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1. Introduction

In the theory of entire functions of one complex variable, 
one of the most thoroughly examined issues is the relation 
between the growth of such functions and behavior of Taylor 
coefficients. Along with this, in [1, 2], the approximation of 
entire functions on compact sets was studied and generalized 
characteristics of such functions in terms of error approxi-
mation or interpolation were obtained. Similar studies were 
conducted for harmonic functions as they expand into series 
in spherical harmonics in space ℝn, n≥3 and, in addition, 
into series in the adjoined Legendre polynomials in space ℝ3. 
Also the problem on expressing the characteristics of growth 
of harmonic functions in terms that are not related to the 
coefficients of their expansion into series was considered. In 
particular, characteristics of the growth of a harmonic func-
tion in an n-dimensional space were expressed in terms of the 
norm of their gradient at the origin, while in a three-dimen-

sional space ‒ in terms of approximation errors of harmonic 
functions in the ball by harmonic polynomials.

The relevance of such problems is due to the fact that 
the harmonic functions play an important role not only in 
theoretical mathematical research, but are used in physics 
and mechanics in order to describe different stationary 
processes. Therefore it is important to study generalized 
characteristics of the growth of a harmonic function in an 
n-dimensional space.

2. Literature review and problem statement

Paper [3] expressed generalized characteristics of growth 
of entire functions of several complex variables by using the 
best polynomial approximation and interpolation on com-
pact sets, paper [4] – in terms of the best approximation 
error in Lp norm. Relative generalized and lower generalized 
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orders for the entire functions of two complex variables were 
introduced and investigated in [5]. Similar problems were 
considered for analytic functions of several complex vari-
ables in [6, 7].

The first studies into harmonic functions of a three-di-
mensional space were made in [8], in particular, by using 
an integral Bergman representation of a harmonic function 
in ℝ3 by an entire function of a complex variable and a real 
parameter, they represented the order of a harmonic func-
tion and the type of an axisymmetric harmonic function in 
ℝ3 in terms of expansion coefficients of these functions by 
the adjoined Legendre polynomials. This result was refined 
and generalized in [9, 10]. Paper [11] derived formulae for 
the generalized order of a harmonic function in space ℝn in 
terms of its Fourier coefficients, while articles [12, 13] repre-
sented characteristics of the growth of a harmonic function 
in space in terms of the norm of its gradient at the origin. 
Paper [14] investigated the growth of a J-universal harmonic 
function in space.

Paper [15] addresses the study of uniform approximation 
by polynomials of the generalized axisymmetric potentials. 
The order and type of potentials are represented in terms 
of an approximation error. In [16], authors investigated ap-
proximation with the Chebyshev polynomials of the entire 
solutions to the Helmholtz equation and obtained certain es-
timates for the growth parameters of these solutions in terms 
of coefficients and an approximation error in the sup norm. 
Study of the generalized q-type and generalized lower q-type 
solutions of ordinary elliptic differential equation in partial 
derivatives is given in article [17]. Approximation by the 
Chebyshev polynomials of the entire solutions of the Helm-
holtz equation in Banach spaces ( )B p,q,m  is considered in 
[18]. Paper [19] builts on the studies of [16]. Expressions for 
the order and type of solutions of certain linear differential 
equations in partial derivatives in terms of error in the 
axisymmetric harmonic polynomial approximation and the 
Lagrange interpolation were derived in [20]. In [21], a slow 
growth and the approximation of pseudoanalytic functions 
on disk were investigated.

The necessary and sufficient conditions under which a 
harmonic function in the ball of a three-dimensional space 
continues to the entire harmonic one were established in 
[22]. It also represented the order and type of an entire 
harmonic function in terms of an approximation error of the 
continued function with harmonic polynomials. A similar 
issue was examined in [23] for the ( ),p q  orders and types of 
harmonic function in ℝ3.

A review of the scientific literature revealed that a 
number of papers were devoted to examining a relation 
between the growth of harmonic functions of a three-di-
mensional or an n-dimensional spaces and the behavior 
of expansion coefficients of these functions into series by 
the adjoined Legendre or Chebyshev polynomials, or in 
spherical harmonics. Along with this, the approximation 
of harmonic functions was studied, as well as solutions of 
some differential equations in partial derivatives using 
different polynomials with respect to different norms, 
while expressions for the various characteristics of growth 
of such functions in terms of approximation or interpola-
tion errors were obtained. 

