u] =,

Bcmanoseneno mneobxioni ma odoc-
mamui ymoeu, 3a AKUX 2apMOHilHY 6 Ky -
i pyHKUi0 n-6uMipHo20 npocmopy, n>3,
MOJCHA NPodoscumu 00 Uinoi zapmo-
HitiHol. YMo6u popmyatoromvcs 6 mepmi-
Hax HAUKpaw020 Habauxcenns uiei Qymx-
uii eapmonitinumu mnozounenamu. Taxoorc
OmMpuMaHo eupasu 0 Y3azaivHeH020 ma
HUNCHBOZ20 Y3A2aTIbHEH020 NOPSAOKIE UiN0T
eapmoniiinoi 6 npocmopi Qynxuii wepes
noxubxy anpoxcumauii pynuxuii, saxa npo-
008ICYEMBCA 2APMOHIUHUMU MHOZ20UTLE-
Hamu

Knrouoei caosa: cepuuni eapmo-
HIKU, Yina eapmoHiiina Qynkuis, y3a-
2a1bHeHUT NOPAOOK, HUICHIH Y3azalbHe-
HUU NOps0oK

[m, ]

Yemanoenenot mneob6xooumvie u ooc-
mamounvle Yca06Usl, NPU KOMOPLIX 2ap-
MoHuHecKyl0 6 wape QYnKuuio n-mep-
HO020 npocmpancmea, n>3, MOICHO NPO-
Onums K YenoU 2apMonu1eckoll. Yeaoeus
dopmyaupyromcsa ¢ mepmunax naunyu-
we20 npubaUINCEHUS IMOU PYHKUUU 2ap-
Monwveckumu mnozounenamu. Taxoce
nonyuenvl evipaxncenus 0as 0006uweHHO-
20 u HudCHe20 0600went020 NOPAOKO8
Yenoll 2apMoOHUMEeCKOU 6 npocmpancmee
Pynxuuu uepes nozpemnocms annpoxcu-
Mayuu Qyuxuyuu, Komopas npoooadca-
emcsa 2apMOHUMECKUMU MHO20MTIEHAMU

Kniouesvte cnosa: cpepunecxue zap-
MOHUKU, Ueaas 2apMOHuMecKas Qymi-
uus, 0606wennvLL NOPAVOK, HUNCHUN
00600wennvLil nopadox

0 =,

1. Introduction

In the theory of entire functions of one complex variable,
one of the most thoroughly examined issues is the relation
between the growth of such functions and behavior of Taylor
coefficients. Along with this, in [1, 2], the approximation of
entire functions on compact sets was studied and generalized
characteristics of such functions in terms of error approxi-
mation or interpolation were obtained. Similar studies were
conducted for harmonic functions as they expand into series
in spherical harmonics in space R", #>3 and, in addition,
into series in the adjoined Legendre polynomials in space R,
Also the problem on expressing the characteristics of growth
of harmonic functions in terms that are not related to the
coefficients of their expansion into series was considered. In
particular, characteristics of the growth of a harmonic func-
tion in an n-dimensional space were expressed in terms of the
norm of their gradient at the origin, while in a three-dimen-
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sional space — in terms of approximation errors of harmonic
functions in the ball by harmonic polynomials.

The relevance of such problems is due to the fact that
the harmonic functions play an important role not only in
theoretical mathematical research, but are used in physics
and mechanics in order to describe different stationary
processes. Therefore it is important to study generalized
characteristics of the growth of a harmonic function in an
n-dimensional space.

2. Literature review and problem statement

Paper [3] expressed generalized characteristics of growth
of entire functions of several complex variables by using the
best polynomial approximation and interpolation on com-
pact sets, paper [4] — in terms of the best approximation
error in L norm. Relative generalized and lower generalized




orders for the entire functions of two complex variables were
introduced and investigated in [5]. Similar problems were
considered for analytic functions of several complex vari-
ables in [6, 7].

The first studies into harmonic functions of a three-di-
mensional space were made in [8], in particular, by using
an integral Bergman representation of a harmonic function
in R3 by an entire function of a complex variable and a real
parameter, they represented the order of a harmonic func-
tion and the type of an axisymmetric harmonic function in
R?in terms of expansion coefficients of these functions by
the adjoined Legendre polynomials. This result was refined
and generalized in [9, 10]. Paper [11] derived formulae for
the generalized order of a harmonic function in space R” in
terms of its Fourier coefficients, while articles [12, 13] repre-
sented characteristics of the growth of a harmonic function
in space in terms of the norm of its gradient at the origin.
Paper [14] investigated the growth of a J-universal harmonic
function in space.

