the solution with the use of argu-
ment-functions was formulated above. Represent the general 
solution u in a form of a superposition of partial solutions ui 
that simultaneously depend on one of the coordinates and 
time. The following is obtained:

1 2 3u u u u= + +  

wherein

1 1 1 1 1u C cos cos ,= Α Φ θ

2 2 2 2 2u C cos cos ,= Α Φ θ

3 3 3 3 3u C cos cos .= Α Φ θ  				    (21)

Function:

1 1 1f (x,t),Α Φ =  1 2f (x,t),θ =

2 2 3f (y,t),Α Φ =  2 4f (y,t),θ =

3 3 5f (z,t),Α Φ =  3 6f (z,t).θ =

Take the derivatives of (21) taking into account the func-
tional dependences:

( ) ( )
( )
( ) ( )
( )
( ) ( )
( )

2
1 2 3

1 1 1 1 1 12 xx

2

1 1 1 1 1 1x

1 1 1 1 1 1 1x x

1 1 1 1 1xx

1 1 1 1 1 1 1x x

2

1 1 1 1 1x

u u u
C sin cos

x

C cos cos

C sin sin

C cos sin

C sin sin

C cos cos ;

∂ + +
= − Α Φ Α Φ θ −

∂
− Α Φ Α Φ θ +

+ Α Φ θ Α Φ θ −

− θ Α Φ θ +

+ θ Α Φ Α Φ θ −

− θ Α Φ θ
	

(22)

( ) ( )

( )
( ) ( )
( )
( ) ( )
( )

2
1 2 3

2 2 2 2 1 22 yy

2

2 2 2 2 2 2y

2 2 2 2 2 2 2y y

2 2 2 2 2yy

2 2 2 2 2 2 2y y

2

2 2 2 2 2y

u u u
C sin cos

y

C cos cos

C sin sin

C cos sin

C sin sin

C cos cos ;

∂ + +
= − Α Φ Α Φ θ −

∂

− Α Φ Α Φ θ +

+ Α Φ θ Α Φ θ −

− θ Α Φ θ +

+ θ Α Φ Α Φ θ −

− θ Α Φ θ

	

(23)

( ) ( )
( ) ( )
( ) ( )
( )
( ) ( )
( )

2
1 2 3

3 3 3 3 32 zz

3 3 3 3 3 3 3z z

3 3 3 3 3 3 3z z

3 3 3 3 3zz

3 3 3 3 3 3 3z z

2

3 3 3 3 3z

u u u
C cos sin

z
C sin sin

C sin sin

C cos sin

C sin sin

C cos cos .

∂ + +
= − θ Α Φ θ +

∂
+ θ Α Φ Α Φ θ +

+ Α Φ θ Α Φ θ −

− θ Α Φ θ +

+ θ Α Φ Α Φ θ −

− θ Α Φ θ

	

(24)

Further:

( )

( ) ( )
( ) ( ) ( )
( ) ( )
( ) ( ) ( )
( )

2
1 2 3

2

2

1 1 1 1 1 1 1 1 1 1 1 1tt t

1 1 1 1 1 1 1 1 1 1tt t t

2

2 2 2 2 2 2 2 2 2 2 2 2tt t

2 2 2 2 2 2 2 2 2 2 2 2tt t t

3 3 3 3tt

u u u

t

C sin cos C cos cos

C cos sin C sin sin

C sin cos C cos cos

C cos sin C sin sin

C sin

∂ + +
=

∂
=− Α Φ Α Φ θ − Α Φ Α Φ θ +

+ θ Α Φ θ+ θ Α Φ Α Φ θ−

− Α Φ Α Φ θ − Α Φ Α Φ θ +

+ θ Α Φ θ + θ Α Φ Α Φ θ −

− Α Φ Α Φ ( )
( ) ( ) ( )

2

3 3 3 3 3 3 3 3t

2

3 3 3 3 3 3 3 3 3 3 3 3t t t

cos C cos cos

C sin sin C cos cos .

