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1. Introduction

Regression analysis is a powerful and effective statistical 
method of constructing mathematical models that describe 
the relationship between the indicator of the functioning 
of the analyzed system y and the conditioning, explanatory 
independent variables (factors) 1 2, ,..., .mF F F

In order to reveal this connection, a series of experiments 
is conducted in which each experiment ( )1 2, ,...,j j jmF F F  de-
termines its corresponding result, i.e., the value of the depen-
dent variable ,jy  where 1, 2,...., .=j n  The sought connection 
is usually described by the Kolmogorov-Gabor polynomial, 
which in the simplest case has the form

0 1 1 2 2 ... .= + + + + + εj j j jm m jy x F x F x F x

Here jiF  is the value of the i-th independent variable in 
the j-th experiment; 0,1, 2,..., ,=i m  and 1, 2,..., .=j n

In the matrix, the above relation has the form ,=FX Y  
where
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In the canonical regression analysis, the following basic 
assumptions are made.

1. The values of the independent variables iF  are mea-
sured without errors, and 1, 2,...., .=i m

2. The dependent variable y in each experiment is esti-
mated with a random error ε j , which is normally distributed 
with a zero mathematical expectation and a known variance 2.σ

3. The random errors ε j  in different experiments are not 
correlated.

In these proposals, estimates of the unknown coefficients 

0 1, ,..., mx x x  of the regression polynomial are obtained by 
the least square method (LSM), minimizing the sum of the 
squared deviations of the values of the resulting variable yi  
from the corresponding values 

0

,
=
∑

m

i ji
i

x F  

predicted by the model.
The solution of many practical problems becomes more 

complicated when the initial assumptions of the classical re-
gression analysis are not true. Of particular interest are the 
problems in which the initial data are not clearly estimated.

2. Literature review and problem statement

Apparently, one of the first works in which the problem 
of regression analysis was formulated and solved, taking 
into account the vagueness of the initial data, was [1]. In 
this paper, a linear model of fuzzy regression with a clear 
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set of values of variables and indistinctly defined regression 
coefficients with triangular symmetric membership func-
tions is introduced. The task of finding the set of regression 
coefficients is reduced to the problem of linear programming. 
Further, works [1–9] develop the approach proposed in the 
original article [1]. The general scheme for solving the prob-
lem in the terms that are introduced in [2] has the following 
form. The linear model that connects the explanatory vari-
ables { }1 2, ,...,= kF F F F  and the explained y has the form

0 1 1 2 2 ... ,= + + + +   

k ky b b F b F b F

where { },iF  1,2,...,=i k  is a set of explanatory variables; y is 
the variable to be explained; { },

ib  0,1,...,=i k  is a set of fuzzy 
numbers with membership functions:
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There are n experiments resulting in the sets { },= jiF F  
( )1 2, ,..., .ny y y

The task is to find the parameters ( ), ,i im c  0,1,...,=i k 
that minimize the objective function

0
0 1= =

= + ∑∑
k n

i ji
i j

L nc c F

as well as satisfy the constraints

( ) ( )0 0 1 1 1 ... min ,− + − + + − ³j k k jk jj
m c m c F m c F y

and

( ) ( ) ( )0 0 1 1 1 ... max ,+ + + + + − £j k k jk j
m c m c F m c F y

1,2,..., .=j n

The usual linear programming problem is obtained.
Further, studies [3, 4] introduce asymmetric functions of 

the fuzzy numbers ,ib  1,2,..., ,=i n  and studies [5–7] introduce 
trapezoidal membership functions. Then, in [8, 9], a polyno-
mial regression model is introduced, with the group-based 
method of arguments being used to estimate the coefficients.

Starting with [10], another approach to estimating re-
gression coefficients, based on the use of the method of least 
squares, has been developed. Another improvement in the re-
gression model is the assumption that all observed variables 
are fuzzy numbers [11–19]. In this case, different hypotheses 
are used about the form of the membership functions of fuzzy 
regression coefficients (triangular, trapezoidal, and Gauss-
ian). However, in all cases the general scheme for solving the 
problem is the same.