Paper [15] addresses the study of uniform approximation
by polynomials of the generalized axisymmetric potentials.
The order and type of potentials are represented in terms
of an approximation error. In [16], authors investigated ap-
proximation with the Chebyshev polynomials of the entire
solutions to the Helmholtz equation and obtained certain es-
timates for the growth parameters of these solutions in terms
of coefficients and an approximation error in the sup norm.
Study of the generalized g-type and generalized lower g-type
solutions of ordinary elliptic differential equation in partial
derivatives is given in article [17]. Approximation by the
Chebyshev polynomials of the entire solutions of the Helm-
holtz equation in Banach spaces B ( p,q,m) is considered in
[18]. Paper [19] builts on the studies of [16]. Expressions for
the order and type of solutions of certain linear differential
equations in partial derivatives in terms of error in the
axisymmetric harmonic polynomial approximation and the
Lagrange interpolation were derived in [20]. In [21], a slow
growth and the approximation of pseudoanalytic functions
on disk were investigated.

The necessary and sufficient conditions under which a
harmonic function in the ball of a three-dimensional space
continues to the entire harmonic one were established in
[22]. It also represented the order and type of an entire
harmonic function in terms of an approximation error of the
continued function with harmonic polynomials. A similar
issue was examined in [23] for the (p,q) orders and types of
harmonic function in R

A review of the scientific literature revealed that a
number of papers were devoted to examining a relation
between the growth of harmonic functions of a three-di-
mensional or an n-dimensional spaces and the behavior
of expansion coefficients of these functions into series by
the adjoined Legendre or Chebyshev polynomials, or in
spherical harmonics. Along with this, the approximation
of harmonic functions was studied, as well as solutions of
some differential equations in partial derivatives using
different polynomials with respect to different norms,
while expressions for the various characteristics of growth
of such functions in terms of approximation or interpola-
tion errors were obtained.

Papers [22, 23] considered uniform approximation of
harmonic functions in a three-dimensional space and, in or-
der to characterize a growth of the continued functions, the
order, type, the (p,g) orders and types were applied.

Of significant interest, therefore, is the examination of
a uniform approximation in an n-dimensional space, and
in order to characterize the growth of an entire harmonic
function in space R”, more general characteristics of growth,
outlined in [24], are employed.

3. The aim and objectives of the study

The goal of present work is to establish conditions under
which a harmonic function in the ball of an n-dimensional
space continues to the entire harmonic function, and to
derive formulae for the generalized growth characteristics of
harmonic function in space.

To accomplish the set goal, the following tasks have been
resolved:

— to obtain an estimate for the uniform norm of spherical
harmonics in terms of best approximation of harmonic func-
tion in the ball by harmonic polynomials;

— to assess approximation error of a harmonic function
in the ball in terms of a maximum modulus of a harmonic
function in space;

— to assess the maximum modulus of a harmonic function in
space in terms of a maximum modulus of some entire function
of one complex variable or a maximum term of its power series.

4. Criterion of the continuation of harmonic function in
the ball of n-dimensional space to the entire harmonic

Let §” ={xeR”:
at the origin, while

x| = 1} be a unit sphere in R” centered
2n?

is its surface area, where I denotes the Gamma function.

A spherical harmonic or a sperical Laplace function of
degree k, k€Z.={0, 1, 2,..} which is denoted by Y®, is called a
restriction of a homogeneous harmonic polynomial of degree
k on the unit sphere ", n>2, [25].

A set of spherical harmonics of degree k can be consid-
ered as a sub-space of the space L?(S") of real-valued func-
tions with the scalar product

(.8)= | /(x)(2)35,

where d§ is the element of the surface area on the sphere

Sn It {K(k),...,YY(f)} is an orthonormal base in the given sub-

space, then

Jfy,.y®
E:JO{ 1 Vi }
will be an orthonormal base in space L?(S"). Here

_ (2k+n—2)(k+n—3)!
= kl(n-2)!

is the quantity of linearly independent spherical harmonics

of degree k.



Let u be an entire harmonic function in R”, that is, the
harmonic function over the whole space R”. Then it expands
into a Fourier-Laplace series [26]

= Y9 (x5u) r, )

k=0
where xe.5”,

Dy

Y(k)(x;u)zafk))q(k)(x)+a£k)Y2(k)(x)+...+ayk o (x),

= (uw¥®), j=11,

(u,Yj(k)) is the scalar product in A (S”)

At n=2, spherical harmonics reduce to ordinary trigo-
nometric functions of an angle. At n>3, they have a more
complicated structure and are connected with some polyno-
mials of special form.