θ − Α Φ Α Φ θ +

+ Α Φ θ Α Φ θ − θ Α Φ θ

 

(25)

Substituting (22)–(25) into equation (20) and making 
simple transformations by grouping beside the trigonometric 
functions, obtain a nonlinear second-order partial differen-
tial equation with a possible repeated simplification scheme:

( ) ( ){
( ) ( )( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) }
( ) ( ){

( )

2
1 1 1 1 1 1 1 1tt xx

2 2 2 22 2
1 1 1 1 1 1 1 1 1t x t x

2
1 1 1 1 1 1 1 1 1t t x x

2
1 1 1 1 1tt xx

2
2 2 2 2 2 2 2 2tt yy

2

2 2 t

С c sin cos

c c cos cos

2 c sin sin

c cos sin

С c sin cos

c

 − Α Φ − Α Φ ⋅ Α Φ ⋅ θ − 
 − Α Φ − θ + θ − Α Φ ⋅ Α Φ ⋅ θ +  
 + Α Φ θ − Α Φ θ ⋅ Α Φ ⋅ θ − 

 − θ − θ ⋅ Α Φ θ − 

 − Α Φ − Α Φ Α Φ θ − 

− Α Φ − ( )( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) }
( ) ( ){

( ) ( )( ) ( ) ( )
( ) ( )

2 2 22 2
21 2 2 2 2 2 2y t y

2
2 2 2 2 2 2 2 2 2t t y y

2
2 2 2 2 2tt yy

2
3 3 3 3 3 3 3 3tt zz

2 2 2 22 2
1 1 1 1 1 1 1 1 1t x t x

1 1 1t t

c cos cos

2 c sin sin

c cos sin

С c sin cos

c c cos cos

2 c

 θ + θ − Α Φ Α Φ θ +  
 + Α Φ θ − Α Φ θ Α Φ θ − 

 − θ − θ Α Φ θ − 

 − Α Φ − Α Φ Α Φ θ − 
 − Α Φ − θ + θ − Α Φ Α Φ θ +  

+ Α Φ θ − ( ) ( )
( ) ( ) }

2
1 1 1 1 1 1x x

2
1 1 1 1 1tt xx

sin sin

c cos sin 0.

 Α Φ θ Α Φ θ − 
 − θ − θ Α Φ θ =   (26)

Eliminating nonlinearity in (26), obtain variants of sim-
plifications with different signs:

1.  ( )1 1 t 1 x
( ) c ,Α Φ = θ  ( )1 t 1 1 x

( ) c ,θ = Α Φ

( )2 2 t 2 y
( ) c ,Α Φ = θ  ( )2 t 2 2 y

( ) c ,θ = Α Φ 		  (27)

( )3 3 t 31 z
( ) c ,Α Φ = θ  ( )3 t 3 3 z

( ) c .θ = Α Φ
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2.  ( )1 1 t 1 x
( ) c ,Α Φ = − θ  ( )1 t 1 1 x

( ) c ,θ = − Α Φ

( )2 2 t 2 y
( ) c ,Α Φ = − θ  ( )2 t 2 2 y

( ) c ,θ = − Α Φ 		  (28)

( )3 3 t 31 z
( ) c ,Α Φ = − θ  ( )3 t 3 3 z

( ) c .θ = − Α Φ

With brackets eliminated, expression (26) will be writ-
ten as:

( ) ( ){
( ) ( ) }

( ) ( ){
( ) ( ) }

( ) ( ){
( ) ( ) }

2
1 1 1 1 1 1 1 1tt xx

2
1 1 1 1 1tt xx

2
2 2 2 2 2 2 2 2tt yy

2
2 2 2 2 2tt yy

2
3 3 3 3 3 3 3 3tt zz

2
1 1 1 1 1tt xx

С c sin cos

c cos sin

С c sin cos

c cos sin

С c sin cos

c cos sin 0.

 − Α Φ − Α Φ Α Φ θ − 

 − θ − θ Α Φ θ − 

 − Α Φ − Α Φ Α Φ θ − 

 − θ − θ Α Φ θ − 

 − Α Φ − Α Φ Α Φ θ − 

 − θ − θ Α Φ θ =  	 (29)

On the one hand, simplification of equation (26) has taken 
shape, on the other hand, constraints on unknown argu-
ment-functions appeared in the form of (27), (28). 

Second derivatives of equation (26) are determined 
from (27) and (28) in the variants:

1.  ( )1 1 tt 1 xt
( ) c ,Α Φ = θ  ( )1 tt 1 1 xt

( ) c ,θ = Α Φ

( )1 1 tx 1 xx
( ) c ,Α Φ = θ  ( )1 tx 1 1 xx

( ) c ,θ = Α Φ

( )2 2 tt 2 yt
( ) c ,Α Φ = θ  ( )2 tt 2 2 yt

( ) c ,θ = Α Φ

( )2 2 ty 2 yy
( ) c ,Α Φ = θ  ( )2 ty 2 2 yy

( ) c ,θ = Α Φ 		  (30)