A predictable membership function for the fuzzy value 
of the explained variable is formed, taking into account the 
nature of the introduced regression model and the functions 
of fuzzy coefficients belonging to it as well as using the 
Zade generalization principle and the rules for performing 
operations on fuzzy numbers. On the other hand, this same 

membership function is determined from the experimental 
data. These two membership functions are compared with 
each other, and the resulting “distance” between them is 
used in the least-squares procedure to find the parameters 
that determine the membership functions of the regression 
coefficients. For example, in [16], this procedure is realized 
as follows. A model membership function is introduced for 
the fuzzy value of the explained variable y, which has a 
Gaussian character

( ) ( )2

2exp .
2

 − m = − 
  

y b
y

c

The coefficients b and c are described by the regression 
models:

1

,
=

= ∑
m

i i
i

b b F  and 
1

.
=

= ∑
m

i i
i

c c F

The “distance” between the model membership function 
( )0m y  and the real membership function ( )m p y  is calculated 

by the formula

( ) ( ) 2

0

,

 m − m 
=

−

∫
y

p
y

y y

R dy
y y

where ,  y y  is the range of the observed values of y.
Finally, in [20–22], the determination of the parameters 

of the fuzzy coefficients of the regression model is performed 
in the Chebyshev metric.

It should be noted that, despite a very large number of 
works on the problem of regression analysis (in particular, 
[22] contains a detailed and qualified review of the most sig-
nificant and interesting results obtained during the period 
of 1982–2017), some important questions remain insuffi-
ciently researched. For example, the often used criterion for 
assessing the quality of a solution to the regression analysis 
problem cannot be considered convincingly justified. This 
criterion minimizes the differences between the model func-
tion of the fuzzy predicted value belonging to the explained 
variable and the membership function of this variable that 
is obtained after processing the experimental data. The fact 
is that the accuracy of estimating the values of independent 
and dependent variables can differ substantially, and it is 
for the worse with respect to the dependent variable. In this 
connection, the result of solving the problem does not neces-
sarily provide a minimum of the mean total fuzziness of the 
predicted value of the explained variable. Apparently, a pref-
erable solution would be the one that satisfies the following 
two natural requirements:

– proximity to the modal value of the fuzzy explained 
variable that is obtained during the processing of the exper-
imental data;

– maximum compactness of the attribution function of 
the predicted value of the explained variable, taking into 
account the regression relationship.

A completely different type is the problem of estimating 
the coefficients of the regression model in the absence of data 
on the values of the dependent variable. Direct use of tradi-
tional regression analysis technologies is impossible if in the 
experiments all available information is limited only by data 
on the values of the independent variables ( ).jiF  A similar 
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situation arises when comparing a set of similar objects by 
data on a set of their characteristics. Of course, this infor-
mation is not sufficient for constructing the regression model

0 1 1 2 2( ) ... ,= + + + + m mR x x x F x F x F  (1)

where 1 2( , ,..., )= mF F F F  is a set of factors that are the char-
acteristics of the object; 0 1( , ,..., )= mX x x x

 
is a set of weight 

coefficients.
However, the use of data on the characteristics of objects 

allows, for example, expert way, ranking the compared ob-
jects in a descending order of the value of their any resulting 
characteristics, for example, “usefulness”. In this case, we 
obtain

1 2 1( ) ( ) ... ( ) ( ).−> > > >n nR X R X R X R X  (2)

This relation is used in the standard problem of compar-
ator identification [23] for finding the coefficients of model 
(1). Inequalities (2) define the following system of strict 
inequalities:

where 1, ,+= −ji j i jiv F F  1,2,..., 1,= −j n  and 1,2,..., .=i m
In this case, the value ,ζ j  1,2,..., 1,= −j n  characterizes 

the difference of the “usefulness” of the ( j+1)-th and j-th 
objects.