Assume that d,=1, d,=n-2 at n>2, while

n—2
v= )
2
Then
2(k
Y® (xyu)rt = Ei (—:—)v) J C, [(x,y)]u(ry)dS(y), 2)

" () is the sclar product in R” and C}
are the Gegenbauer polynomials of degree k and order v
[27], which are determined by

where keZ , xeS§”,

1-1? k+v
—_— =142 —CV
(1 21t+t)V+1 2 d,

where ‘t‘si, 0<t<1.
Let

Kp={yeRr":

y|SR}

be the ball of radius R in space R”, n>3, centered at the
origin, and K} be the closure of Kj. A class of harmonic in
Ky and continuous on K} functions will be denoted by Hg,
where 0< R <o,

Let TI, be a set of harmonic polynomials of degree no
higher than k. Approximation error of function ue H, by
harmonious polynomials P eIl, will be determined as

Ey(u)= inf {max|u P(y)|} 3)
Pell, yeK®

Theorem 1. Function u e H,, continues to the entire har-

monic function of an n-dimensional space R”, n>3, if and

only if the following equality holds
;ei_l)gk Ef(u)=0, 4)

where Ej(u) are determined by expression (3).
To prove the theorem, the following lemmas are required.
Lemma 1.1f ue H,, then for all ke N inequality

2v
maX‘Y(k) (x;u)‘ Rt < 74(k+2v) k-t
(2v)t ¢

xes"

(u)

holds, where

Ej(u) are determined by expression (3).

Proof. Since a harmonic polynomial is the sum of homo-
geneous harmonic polynomials, then on the basis of addition
theorem [27] for the Gegenbauer polynomials C}, we obtain

Jci(xg)]P(wg)ds(E)=0,

5

where PeIl, ,, 0<t<R, xeS". Considering this, we shall
re-write (2) as

Y® (xyu)th =

k”jcv [(2,8)]{u(we)- P(wE)}ds (2)

Hence, taking into account equality
G (0]=¢ (1)

from [27], where

max
—1=t<t

vy Er2v=t
GO="G
we find
|Y(k)(x u)| T <}i+TVIII;I?<X|u ©€)-P(€)C (o <

B (2\7)' r«‘,eKi;

Next, it follows from determining an error Ej(u) that
there exists polynomial P* eIl ,, for which

max
€eKy

u(t8) P () <2E; (u). (6)

Putting P=P" into inequalities (5) and taking into ac-
count inequality (6), as well as arbitrariness of T, we obtain
the assertion of Lemma 1.

Let
]
B, = @%max Y(k)(x;u)|
(k+2v)" wes"
and
M(r,u)zmzsizc u(m)|, r>0 (7

be a maximum modulus of function u.

Lemma 2. For an entire harmonic function u in R”, n>3,
which is assigned by the series (1), the following inequali-
ties hold

B, <M (r,u)r™

forall keZ, and r>0.
The proof of this Lemma is given in [10].



Lemma 3. For an entire harmonic function « in R”, n>3,
the following estimation holds

2
(2v)!

forall r>eR and keZ,.
Proof. Let us consider function

— zk;Y(j)(Z:’ u)r

Jj=0

E} (u)<

(2v+1)1(k+2v)" M(r,u)(f)k

where >0, £eS8". It is a harmonic polynomial of degree
no higher than %, that is Qell,. Taking into acount the
definition of error Ej(«) and considering Lemma 2, and
that the function ue H, expands into a seies (1) for all r,
0<r<R, wefind

E(u)< 11:[%(|u(1:§)—Q(1: N(Gu)R’ <

o< 3 malr
ﬁM(r,u) i (j+2v)" (]:)] =

J=k+1

= CimAlhﬂd(f)kji(j+2vY(f)ﬁé

J=k+1

Let us estimate the last sum. For »>eR, we obtain

> (+2v) (R)jk <

=k r

<et i (j+ 2v)2V el < ekJ(t + 2V)ZV e'dt.

Jj=k+1 b
Selecting s=2v and hs(t)z(t+s)3 and integrating s+1
times in parts, we obtain

| hs(t)e"dt:[—e‘f(hx(t)+hx'(t)+...+h§3)(t))] .

k k

oo

Considering that

S—1

- !(t+s)

for i=1,s, we find

I s '(k+s B

Jolde=e Y -
! DTy
V)I(k+2v)"

z 2v—z)

The last sum does not exceed (2v+1)!(k+2v)”, which
proves Lemma 3.