Papers [22, 23] considered uniform approximation of 
harmonic functions in a three-dimensional space and, in or-
der to characterize a growth of the continued functions, the 
order, type, the ( ),p q  orders and types were applied. 

Of significant interest, therefore, is the examination of 
a uniform approximation in an n-dimensional space, and 
in order to characterize the growth of an entire harmonic 
function in space ℝn, more general characteristics of growth, 
outlined in [24], are employed.

3. The aim and objectives of the study

The goal of present work is to establish conditions under 
which a harmonic function in the ball of an n-dimensional 
space continues to the entire harmonic function, and to 
derive formulae for the generalized growth characteristics of 
harmonic function in space.

To accomplish the set goal, the following tasks have been 
resolved:

– to obtain an estimate for the uniform norm of spherical 
harmonics in terms of best approximation of harmonic func-
tion in the ball by harmonic polynomials;

– to assess approximation error of a harmonic function 
in the ball in terms of a maximum modulus of a harmonic 
function in space; 

– to assess the maximum modulus of a harmonic function in 
space in terms of a maximum modulus of some entire function 
of one complex variable or a maximum term of its power series.

4. Criterion of the continuation of harmonic function in 
the ball of n-dimensional space to the entire harmonic

Let { }: 1= ∈ =

n nS x x  be a unit sphere in ℝn centered 
at the origin, while 

22

2

π
ω =

 Γ   

n

n n  

is its surface area, where Г denotes the Gamma function. 
A spherical harmonic or a sperical Laplace function of 

degree k, k∈Z+={0, 1, 2,..} which is denoted by Y(k), is called a 
restriction of a homogeneous harmonic polynomial of degree 
k on the unit sphere Sn, n≥2, [25]. 

A set of spherical harmonics of degree k can be consid-
ered as a sub-space of the space L2(Sn) of real-valued func-
tions with the scalar product

( ) ( ) ( )1
, d ,= ∫ω nSn

f g f x g x S

where dS is the element of the surface area on the sphere 

Sn. If ( ) ( ){ }1 ,..., γ k

k kY Y is an orthonormal base in the given sub- 
 
space, then 

( ) ( ){ }1
0

,...,
∞

γ
=
 k

k k

k

Y Y
 

will be an orthonormal base in space L2(Sn). Here 

( )( )2 2 3 !

!(n 2)!

+ − + −
−

γ =k

k n k n

k
 

is the quantity of linearly independent spherical harmonics 
of degree k. 
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Let u be an entire harmonic function in ℝn, that is, the 
harmonic function over the whole space ℝn. Then it expands 
into a Fourier-Laplace series [26]

( ) ( ) ( )
0

; ,
∞

=

= ∑ k k

k

u rx Y x u r   (1)

where ,Î nx S  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 2 2; ... ,g g= + + +
k k

k k k k k k kY x u a Y x a Y x a Y x

( ) ( )( ), ,=k k
j ja u Y  1, ,= g kj

( )( ), k
ju Y  is the scalar product in ( )2 .nSL
At n=2, spherical harmonics reduce to ordinary trigo-

nometric functions of an angle. At 3,³n  they have a more 
complicated structure and are connected with some polyno-
mials of special form. 

Assume that 2 1,=d  2= −nd n  at 2,>n  while 

2
.

2
−

ν =
n  

Then

( ) ( ) ( ) ( ) ( )( ) 2
; , d ,ν+ ν

 =  ω ∫
n

k k
k

n n S

k
Y x u r C x y u ry S y

d
  (2)

where ,+Îk Z  ,Î nx S  ( ),⋅ ⋅  is the sclar product in ℝn and ν
kC  

are the Gegenbauer polynomials of degree k and order ν 
[27], which are determined by 

( )
( )