The system of inequalities (3) with the addition of the 
positive variables ,+m jx  1,2,..., 1= −j n  is transformed into 
the system of equations

1

0,+
=

+ =∑
m

i ji m j
i

x V x  1,2,..., 1.= −j n   (4)

Thus, the problem is reduced to the search for a solution 
of a homogeneous system of linear algebraic equations (4). 
This system always has the trivial solution:

1 2 1 1... ... 0.+ + −= = = = = = =n n n mx x x x x  

This solution is unique if the rank of the basic matrix of 
the system is equal to the number of variables. Otherwise, 
there are an infinite number of solutions. The peculiarity 
of the problem lies in the fact that specific requirements are 
imposed on the desired solution, i. e., the non-negativity of 
the variables 1 2, ,..., mx x x  and the positivity of the variables 

,+m jx  1,2,..., 1.= −j n  The number of additional variables can 
be reduced to one if the Chebyshev point is used as the solu-
tion of the system [24].

Now, taking into account the requirements for the signs 
of variables, the solution of the problem can be obtained 
using linear programming methods: thus, we find a set X 
that minimizes 1+mx  and satisfies the system of linear 
equations:

 

1,2,..., 1.= −j n  (5)

In this case, in order to exclude the trivial solution 

1 2 1... 0,+= = = = =m mх х х х

system (5) requires adding one more equation:

1

1,
=

=∑
m

i
i

x  (6)

which is the normalization condition for the coefficients 
of the regression equation. The resulting solution is used 
to calculate the “usefulness” of the objects according to 
formula (1).

A brief review of the known methods for solving prob-
lems of fuzzy regression analysis allows making the follow-
ing conclusions.

1. In the problem with the given indistinct-
ly explanatory and explained variables, there 
is no theoretically grounded criterion for as-
sessing the quality of the results of regression 
analysis that would take into account possible 
significant differences in the accuracy of mea-
surements of the explanatory and explained 
variables. This effect arises and manifests itself 
particularly negatively when, under conditions 
of a small sample of observations, no hypoth-
eses regarding the laws of error distribution 
in measuring the variables can be reasonably 
accepted or rejected. This circumstance re-
quires using fuzzy descriptions of the observed 
variables when solving practical problems of 
regression analysis the accuracy of which can 
be significantly different.

2. In the problem of comparator identification, the 
question of estimating the regression coefficients remains 
open for the case when the explanatory variables are not 
clearly defined.

The fundamental novelty of the problems arising in 
connection with this determines the importance of the 
research topic.

3. The aim and objectives of the study

The aim of the work is to improve the technology of a 
fuzzy regression analysis in the direction of developing a 
valid criterion for estimating the quality of regression and 
its use in solving practical problems.

In accordance with the stated goal, the main objectives 
are formulated as follows:

– to develop a reasonable criterion for assessing the 
quality of solving the problem of regression analysis under 
conditions where the explanatory and explained variables 
are not clearly defined;

– to devise a method for solving the problem of fuzzy 
regression analysis based on the selected criterion;

– to develop a method for solving the problem of com-
parator identification under conditions of fuzzy initial data.

1 2 1
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4. The method for solving the problem of regression 
analysis under conditions of fuzziness of all initial data 

Let us introduce the regression relation

0 1 1 ... ,+ + + =n nx x F x F y  (7)

where the explanatory variables { }, 1,2,..., ,=iF i n  and the 
explained variable y are fuzzy numbers with known mem-
bership functions.

Let N experiments be carried out, as a result of which 
the values of all the variables of the problem are obtained, 
( ).>N n

 
Substitution of these values leads to the system of 

linear algebraic equations:

0 11 1 12 2 1 1, 1

0 21 1 22 2 2 2, 1

0 1 1 2 2 , 1
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x a x a x a x a

x a x a x a x a

x a x a x a x a

   (8)

Here, for convenience, redesignations are made:

,=ji jiF a
 

, 1,+=j j ny a
 

1,2,...,=j N
 
and

 
1,2,..., .=i n

We assume that the parameters of system (8) are Gauss-
ian fuzzy numbers with the membership functions:

( )2(0)

2( ) exp ,
2

 − m = − σ  

ji ji

ji
ji

a a
a  1,2,..., ,=i n  1,2,..., .=j N  (9)

Now we will say that relations (8) and (9) constitute a 
fuzzy system of linear algebraic equations. Let us solve this 
system [25, 26].