( )3 3 tt 3 zt
( ) c ,Α Φ = θ  ( )3 tt 3 3 zt

( ) c ,θ = Α Φ

( )3 3 tz 3 zz
( ) c ,Α Φ = θ  ( )3 tz 3 3 zz

( ) c ;θ = Α Φ

2.  ( )1 1 tt 1 xt
( ) c ,Α Φ = − θ  ( )1 tt 1 1 xt

( ) c ,θ = − Α Φ

( )1 1 tx 1 xx
( ) c ,Α Φ = − θ  ( )1 tx 1 1 xx

( ) c ,θ = − Α Φ

( )2 2 tt 2 yt
( ) c ,Α Φ = − θ  ( )2 tt 2 2 yt

( ) c ,θ = − Α Φ

( )2 2 ty 2 yy
( ) c ,Α Φ = − θ  ( )2 ty 2 2 yy

( ) c ,θ = − Α Φ 		 (31)

( )3 3 tt 3 zt
( ) c ,Α Φ = − θ  ( )3 tt 3 3 zt

( ) c ,θ = − Α Φ

( )3 3 tz 3 zz
( ) c ,Α Φ = − θ  ( )3 tz 3 3 zz

( ) c .θ = − Α Φ

Using (30) and (31), define square brackets in equa-
tion (29). It can be shown that they are zero. Indeed, sub-
traction of the second derivatives gives defining differential 
relationships of the form:

( ) ( )2
1 1 1 1tt xx

c 0,Α Φ − Α Φ =  ( ) ( )2
1 1tt xx

c 0.θ − θ =

( ) ( )2
2 2 2 2tt yy

c 0,Α Φ − Α Φ =  ( ) ( )2
2 2tt yy

c 0.θ − θ = 	 (32)

( ) ( )2
3 3 3 3tt zz

c 0,Α Φ − Α Φ =  ( ) ( )2
3 3tt zz

c 0.θ − θ =

Substitution of (32) into (29) results in a further simpli-
fication of the problem. Solution of the partial differential 
equation (20) is represented as:

1 1 1 1

2 2 2 2 3 3 3 3

u C cos cos

C cos cos C cos cos .

= Α Φ θ +
Α Φ θ + Α Φ θ

		
(33)

Expression (33) will also be valid for various combina-
tions of trigonometric functions taking into account (27), 
(28), (30), (31):

( ) ( )
( ) ( )
( ) ( )

'
1 1 1 2 1 3 1 1 4 1 1

'
2 5 2 6 2 7 2 2 8 2 2

'
3 9 3 10 3 11 3 3 12 3 3

u C C sin C cos C sin C cos

C C sin C cos C sin C cos

C C sin C cos C sin C cos ,

= ⋅ θ + θ ⋅ Α Φ + Α Φ +

+ ⋅ θ + θ ⋅ Α Φ + Α Φ +

+ ⋅ θ + θ ⋅ Α Φ + Α Φ 	 (34)

under conditions:

( )1 1 t 1 x
( ) c ,Α Φ = ± θ ( )1 t 1 1 x

( ) c ,θ = ± Α Φ

( ) ( )2
1 1i 1 1tt xx

c 0,Α Φ − Α Φ = ( ) ( )2
1 1tt xx

c 0,θ − θ =

( )2 2 t 2 y
( ) c ,Α Φ = ± θ  ( )2 t 2 2 y

( ) c ,θ = ± Α Φ

( ) ( )2
2 2 2 2tt yy

c 0,Α Φ − Α Φ = ( ) ( )2
2 2tt yy

c 0,θ − θ =

( )3 3 t 3 z
( ) c ,Α Φ = ± θ  ( )3 t 3 3 z

( ) c ,θ = ± Α Φ

( ) ( )2
3 3 3 3tt zz

c 0,Α Φ − Α Φ =  ( ) ( )2
3 3tt zz

c 0.θ − θ =

Conditions for existence of various solutions in the form 
of defining differential equations of hyperbolic type for the 
arguments of trigonometric functions were shown. In gener-
al form, solution (34):

( ) ( )

( ) ( )

( ) ( )

n
' '' ''' ''''

i i i i i i i i i i i
i 1

m
' '' ''' ''''

j j j j 2 j j j j j j
j 2

g
' '' ''' ''''

k k k k k k k k k k k
k 3

u C C sin C cos C sin C cos

C C sin C cos C sin C cos

C C sin C cos C sin C cos

=

=

=

= ⋅ θ + θ ⋅ Α Φ + Α Φ +

+ ⋅ θ + θ ⋅ Α Φ + Α Φ +

+ ⋅ θ + θ ⋅ Α Φ + Α Φ

∑

∑

∑ 	(35)

under conditions:

( )i i t i x
( ) c ,Α Φ = ± θ  ( )i t i i x

( ) c ,θ = ± Α Φ

( ) ( )2
i i i itt xx

c 0,Α Φ − Α Φ = ( ) ( )2
i itt xx

c 0,θ − θ =

( )j j t j y
( ) c ,Α Φ = ± θ  ( )j t j j y

( ) c ,θ = ± Α Φ

( ) ( )2
j j j jtt yy

c 0,Α Φ − Α Φ = ( ) ( )2
j jtt yy

c 0,θ − θ =

( )k k t k z
( ) c ,Α Φ = ± θ  ( )k t k k z

( ) c ,θ = ± Α Φ

( ) ( )2
k k k ktt zz

c 0,Α Φ − Α Φ = ( ) ( )2
k ktt zz

c 0.θ − θ =

Thus, the result (35) which was obtained is a superpo-
sition of the flat coordinate-time solutions. In this case, 
each pair is determined by its differential constraints on 
the argument-function. In this case, complication of the 
problem is a kind of a generalizing factor of the proposed 
approach.
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5. Comparison of the study results 

Validity of the presented result is determined not only by 
finding a solution that satisfies the conditions of the problem 
but also by comparing it with the solutions already known 
in literature, assessed and tested. Consider a list of solutions 
with the use of argument-functions for a flat problem of the 
plasticity theory, namely (7) and (13).

Plasticity theory

2 2 2
2 2

2 2 2 k ,
x y x y

∂ τ ∂ τ ∂
− = − τ

∂ ∂ ∂ ∂
 С exp sin .τ = ⋅ θ⋅ ΑΦ 	 (36)

Restrictions on expressions (36):

x y ,θ = ΑΦ∓  y x ,θ = ±ΑΦ xx yy 0,θ + θ = xx yy 0.ΑΦ + ΑΦ =

Linear dynamic problem with trigonometric solution and 
constraints (11):

2 2
2

2 2

u u
a .

t x
∂ ∂

= ⋅
∂ ∂

Solution has the form:

( )( )0 1 2 3 4u C C sin C cos C sin C cos .= θ + θ ΑΦ + ΑΦ 	 (37)

Restrictions on the expression (37):

t xa ,θ = ΑΦ∓  t xa ,ΑΦ = θ∓

2
tt xxa 0,θ − ⋅θ = 2

tt xxa 0.ΑΦ − ΑΦ =

Linear dynamical problem with a trigonometric and ex-
ponential form of solution (18):

( )
( )

' ''
1 1 1 1 1 1 1 1

' ''
2 2 2 2 2 2 2 2

u C exp C sin A C cosA

С exp C sin A C cosA .

= θ ⋅ ⋅ Φ + ⋅ Φ +

+ θ ⋅ ⋅ Φ + ⋅ Φ
	

(38)

Restrictions on the expression (38):

1x 1ta ,θ = ±θ  1 1x 1 1ta ,Α Φ = ±Α Φ

2x 2ta ,θ = ±θ  2 2x 2 2ta ,Α Φ = ±Α Φ

2
1xx 1tta 0,θ − θ =  2

1 1xx 1 1tta 0,Α Φ − Α Φ =

2
2xx 2tta 0,θ − θ =  2

2 2xx 2 2tta 0.Α Φ − Α Φ =

The following results of solutions are obtained using dif-
ferential relationships between adjacent argument-functions 
in all above variants (36)–(38). For each variant, the sim-
plest schemes of solutions of invariant differential equations 
were considered.

Theory of plasticity
The simplest variant of solution (36) is taken:

xx yy 0,ΑΦ = ΑΦ =  

when x y ,θ = ΑΦ∓  y x ,θ = ±ΑΦ  xx yy 0,θ + θ =  xx yy 0.ΑΦ + ΑΦ =

Argument-functions: 6 x y,ΑΦ = ΑΑ ⋅ ⋅  ( )2 21
x y .

2
θ = ⋅ −

It can be shown that the θ argument-function satisfies 
the Laplace equation. Really:

( )

( )

2 2 2
62 2

2 2 2

2 2 2
6

6 62

1
x y

2
x y x

1
x y

2
0.

y

 ∂ ⋅ ΑΑ ⋅ − ∂ θ ∂ θ  + = +
∂ ∂ ∂

 ∂ ⋅ ΑΑ ⋅ −  + = ΑΑ − ΑΑ =
∂

There can be another, more complicated solution for the 
AF function:

( )2 2
13 x y x y ,ΑΦ = ΑΑ ⋅ ⋅ ⋅ −

through the Cauchy-Riemann relationships, the θ argu-
ment-function has the form:

( )4 4 2 2
13

1 3
x y x y .