2

12
1

1
1 2 ,

1 2

∞
ν

ν+
=

− τ + ν
= + τ

− τ + τ
∑ k

k
k n

k
C t

dt

where 1,£t  0 1.£ τ <
Let 

{ }:= Î £

n n
RK y y R  

be the ball of radius R in space ℝn, 3,³n  centered at the 
origin, and n

RK  be the closure of .n
RK  A class of harmonic in 

n
RK  and continuous on n

RK  functions will be denoted by HR, 
where 0 .< < ∞R

Let Πk  be a set of harmonic polynomials of degree no 
higher than k. Approximation error of function Î Ru H  by 
harmonious polynomials ÎΠkP  will be determined as

( ) ( ) ( )inf max .
ÎΠ Î

 = − 
 nk R

k
R P y K

E u u y P y   (3)

Theorem 1. Function Î Ru H  continues to the entire har-
monic function of an n-dimensional space ℝn, 3,³n  if and 
only if the following equality holds

( )lim 0,
→∞

=kk
Rk

E u   (4)

where ( )k
RE u  are determined by expression (3). 

To prove the theorem, the following lemmas are required. 
Lemma 1. If ,Î Ru H  then for all Îk N  inequality

( ) ( ) ( )
( ) ( )

2

14 2
max ;

2 !n

k k k
R

x S

k
Y x u R E u

ν
−

Î

+ ν
£

ν

holds, where 

2
,

2
−

ν =
n  

( )k
RE u  are determined by expression (3). 

Proof. Since a harmonic polynomial is the sum of homo-
geneous harmonic polynomials, then on the basis of addition 
theorem [27] for the Gegenbauer polynomials ,ν

kC  we obtain

( ) ( ) ( ), 0,ν  ξ τξ ξ = ∫
n

k

S

C x P dS

where 1,−ÎΠkP  0 ,< τ < R  .Î nx S  Considering this, we shall 
re-write (2) as

( )

( ) ( ) ( ){ } ( )

( ) ;

, .ν

τ =
+ ν  = ξ τξ − τξ ξ νω ∫

n

k k

k
n S

Y x u

k
C x u P dS

Hence, taking into account equality

( ) ( )
1 1

max 1 ,ν ν

− £ £
=k kt

C t C

from [27], where 

( ) ( )
( )

2 1 !
1 ,

1 ! !
ν + ν −

=
−k

n

k
C

d k
 

we find

( ) ( ) ( ) ( )

( )
( ) ( ) ( )

( )

2

; max 1

2 2
max .

2 !

ν

τξÎ

ν

τξÎ

+ ν
τ £ τξ − τξ ω £

νω

+ ν
£ τξ − τξ

ν

n
R

n
R

k k
k n

Kn

K

k
Y x u u P C

k
u P   (5)

Next, it follows from determining an error ( )k
RE u  that 

there exists polynomial 1,∗
−ÎΠkP  for which

( ) ( ) ( )1max 2 .∗ −

τξÎ
τξ − τξ £

n
R

k
R

K
u P E u   (6)

Putting ∗=P P  into inequalities (5) and taking into ac-
count inequality (6), as well as arbitrariness of τ, we obtain 
the assertion of Lemma 1. 

Let

( )
( )

( )( )2 ! 1
max ;

2 2
ν Î

ν
=

+ ν n

k
k

x S
B Y x u

k

and

( ) ( ),u max ,
Î

=
mx S

M r u rx  0>r   (7)

be a maximum modulus of function u. 
Lemma 2. For an entire harmonic function u in ℝn, 3,³n  

which is assigned by the series (1), the following inequali-
ties hold

( ), −£ k
kB M r u r

for all +Îk Z  and 0.>r
The proof of this Lemma is given in [10]. 
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Lemma 3. For an entire harmonic function u in ℝn, 3,³n  
the following estimation holds

( ) ( ) ( ) ( ) ( )22
2 1 ! 2 ,

2 !
ν  £ ν + + ν   ν

k
k
R

R
E u k M r u

r

for all >r eR  and .+Îk Z
Proof. Let us consider function

( ) ( ) ( )
0

; ,
=

ξ = ξ∑
k

j j

j

Q r Y u r

where 0,>r  .ξ Î nS  It is a harmonic polynomial of degree 
no higher than k, that is .ÎΠkQ  Taking into acount the 
definition of error ( )k

RE u  and considering Lemma 2, and 
that the function Î Ru H  expands into a seies (1) for all r, 
0 ,< <r R  we find

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

1

1

1

max max ;

2
, 2

2 !