Let us introduce the set of fuzzy numbers:

1 1 1, 1 10
0

, 1 0
0

, 1,

.................................

, 1.

+
=

+
=

= − =

= − =

∑

∑

n

i i n
i

n

N Nj i N n N
i

z a x a a

z a x a a

 (10)

We now introduce a clear system of linear algebraic 
equations, generated by relations (8) and (9), using the mod-
al values ( )0

ija  of the fuzzy numbers aji, 

1,2,..., ,=i N  0,1,..., 1:= +j n

, 1

(0) (0)

0

0,
+

=

− =∑ ji i n

n

i
i

a x a  ( )0
0 1,=ia  1,2,..., .=i N  (11)

Let us introduce the following:

( ) ( )0 ,= jiA a
 

{ },= iX x
 

0 1,=ja

0,1,..., ;=i n
 

( ) ( )( )0 0
1 , 1 ,+ +=n j nA a

 
1,2,..., .=j N

Then the system of equations (11) in the matrix takes 
the form:

( ) ( )0 0
1 0.+− =nA X A  (12)

The system of equations (12) is redefined and, possi-
bly, incompatible. The natural solution is obtained by the 
method of least squares. We introduce the criterion of least 
squares:

( ) ( )( ) ( ) ( )( )0 0 0 0
1 1 .+ += − −

T

n nJ A X A A X A   (13)

Minimizing (13) with respect to X, we obtain { }0 0 ,= iX x
0,1,..., ,=i n  as the solution of the linear equations system 

(LES) (11).
Then the clear solution of the fuzzy system of linear alge-

braic equations (8) and (9) will be the set X={xj} 0,1,..., ,=j n  
minimizing the sum of the areas of the figures that are 
limited by the membership functions ( )m jz

 
of the fuzzy 

numbers 1 2, ,..., ,Nz z z  and being the least different from X(0) 
[26, 27]. The meaning of this criterion is understandable. 
Its use provides a set of clear numbers 0 1, ,..., ,nx x x

 
for which 

the membership functions of the numbers 1 2, ,..., Nz z z
 
are the 

least blurred and have modal values that are as close to zero 
as possible.

Let us write the necessary relations, ensuring the solu-
tion of the system of equations (8) and (9) in the sense 
indicated above. In accordance with (9), we define the mem-
bership functions of the fuzzy numbers 1 2, ,..., Nz z z  given by 
(10). Thus,

( ) , 1
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j ji i j n
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m a x a  2 2 2 2
, 1

1
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=

σ = σ +∑ i

n

j ji j n
j

x a  1,2,..., .=j N

Let { }0 0 ,= iX x  0,1,...,=i n  be the LES solution (11), 
whose parameters correspond to the modal values of the 
membership functions (12). In this case, since = +z x ym m m  is 
the zero vector and the vector components 2 2 2σ = σ + σz x y rep-
resent the discrepancies arising when the vector 1 2= −z x x  is 
substituted in (8), then the natural measure of the deviation 
of the set X from the set X(0) is the sum of squares of the 
discrepancies, that is,

( ) ( )( ) ( ) ( )( )
( ) ( )

T0 0 0 0
0 1 1

2
0 0

, 1
1 0

,

+ +

+
= =

= − − =

 
= −  ∑ ∑

n n

N n

ji i j n
j i

J A X A A X A

a x a

where

( ) ( )( )0 0 ,= ijA a  1,2,..., ,=j N  0,1,..., ,=i n

and

( ) ( ) ( ) ( )( )T0 0 0 0
1 1, 1 2 1 , 1, ,..., ,+ + + +=n n n N nA a a a

 
( )T

0 1 ... .= nX x x x
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In addition, we define the functional that determines 
the total area of the figures bounded by the membership 
functions ( )m jz

 
of the fuzzy numbers 1 2, ,..., ,Nz z z  as follows:

( )1
1

.
∞

= −∞

= m∑ ∫
N

j j
j

J z dz

Then the required clear solution of the system of equa-
tions (8) and (9) is obtained by minimizing the functional
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J
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Furthermore,
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∑
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nj ik
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i

xdJ
a x a a
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x

0,1,..., .=k n

The numerical solution of this nonlinear system of equa-
tions gives the required vector ( )0 1 ...= nX x x x  of coeffi-
cients of the regression equation.

Finally, let us consider the problem of comparator iden-
tification for the case when the original data are not clearly 
described.

We will assume that the value of the i-th characteristic 
of the j-th object is a fuzzy number jir  with the membership 
function

( ),m ji jir  1,2,..., ,=i m  1,2,..., .=j n

Since the characteristics of the objects are fuzzy, the re-
sults of calculating the values of the “usefulness” level of the 
objects are also fuzzy:

1

( ) ,
=

= ∑
m

j i ji
i

Q x x r  

1,2,..., .=j n  (15)

Let, for definiteness, jir  be fuzzy numbers with a trian-
gular membership function, that is,
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r
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c r b
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r b

 (16)

Since triangular fuzzy numbers are a particular case of 
numbers with a membership function of the (L–R) type, 
approximate calculations can be made by using the rules for 
performing operations accepted for fuzzy numbers of this 
type [26]. With this in mind, we define the membership 
functions of the fuzzy numbers Qi(X):

0, ( ) ,
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, ( ) ,

( ( ))
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and
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i
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 1
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m

j i ji
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C x c
 1

.
=

= ∑
m

j j ji
i

B x b

If in the case under consideration, ranking (2) of the ob-
jects by the level of their “usefulness” is preserved, then the 
natural analogue (3) will be the fuzzy inequalities

1 2 1

1 21 11 2 22 12 2 1

1
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1 1 1,
1
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..........................................
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x w

X Q X Q X x w

 (18)

and

1, ,+= −ji j i jiw r r  1,2,..., 1,= −j n  1,2,...., .=i m  (19)

We pose the problem of finding the nonnegative set

1 2( , ,...., ),= nX x x x  

ensuring the fulfillment of inequalities (18).
The system of inequalities (18) with the addition of the 

positive variable 1+mx  is transformed into the fuzzy system 
of linear algebraic equations

1
1

0,+
=

+ =∑
m

i ji m
i

х w х  1,2,..., 1,= −j n  (20)

where jiw  designates fuzzy numbers, the membership func-
tion of which is determined taking into account (16). Using 
the standard description of the membership function of tri-
angular numbers of the L–R type in the form 

, , ,
−

=< α β >ji ji ji ji L R
r c  
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where cji is the mode of the number rji, ,α = −ji ji jic a  and 
,β = −ji ji jib c  as well as the rules for performing operations 

for fuzzy numbers of the L–R type, we write the membership 
function of the number wji.

Then

1, 1, ,+ += − =< −ji j i ji j i jiw r r c c  1, 1, ,+ +− + −ji ji j i j ic a b c  

and

1, 1,
ˆˆ, , .+ +− + − > =< α β >ji ji j i j i ji ji jiLR LR

b c c a m

Here ˆ jim  is the mode of the number ,jiw  and α̂ ji  and β̂ ji 
are the left and right fuzziness coefficients.