4 2
 θ = −ΑΑ ⋅ + − ⋅ ⋅  

Substitute argument-functions into Laplace’s equations 
to see that they are identically satisfied:

( ) ( ){ }2 2
2 2 2 2

13 132 2 3 x y 3 x y 0,
x y

∂ θ ∂ θ    + = −ΑΑ ⋅ ⋅ − + ΑΑ ⋅ ⋅ − =   ∂ ∂

2 2

13 132 2 6 x y 6 x y.
x y

∂ ΑΦ ∂ ΑΦ
+ = ⋅ ΑΑ ⋅ ⋅ − ⋅ ΑΑ ⋅ ⋅

∂ ∂

It is possible to obtain a more complex coordinate depen-
dence for the AF function:

( )2 2
6 13x y x y x yΑΦ = ΑΑ ⋅ ⋅ ± ΑΑ ⋅ ⋅ ⋅ −  and so on.

Multiple calculations of the stressed state of metal in 
the processes of plastic metal working showed qualitative 
and quantitative convergence of the presented results with 
experimental data and data of other authors [16, 17].

It can be seen from the last examples that there can be 
many solutions of the same differential equations and for 
each of them there are certain boundary or initial conditions 
that must also be ensured. Taking into account different 
boundary conditions for different applied problems, it be-
comes possible to choose the required solution provided with 
the method of argument-functions.

As noted above, the same problem is encountered in solv-
ing dynamic problems of the theory of elasticity.

Linear dynamic problem with basic trigonometric 
functions

Expression (37) can be simplified and reduced to the 
form:

( )1 2u C sin C cos sin A .= ⋅ θ + ⋅ θ ⋅ Φ

Argument-functions are defined by relationships (9), 
(11), i. e:

t xa ,θ = ΑΦ∓  t xa ,ΑΦ = θ∓

2
tt xxa 0,θ − ⋅θ = 2

tt xxa 0.ΑΦ − ΑΦ =
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To satisfy differential equations of hyperbolic type for ar-
gument functions, use the simplest case of equation solution 
in the following form:

xx tt xx ttAФ AФ 0,θ = θ = = =

then one of the variants of the solution for the AF argu-
ment-function will be written as:

1 2x t.ΑΦ = ΑΑ ⋅ + ΑΑ ⋅

Taking into account differential relationships, pass to θ 
function:

2a x f(t).⋅θ = ΑΑ ⋅ + or 1a t f(x),θ = ⋅ ΑΑ ⋅ +

t x 2aΑΦ = θ = ΑΑ  or 2a x f(t).⋅θ = ΑΑ ⋅ +

Eventually:

1 2a t x,θ = ⋅ ΑΑ ⋅ + ΑΑ ⋅ 2
1а t x.

а
ΑΑ

θ = ⋅ ΑΑ ⋅ + ⋅ 	 (39)

Expressions for argument-functions satisfy differential 
equations of hyperbolic type (18), (19) and relationships 
between adjacent functions. In further simplification, take 
AA2=0 to obtain:

1 x,ΑΦ = ΑΑ ⋅  1a t.θ = ⋅ ΑΑ ⋅ 			   (40)

Demonstrate now that the expressions (40) are trailing 
solutions for the functions obtained by the method of separa-
tion of variables or by Fourier method. Taking the boundary 
conditions same as in [11] and relationships (18), (19) pre-
sented above, the following is obtained:

1

n
АА ,

l
π⋅

=  
1 nС ,= Α  

2 nC .= Β

In this case, the differential relationships (18), (19) are 
also sustained, that is,

t x

n
а a,

l
π

θ = ΑΦ = ⋅  
t xа 0.ΑΦ = θ =

The relationships are identically satisfied. Taking the 
boundary and boundary conditions same as in [2] and us-
ing (39), (40), the following is obtained:

1

n
АА ,

l
π⋅

=  
1 nС ,= Α  

2 nC .= Β

Finally:

n n

n n n
u cos a t B sin a t sin x ,

l l l

 π ⋅ π ⋅ π ⋅     = Α ⋅ + ⋅ ⋅            

which corresponds to the solution (5) shown in work [11]. 
It follows that the solution obtained by the Fourier method 
is a particular case of the solution obtained with the help of 
argument-functions. In this case, simplifications in the com-
pared solution from work [11] are elementary and multiple 
with respect to the argument-functions.