2
, 2 .

2 !

∞

ξÎτξÎ = +

∞
ν

= +

−∞
ν

= +

£ τξ − τξ £ ξ £

 £ + ν =  ν

   = + ν      ν

∑

∑

∑

nn
R

jk j
R

SK j k

j

j k

k j k

j k

E u u Q Y u R

R
M r u j

r

R R
M r u j

r r

Let us estimate the last sum. For ,r eR>  we obtain

( )

( ) ( )

1

2 2

1

2

2 2 .

−∞
ν

= +

∞∞
ν ν− −

= +

 + ν £  

£ + ν £ + ν

∑

∑ ∫

j k

j k

k j k t

j k k

R
j

r

e j e e t e dt

Selecting 2= νs  and ( ) ( )= + s

sh t t s  and integrating s+1 
times in parts, we obtain

( ) ( ) ( ) ( ) ( )( )... .
∞∞

− − ′= − + + +  ∫ st t
s s s s

kk

h t e dt e h t h t h t

Considering that

( ) ( ) ( ) ( )!
!

−= +
−

s ii
s

s
h t t s

s i

for 1, ,=i s  we find

( ) ( )
( )

( ) ( )
( )

0

22

0

!

!

2 ! 2
.

2 !

−∞
− −

=

ν−ν
−

=

+
= =

−

ν + ν
=

ν −

∑∫

∑

s is
t k

s
ik

i

k

i

s k s
h t e dt e

s i

k
e

i

The last sum does not exceed ( ) ( )2
2 1 ! 2 ,

νν + + νk  which 
proves Lemma 3. 

Proof of Theorem 1. Assume that function Î Ru H  con-
tinues to the entire harmonic function in space ℝn, 3,³n  
which will also be denoted by u. Then equality (4) directly 
follows from Lemma 3. On the contrary, employing Lem- 
ma 1, we obtain

( ) ( )

( ) ( ) ( )

( ) (0)

0

2 1

1

; ;

4
2 ,

2 !

∞

=

∞
ν −

=

ξ £ ξ +

 + + ν   ν

∑

∑

k k

k

k
k
R

k

Y u r Y u

r
k E u

R
  (8)

hence, based on (4), a uniform convergence of series in the 
right side of equality (1) on compact subsets of the ℝn fol-
lows. Therefore, setting the function Î Ru H  by a series (1), 
we shall continue it over the whole space ℝn.

5. Formulae for the generalized and lower generalized 
orders of a harmonic function of an n-dimensional space

Let the function γ be defined and differentiable on inter-
val [ );+∞a  at some 0,³a  strictly monotonically increasing, 
and → ∞t  as .∞  According to [24], it belongs to the class 
L0, if for any real function ψ, so that ( ) 0ψ →t  as ,→ ∞t  the 
following equality holds

( )( )
( )

1
lim 1

→∞

 g + ψ  =
gt

t t

t

and belongs to the class Λ if for all c, 0 ,< < ∞c  we have

( )
( )lim 1.

→∞

g
=

gt

ct

t

Using functions α, β from the classes of L0, Λ, by anal-
ogy with [24], we shall introduce a generalised and a lower 
generalized order of the entire harmonic function u in ℝn by 
equalities

( ) ( )( )
( )

____ ln ,u
lim ,αβ →∞

α
ρ =

βr

M r
u

r

( )( )
( )

ln ,u
(u) lim ,αβ

→∞

α
λ =

βr

M r

r

where M(r, u) are determined by equality (7). 
Put

( ) ( )( )1, ,−= β αF t c c t  (9)

where β–1 is the function, inverse to β. 
Theorem 2. Let u be an entire harmonic function of an 

n-dimensional space, 3.³n  If for all c, 0 ,< < ∞c  one of the 
following conditions is satisfied

a) 
( ) ( )ln ,

, , 1 ,
ln

α β ÎΛ =
d F t c

O
d t  

;→ ∞t

b) 
( )0 ln ,

, ,lim ,
ln→∞

α β Î =
t

d F t c
L p

d t  
0 ,< < ∞p

where function F(t,c) is determined by (9), then the general-
ized order ( )αβρ u  of the entire harmonic function u in ℝn is 
determined by equality