Let us introduce the fuzzy numbers

1
1

( ) ,+
=

Ζ = +∑
m

j i ji m
i

X x w x  1,2,...., 1,= −j n

and write down the functions of their membership:

1

1
1 2

1

3
2 3

1

3

0, ( )

( )
, ( ) ,

( ( ))
( )

, ( ) ,

0, ( ) ,

=

=

<
 − £ <

α
m =  − £ £

β

 >

∑

∑

j j

j
j jm

i ji
i

j
j

j jm

i ji
i

i j

Z X a

Z x a
a Z X a

x

Z X
a Z X

a Z x a
x

Z x a

 (21)

1 1
1

ˆˆ( ) ,+
=

= − α +∑
m

j i ji ji m
i

a x m x  2 1
1

ˆ +
=

= +∑
m

j i ji m
i

a x m x  

and

3 1
1

ˆˆ( ) .+
=

= + β +∑
n

j i ji ji m
j

a x m x

We transform the system of fuzzy equations ( ) 0,=jZ X  
1,2,...., 1,= −j n  that follows from (16) into an ordinary 

system of linear algebraic equations by specifying the fuzzy 
numbers jiw  as being equal to their modal values. In this 
case, we obtain

1
1

0,+
=

+ =∑
m

i ji m
i

x m x  1,2,..., 1.= −j n  (22)

In order to eliminate the trivial solution 

0,=ix  1,2,..., ,=i m  0,=ix  1,2,..., ,=i m  

of system (22), we add to it another normalizing equation 
(6). Let the set

(0) (0) (0) (0) (0)
0 1 1( , ,...., , )+= m mX x x x x  

be a solution of (6) and (22).
We use the definition of “a clear solution of a fuzzy sys-

tem of linear algebraic equations” introduced in [26, 27]. In 
accordance with this definition, a clear solution of the system 
of equations (6) and (22) will be the set 1 2 1( , ,..., ),+= nХ x x x  
minimizing the sum of the areas of the figures bounded 
by the membership functions ( )m jZ  of the fuzzy numbers 

1 2 1, ,..., −nZ Z Z  and the least deviating from (0).X  The meaning 
of this definition is clear. Its use provides a set of the clear 
numbers 1 2 1( , ,..., ),+nx x x  as close as possible to the modal 

(0),X  for which the membership functions of the fuzzy num-
bers 1 2 1, ,...., −mZ Z Z  are the least blurred. As a criterion for the 
compactness of the fuzzy-number membership functions ,jZ  

1,2,..., 1,= −j n  the squares of the length of the intervals can 
be used as the carriers of the corresponding fuzzy numbers. 
Then the measure of the quality of solving the system of (6) 
and (22) will have the form:

21
(0) 2

1 1 1

( ) ( ) .
−

= = =

 
= β + α + −  ∑ ∑ ∑

n m m

i ij ij i i
j i i

J x x x  (23)

Minimization (23) together with the normalization of 
condition (6) yields the desired set ( )1 1,...., .+= mХ x x

5. Discussion of the findings

Thus, the study suggests methods for solving regression 
analysis problems under conditions of uncertainty in the 
values of explanatory and explained variables. For the case 
when all these variables are given by fuzzy numbers, a crite-
rion for the quality of solving the problem is introduced and 
justified. The use of this criterion makes it possible to calcu-
late the values of the regression experiments. The resulting 
set provides a compactness of the membership function of 
the fuzzy value predicted by the regression model of the 
explained variable and the proximity to the modal value. 
The required set is determined as a result of solving the 
fuzzy mathematical programming problem by the method 
proposed in [28]. The same technology was used to solve the 
problem of fuzzy comparator identification.

The possible continuation of this research is related to 
the difficulties of solving regression analysis problems with 
deeper uncertainties in the initial data. Let, for example, the 
values of variables be given in terms of fuzzy mathematics 
[29]. A possible approach to solving the problem in this case 
is the formation of fuzzy models of inaccurate descriptions 
of the variables [30]. Another variant of an inaccurately 
defined problem of regression analysis arises when, under 
conditions of a small sample of initial data, it is not possible 
to describe their uncertainty in terms of the probability 
theory or fuzzy mathematics. In this case, the natural way 
to solve the problem is to find the minimax solution under 
the assumption of the worst distribution densities (or mem-
bership functions), using the methods of continual linear 
programming [31].

6. Conclusions

1. A criterion for estimating the quality of solving the 
problem of fuzzy regression analysis is proposed and jus-
tified, taking into account possible significant differences 
in the accuracy of estimating explanatory and explained 
variables.