If the solution is not simplified, then the following vari-
ant can be considered:

1 2x t,ΑΦ = ΑΑ ⋅ + ΑΑ ⋅  2
1а t x.

а
ΑΑ

θ = ⋅ ΑΑ ⋅ + ⋅

Factoring out the AA1 gives the following:

2
1

1

x t ,
 ΑΑ

ΑΦ = ΑΑ + ⋅ ΑΑ 
 2

1
1

а t x .
а

 ΑΑ
θ = ΑΑ ⋅ + ⋅ ⋅ ΑΑ 

Taking 

2
1 ,

а
ΑΑ

ΑΑ =  

to simplify the result, obtain the following:

( )1A AA x a t ,Φ = + ⋅ ( )1 а t x .θ = ΑΑ ⋅ + 		  (41)

The argument-functions have the same coordinate-time 
dependence (41).

Taking into account the last expressions for the argu-
ment-functions, write expression (37) as:

( )
( ) ( ){ }

( )

1 2

1 1 2 1

1

u C sin C cos sin A

С sin AA a t x C cos AA a t x

sin AA x a t .

= ⋅ θ + ⋅ θ ⋅ Φ =

   = ⋅ ⋅ + ⋅ + ⋅ ⋅ + ⋅ ×   
 × + ⋅ 

The solution can be reduced to other coordinate-time 
dependence if negative sign is used in relationships (18), (19). 
Indeed, what is obtained is:

t xa ,θ = − ΑΦ  t xa ,ΑΦ = − θ

from where: 

1 1а t f (x),θ = − ⋅ ΑΑ ⋅ +  2 2а x f (t)⋅θ = −ΑΑ ⋅ +

or 

1 2x t,ΑΦ = ΑΑ ⋅ + ΑΑ ⋅  2
1а t x.

а
ΑΑ

θ = − ⋅ ΑΑ ⋅ − ⋅

After simplifications, the following can be written by 
analogy with (41):

( )1A AA x a t ,Φ = + ⋅  ( )1 а t x .θ = −ΑΑ ⋅ + 		  (42)

Solution (37) for (42) becomes:

( ) ( ){ }
( )

1 1 2 1

1

u C sin AA a t x C cos AA a t x

sin AA x a t .

   = − ⋅ ⋅ + ⋅ + ⋅ ⋅ + ⋅ ×   
 × + ⋅ 

The last variants of the argument functions (41) and 
(42) represent a fragment of the d’Alembert formula (4). 
Thus, a rather unexpected result was obtained. Maximum 
simplifications of the argument-functions result in a Fourier 
solution and the simplifications associated with smaller as-
sumptions lead to the d’Alembert solution. Moreover, in the 
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d’Alembert solution itself there are differences in (41) and 
(42). It is easy to see that the solutions obtained correspond 
to different boundary conditions.

Consider a variant of the analytic definition of the 
d’Alembert formula using solution (38) and corresponding 
differential constraints of the argument-functions.

Linear dynamic problem with basic trigonometric and 
exponential functions

This version of the problem is of particular interest since 
its solution can successfully represent the damped or in-
creasing effect of the rolling tool on the elastic strip during 
the unsteady roll bite process.

Consider (38). There are elementary differential rela-
tionships that make it possible to simplify solution of hyper-
bolic equations of the form (38). Simplified equations are as 
follows:

xx tt xx tt 0.θ = θ = ΑΦ = ΑΦ =

The obtained solutions are in a form of (38)

( )
( )

' ''
1 1 1 1 1 1 1 1

' ''
2 2 2 2 2 2 2 2

u C exp C sin A C cosA

С exp C sin C cos .

= θ ⋅ ⋅ Φ + ⋅ Φ +

+ θ ⋅ ⋅ Α Φ + ⋅ Α Φ

Differential relationships of argument-functions are as 
follows:

1x 1ta ,θ = ±θ  1 1x 1 1ta ,Α Φ = ±Α Φ

2x 2ta ,θ = ±θ  2 2x 2 2ta ,Α Φ = ±Α Φ

2
1xx 1tta 0,θ − θ =  2

1 1xx 1 1tta 0,Α Φ − Α Φ =

2
2xx 2tta 0,θ − θ =  2

2 2xx 2 2tta 0.Α Φ − Α Φ =

Solutions (38) and (37) feature a different differential 
constraint which defines argument-functions. In (38), there 
are relationships not with adjacent dependences of the form 
as for (37) but between the partial derivatives belonging to 
the same argument-function, i. e.:

1x 1ta ,θ = ±θ 1 1x 1 1ta ,Α Φ = ±Α Φ

2x 2ta ,θ = ±θ  2 2x 2 2ta .Α Φ = ±Α Φ

Solving the differential equations presented at the be-
ginning of this variant, one can obtain the following depen-
dences:

1 1 1 3 1 4x t,Α Φ = Α Α ⋅ + Α Α ⋅

1 1 5 1 6t x,θ = Α Α ⋅ + Α Α ⋅

2 2 2 7 2 8x t,Α Φ = Α Α ⋅ + Α Α ⋅

2 2 9 2 10t x.θ = Α Α ⋅ + Α Α ⋅

The form of the functions for adjacent argument-func-
tions is the same. Substitute the last expressions in the dif-
ferential relationships for the given solution:

1 1x 1 1t 1 3 1 4a a ,Α Φ = Α Φ = ⋅ Α Α = Α Α

1x 1t 1 6 1 5a a ,θ = θ = Α Α = Α Α

2 2x 2 2t 2 7 2 8a a ,Α Φ = −Α Φ = Α Α = −Α Α

2x 2t 2 10 2 9a a .θ = −θ = Α Α = −Α Α

Taking into account the transformations, write the argu-
ment-functions:

( )1 1 1 3 1 3 1 3x a t x a t ,Α Φ = Α Α ⋅ + Α ⋅ Α ⋅ = Α Α ⋅ + ⋅

( )1 1 6 1 6 1 6a t x x a t .θ = Α Α ⋅ + Α Α ⋅ = Α Α ⋅ + ⋅ 	 (43)

( )2 2 2 7 2 7 2 7x a t x a t ,Α Φ = Α Α ⋅ − Α Α ⋅ = Α Α ⋅ − ⋅

( )2 2 10 2 10 2 10a t x x a t .θ = − Α Α ⋅ + Α Α ⋅ = Α Α ⋅ − ⋅ 	 (44)

The argument-functions (43), (44) have the form of (3), 
(4) from d’Alembert’s formulas.

Substitute the argument-function (43), (44) into expres-
sion (38) and obtain the final solution:

( )( )
( ) ( )( )

( )( )
( ) ( )( )

1 1 6

' ''
1 1 3 1 1 3

2 2 10

' ''
2 2 7 2 2 7

u C expA A x a t

C sin x a t C cos x a t

С exp x a t

C sin x a t C cos x a t .

= + ⋅ ×

× Α Α + ⋅ + Α Α + ⋅ +

+ Α Α − ⋅ ×

× Α Α − ⋅ + Α Α − ⋅

	

(45)

The argument-functions for exponentials and trigono-
metric dependencies in (45) are the same. An analogy is 
observed for the expressions (37) as well when taking into 
account (41) and (42). The result obtained is of theoretical 
and practical interest. Indeed, (45) can be written in a gen-
eral form as:

( )( ) ( )1 2u x a t x a t .= φ + ⋅ + φ − ⋅

However, this general result is represented in expres-
sion (4) as the D’Alembert formula [11]. In this case, the ϕ 
function is represented by a concrete coordinate-time ex-
pression (45). Besides, the initial conditions of the form as in 
[20] fit well into solution (45):

( ) ( )* o
1 2u C exp bt C sinkt C coskt .= ⋅ ± ⋅ +

This dependence is suitable for characterizing non-sta-
tionary impulse action on the elastic strip in the rolling mill. 
Indeed, expression (45) can be simplified for:

1 6 1 3x 0,a b, k a,= ⋅ Α Α = = Α Α

2 10 2 7x 0, b, k a,= Α Α = = Α Α

( )( ) ( ) ( )( )
( )( ) ( ) ( )( )

* ' ''
1 1 1

' ''
2 2 2

u C exp bt C sin kt C cos kt

C exp bt C sin k t C cos ka t .

= ⋅ + +

+ − ⋅ − ⋅ + − ⋅
	

(46)

Variants (46) of increasing, decreasing functions or their 
joint action appear. The latter solution is representative 
when using argument-functions.

In the conditions of transient processes taking place 
during rolling in adjacent stands, rolls as a system are the 
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source of a damped effect on the strip. The impact is trans-
mitted via the strip to the adjacent stand where a stationary 
rolling process is realized. A dynamic splash in the last 
stand appears. This leads to oscillations of the gap between 
the rolls producing longitudinal thickness variation. Solu-
tion (45) makes it possible to evaluate this impact and in-
tervene in the rolling process in the mill stream to eliminate 
defect formation.