( ) ( )
( )( )

___

1/
lim ,αβ −→∞

α
ρ =

 β  
kk p k

R

pk
u

e R E u

In the case, condition a) is satisfied, the number p is con-
sidered to be an arbitrary positive one. 
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Proof of Theorem 2. Consider the entire functions of 
complex variable z:

( ) ( )
( ) ( )

( )1 2
0

2 !
,

2 2 1 ! 2

∞

ν
=

ν  =   ν + + ν
∑

k
k
R

k

z
f z E u

Rk

( ) ( ) ( ) ( )2 1
2

1

4
2 .

2 !

∞
ν −

=

 = + ν   ν∑
k

k
R

k

z
f z k E u

R

For ,>r eR  by Lemma 3 and inequality (8), we obtain

( ) ( ) ( ) ( )(0)
1 2;f ; ; ;f ,m £ £ ξ +r M r u Y u M r   (10)

where ( )1;fm r  is the maximum term of power series of func-
tion ( )1f z  on circle { }: ,=z z r  and 

( ) ( )2 2;f max
=

=
z r

M r f z  

is the maximum of the module of function ( )2 .f z  Hence

( ) ( ) ( )1 2 .αβ αβ αβρ £ ρ £ ρf u f   (11)

Applying a formula that expresses the generalized order 
of an entire function of one complex variable in term of coeffi-
cients of its power series [24] and using the fact that function 
β belongs to one of classes Λ or L0, we obtain the equality

( ) ( ) ( )
( )( )

___

1 2 1/
lim ,αβ αβ −→∞

α
ρ = ρ =

 β  
kk p k

R

pk
f f

e R E u

which, together with (11), completes the theorem proving. 
Note that for an entire harmonic function u in ℝn from 

Theorem 2 it is possible to obtain:
1) at ( ) ( ) lnα = β =t t t  the formula for the order ρ(u):

( )
( )

___ ln
lim ;

1
ln

→∞
ρ =

k

k
R

k k
u

E u

2) at ( ) ,α =t t  ( ) ,ρβ =t t  
1

,=
ρ

p  where ρ  is the order of  
 
function u, the formula for the type ( ) :σ u

( )( ) ( )
___1 1lim ;

ρ ρ

→∞
σ ρ = kk

Rk
R u e k E u

3) at ( ) ,α =t t  ( ) ( ),ρβ = tt t
 
where ( )ρ t

 
is the proximate 

order of function u, the formula for the type ( )∗σ u  relatively 
to the proximate order ( ) :ρ t

( )( ) ( ) ( )
___1
lim ,

ρ∗

→∞
σ ρ = ψ kk

Rk
R u e k E u

where ( )= ψ τt  is the function, inverse to ( ).ρτ = tt  
Theorem 2 is complemented by the following theorem. 
Theorem 3. Let u be an entire harmonic function of an n-di-

mensional space, 3,³n  ,k
RE  F(t,c) are determined by equalities 

(3) and (9), respectively. If 0,β ÎL  and α is such that ( ) 0,α Îte L  
and for all c, 0 ,< < ∞c  the following condition is satisfied

( ) ( )ln ,
ln ln , ,

ln

 
= → ∞  

d F t c
o t t

d t

then the generalized order ( )αβρ u  for an entire harmonic 
function u in ℝn is determined by equality

( ) ( )
( )( )

___

1/
lim .αβ −→∞

α
ρ =

 β  
kk k

R

k
u

R E u

In the case of entire harmonic functions of zero order, a 
sharper characteristic of growth is given by the following 
theorem. 

Theorem 4. Let u be an entire harmonic function of an 
n-dimensional space 3,³n  k

RE  are determined by equality 
(3), ,α ÎΛ  ( ) ( )( )1, −Φ = α αt c c t  and for all c, 0 ,< < ∞c  at 
sufficiently large t, the following inequality holds

( ) ( )2 ,
1

,
0 ,ΦΦ

£ £ A t cd t c
A e

dt

where 1,A  2A  – constants, such that 

10 ,< < ∞A  20 .< < ∞A  

Then

( )( )
( )

( )
( )

___

___

1

ln ln ,
lim

ln ln

ln
max 1,lim .