2. A method for solving the problem of fuzzy regression 
analysis is developed based on the selected criterion, using a 
fuzzy optimization technology.

3. A method for solving the problem of fuzzy comparator 
identification is developed when the results of measuring the 
explained variable are absent.
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1. Introduction

Cauchy’s problem is one of the main problems in the the-
ory of differential equations, which comes down to finding a 
solution (integral) of the differential equation that satisfies 
initial conditions (original data). 

Over many years, a numerical solution of the Cauchy’s 
problem has been the focus of attention by scientists as it 
is widely used in different areas of science and technology. 
That is why there are a large number of developed meth-
ods for it. In spite of this, however, new methods are being 
devised, some of them with better properties than those 
preceding.

Cauchy’s problem usually emerges during analysis of the 
processes predetermined by the differential law and original 
state. Mathematical notation of such equations is an equa-
tion and the initial condition. 

The difference between the boundary-value problems 
and the Cauchy’s problem is that the region over which the 
desired solution should be determined is not specified in the 
latter in advance. However, the Cauchy’s problem can be 
considered as one of the boundary-value problems.

2. Literature review and problem statement

Numerical methods of the Cauchy’s problem solution are 
divided into 3 groups [1]:

‒ one-point;
‒ multipoint (methods of prediction and correction);
‒ methods with automatic choice of integration step. 
The one-point methods include methods that have certain 

common features, such as:
1. Underlying all one-point methods is the function de-

composition into Taylor’s series, which preserves members 
that have h in a power to k inclusive. An integer k is called 
the order of the method. Error on a step has an order of k+1.

2. All one-point methods do not require a valid com-
putation of derivatives, because only the function itself is 
calculated, however, one may require its values in some 
intermediate points. This entails, of course, additional cost 
of time and effort.

3. In order to receive information in a new point, it is nec-
essary to have data only from the previous point. This prop-
erty can be called “self-starting”. A capability to “self-start” 
makes it possible to easily change the magnitude of step h.

29. Pawlak, Z. Rough sets [Text] / Z. Pawlak // International Journal of Computer & Information Sciences. – 1982. – Vol. 11,  

Issue 5. – P. 341–356. doi: 10.1007/bf01001956 

30. Raskin, L. Fuzzy models of rough mathematics [Text] / L. Raskin, O. Sira // Eastern-European Journal of Enterprise Technologies. – 

2016. – Vol. 6, Issue 4 (84). – P. 53–60. doi: 10.15587/1729-4061.2016.86739 

31. Raskin, L. G. Prikladnoe kontinual’noe lineynoe programmirovanie [Text] / L. G. Raskin, I. O. Kirichenko, O. V. Seraya. – Kharkiv, 

2013. – 293 p.
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Побудовано інтерполяційний чисельний метод 
розв’язування задачі Коші для звичайних диференці-
альних рівнянь першого порядку за допомогою апа-
рату некласичних мінорант та діаграм Ньютона 
функцій, заданих таблично. Цей метод дає точні-
ші результати від методу Ейлера у випадку опуклої 
функції. Доведено обчислювальну стійкість методу, 
тобто похибка початкових даних не нагромаджу-
ється. Також показано, що метод має другий порядок 
точності 

Ключові слова: міноранта Ньютона, диференці-
альні рівняння, задача Коші, діаграма Ньютон, опукла 
функція

Построен интерполяционный численный метод 
решения задачи Коши для обыкновенных дифференци-
альных уравнений первого порядка с помощью аппа-
рата неклассических минорант и диаграмм Ньютона 
функций, заданных таблично. Этот метод дает более 
точные результаты по сравнению с методом Эйлера в 
случае выпуклой функции. Доказана вычислительная 
устойчивость метода, то есть погрешность началь-
ных данных не накапливается. Также показано, что 
метод имеет второй порядок точности

Ключевые слова: минорант Ньютона, дифферен-
циальные уравнения, задача Коши, диаграмма, выпу-
клая функция
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