6. Discussion of results: generalization using  
argument-functions

Comparison of the results obtained in solution with the 
use of argument-functions with known solutions shows that 
the presented approach is quite acceptable for calculating 
pulsed stressing of an elastic medium. In this case, it was not 
the coordinate-time dependences of the argument-functions 
that were defined but the conditions for existence of various 
solutions of the problem that can fit any boundary condition.

It can be seen from the analysis that the result presented 
in [11–14] was the simplest partial solution of differential 
relationships for argument-functions. There is a prospect of 
defining new dependencies for new tasks about which, per-
haps, nothing is known yet.

The initial differential equations and boundary condi-
tions determine the type of differential equations for the 
argument-functions that close solution. On the one hand, ar-
gument-functions can be bounded by the Cauchy-Riemann 
relations and the corresponding differential invariants and 
on the other hand, by differential relations which lead to the 

fact that the argument-functions are the same for adjacent 
coordinate-time dependencies. Besides, analytic dependenc-
es on the parameters entering into the d’Alembert formula 
were obtained.

7. Conclusions

The paper presents development of general approaches 
to solving differential wave equations using argument-func-
tions. The known solutions of the dynamic problem are in 
accordance with the proposed approaches and are their 
partial solutions.

The result obtained is a superposition of flat coordi-
nate-time solutions. Besides, each pair is determined by its 
differential constraints on the argument-function. In this 
case complication of the problem is a kind of generalizing 
factor of the proposed approach.

Conditions for existence of new solutions of the wave 
problem that are restricted by boundary conditions of dif-
ferent processes were determined using known solutions: 
plasticity theory, linear dynamic problem with trigonomet-
ric solution and constraints, and a linear dynamical problem 
with basic trigonometric and exponential functions. Invari-
ant differential relationships for argument-functions are the 
closing element of the solution.

A mathematical model of a dynamic problem with an 
increasing or damped wave action upon an elastic medium 
was developed which makes it possible to evaluate this effect 
and intervene in the rolling process in the mill workflow and 
consequently eliminate defect formation.
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Застосовано емпіричний критерій настання авто-
балансування для гнучкого осесиметричного рото-
ра, що балансується n пасивними автобалансирами 
будь-якого типу. Встановлено, що автобалансування 
може відбуватися тільки на швидкостях, що переви-
щують n-ю критичну швидкість обертання ротора. 
Знайдено діапазони кутових швидкостей обертання 
ротора, на яких наступатиме автобалансування. 
Запропоновано способи оптимального балансування 
гнучкого ротора

Ключові слова: гнучкий ротор, пасивний автоба-
лансир, автобалансування, критерій настання авто-
балансування, критичні швидкості гнучкого ротора

Применен эмпирический критерий наступления 
автобалансировки для гибкого осесимметричного 
ротора, балансируемого n пассивными автобалан-
сирами любого типа. Установлено, что автобалан-
сировка может происходить только на скоростях, 
превышающих n-ю критическую скорость вращения 
ротора. Найдены диапазоны угловых скоростей вра-
щения ротора, на которых будет наступать авто-
балансировка. Предложены способы оптимальной 
балансировки ротора

Ключевые слова: гибкий ротор, пассивный авто-
балансир, автобалансировка, критерий наступле-
ния автобалансировки, критические скорости гибко-
го ротора
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1. Introduction

Many rotors of aircraft engines, gas turbine engines of 
power plants, agricultural machines, etc. work at speeds 
above the first critical one, and therefore behave as flex-
ible [1, 2]. The form and unbalance of the flexible rotor 
depend on the current speed. In addition, during the 
operation of such rotors, their unbalance can change due 
to temperature, wear, dirt sticking, etc. Therefore, it is ex-
pedient to constantly balance flexible rotors in motion, in 
the process of exploitation, by passive auto-balancers [3]. 
For application of passive auto-balancers, it is necessary to 
know whether it is possible in principle and on what rotation 
speeds to balance the flexible rotor installed on the certain 
supports by them in motion. 

Dynamics of rotors without auto-balancers is described 
by rather difficult differential equations of motion [1–5]. 
Introduction of auto-balancers (masses movable relative to 
the rotor) to the system makes the equations even more com-
plicated [3, 6–16]. Therefore, an analytical determination 
of the conditions for the occurrence of auto-balancing is a 
complex mathematical problem.

Analytically, the conditions for the occurrence of au-
to-balancing are determined in [3–16]. At the same time, the 
most general conditions applicable for auto-balancers of any 
type and with any number of corrective weights, are received 
using the empirical criteria [3–5]. 

Thus, it is actual to find the conditions for the occurrence 
of auto-balancing in the case of balancing of the flexible 
massive rotor by any number of auto-balancers of any type.