1
ln ln

→∞

→∞ −

α
=

α

 
 α =      α        

k

k
k
R

M r u

r

k

E u
k

Here it is possible to choose ( ) ln ,α = jx x  where 1,³j  and 

1ln ln ,=x x  ( )1ln ln ln −=j jx x  

is the j-th iteration of the logarithm. 
Theorems 3, 4 directly follow from inequality (10) and 

similar results for entire functions of one complex vari- 
able [28]. 

Theorem 5. Let .Î Ru H  If condition (4) is satisfied, then 
function u can be continued to the entire harmonic function 
in space ℝn, 3,³n  for which

( )
( )( )1/

( ) lim .αβ −
→∞

α
λ ³

 β  
kp kk

R

pk
u

e R E u
  (12)

If, in addition, ratio 

( )
( )1+

k
R

k
R

E u

E u
 

is a nondecreasing function of k, and one of the a), b) con-
ditions of theorem 2 is satisfied, then inequality (12) trans-
forms into the equality. 

The proof of this theorem is analogous to Theorem 2 
proving. 

Corollary. Let u be an entire harmonic function in ℝn, 
3,³n  Then

( )

ln
( ) lim .

1
ln→∞

λ ³
k

k
R

k k
u

E u

The inequality becomes an equality when ratio 
( )
( )1+

k
R

k
R

E u

E u
 

 is a nondecreasing function of k.
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 In the course of studies, we obtained a criterion of the 
continuation of harmonic function in the ball of n-dimen-
sional space to the entire harmonic one. This criterion is for-
mulated in terms of the best approximation of the harmonic 
function in the ball by harmonic polynomials. The Lemma 
earlier proved in [10] was used to obtain the formulae for 
generalized characteristics of growth of a harmonic function 
in n-dimensional space. 

Taking into account that the harmonic functions are used 
not only in mathematics, but also in physics, mechanics, and 
other applied sciences, the obtained results are important.

6. Discussion of results of examining a uniform 
approximation of harmonic functions of several variables

Present study has examined a uniform approximation of 
harmonic functions of several variables. An approximation 
error of the harmonic function in the ball n

RK  by harmonic 
polynomials of degree no higher than k is determined as

( ) ( ) ( )inf max .
∈Π ∈

 = − 
 nk R

k
R P y K

E u u y P y

We established a rate of decrease of error ( ),k
RE u

 
so that 

a harmonic function in the ball of several variables continued 
to the entire harmonic function. We obtain estimates on the 
maximum modulus of harmonic function and approximation 
error in terms of uniform norm of spherical harmonics in 
expansion of a harmonic function in series. These results 
made it possible to obtain the most general characteristics of 
the growth of a harmonic function in terms of error ( ),k

RE u  

which allows us to estimate the growth of harmonic function 
by the behavior of this error. 

Since harmonic functions describe various stationary 
processes in mechanics and physics, it is important to esti-
mate their growth by expansion coefficients in series or by 
other characteristics, for example, approximation error. 

Other areas in which further research conducted is using 
other norms than the uniform one, as well as consideration 
of harmonic functions not in balls but in other domains of 
the n-dimensional space and their continuation to the entire 
harmonic ones.

7. Conclusions

1. We obtain the estimate of uniform norm of spherical 
harmonics in the expansion of a harmonic function into se-
ries in terms of the approximation error, which made it pos-
sible to obtain the necessary and sufficient conditions under 
which a harmonic function in the ball of an n-dimensional 
space continues to the entire harmonic function.

2. We obtain the estimates for a maximum modulus of an 
entire harmonic function of several variables in terms of the 
maximum modulus and the maximum term of some entire 
functions of a complex variable, which allowed us to repre-
sent the generalized and the lower generalized orders of the 
entire harmonic function in terms of the approximation error 
by harmonic polynomials of the continued function.

3. The maximum modulus of an entire harmonic function 
was evaluated. It made it possible to explore a slow growth of 
harmonic functions and to represent growth characteristics 
through the approximation error.
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