Proof of Theorem 1. Assume that function ue H, con-
tinues to the entire harmonic function in space R”, n23,
which will also be denoted by u. Then equality (4) directly
follows from Lemma 3. On the contrary, employing Lem-
ma 1, we obtain

iY(k) (F,;u)rk

£=0

< |Y(°) (?’;,u)| +

!
4 & 2v Lk r

+—— (k+2v) E ' (u)| =1, 8
ey e 2y ) 7 ®
hence, based on (4), a uniform convergence of series in the
right side of equality (1) on compact subsets of the R” fol-
lows. Therefore, setting the function ue H, by a series (1),
we shall continue it over the whole space R”.

5. Formulae for the generalized and lower generalized
orders of a harmonic function of an n-dimensional space

Let the function y be defined and differentiable on inter-
val [a;+<>0) at some a >0, strictly monotonically increasing,
and t—e as . According to [24], it belongs to the class
LY, if for any real function v, so that \|l(t) —0 as t >, the
following equality holds

i y[(l + w(t))t]
)

t—o0 Y t

=1

and belongs to the class A if for all ¢, 0 <c¢ <o, we have

(@)

= y(t) -t

Using functions a, p from the classes of L, A, by anal-
ogy with [24], we shall introduce a generalised and a lower
generalized order of the entire harmonic function # in R” by
equalities

7oc(lnM( ))
Pos (1) = hmiﬁ(r) . A

r—o0

where M, u) are determined by equality (7).

Put
F(t,c)zB'i(coc(t)), )
where B! is the function, inverse to B.

Theorem 2. Let u be an entire harmonic function of an
n-dimensional space, n>3. If for all ¢, 0 <c <o, one of the
following conditions is satisfied

dInF(t,.c)
a) a,BeA, TTne O(1), t—>os;

. dInF(t,c)
b Llim——Z=p, 0 oo,
) apelllim—r - —==p, 0<p<

where function F(,c) is determined by (9), then the general-
ized order paﬁ(u) of the entire harmonic function u in R” is
determined by equality

b ()= i ——2(PH)

ko B(e”R [E,’z (u)]q/k) ,

In the case, condition a) is satisfied, the number p is con-
sidered to be an arbitrary positive one.



Proof of Theorem 2. Consider the entire functions of
complex variable z:

Mz

=~
i

J@' . (u)(z)k,

v )+ 2v)"

£(2)=3 (24V b2y (u)(;)k.

For r>eR, by Lemma 3 and inequality (8), we obtain

u(r;fi)SM(r;u)S|Y(°)(§;u)|+M(r;f2), 10)
where U r;f1) is the maximum term of power series of func-
tion f, (2 on circle {z:|z| = r}, and

Inax|f2 |

is the maximum of the module of function f,(z). Hence

Pap (ﬂ)spaﬁ(u)gpaﬁ(ﬂ)'

Applying a formula that expresses the generalized order
of an entire function of one complex variable in term of coeffi-
cients of its power series [24] and using the fact that function
B belongs to one of classes A or L?, we obtain the equality

o(pk)
a]}(fi) of -}[2) P ——1/k’
P Pus ( ”“B(ePR[E;;(u)] )

which, together with (11), completes the theorem proving.
Note that for an entire harmonic function u in R” from
Theorem 2 it is possible to obtain:
1)at a(t)=B(¢)=Int the formula for the order p(u):

11

— kink
p(u)=lim———;
Y EL(u)

2)at aft)=t, B(t)=¢" pzl, where p is the order of

function u, the formula for the type G(u):

R(G(u)pe)vP = @ RPHER (u);

3)at o(t)=t, B(t)= ™, where p(¢) is the proximate
order of function u, the formula for the type 6" (u) relatively
to the proximate order p(t):

R(o" (u)pe)”” =limy (k){/EL (u),
(t)

where ¢ = \U(T) is the function, inverse to T=¢"".
Theorem 2 is complemented by the following theorem.
Theorem 3. Let u be an entire harmonic function of an n-di-
mensional space, n>3, E%, F(t,c) are determined by equalities
(3) and (9), respectively. If Be I°, and o is such that (x?et) el
and for all ¢, 0 < ¢ <o, the following condition is satisfied

ln(dlnF(t’C)Jz o(Int), t—eo,

dlnt

then the generalized order paﬁ(u) for an entire harmonic
function  in R"is determined by equality

ﬁ&_
Paﬁ( ) Lm B(R[Eﬁ(u)r/k)

In the case of entire harmonic functions of zero order, a
sharper characteristic of growth is given by the following
theorem.

Theorem 4. Let u be an entire harmonic function of an
n-dimensional space n>3, Ej are determined by equality
(3), e, ®(tc)=0 (coc(t)) and for all ¢, 0<c<eoo, at
sufficiently large ¢, the following inequality holds

< d®(t,c)

<A eA2<1>(L,c)y
dt !

where 4, A, — constants, such that
0<A <oo, 0<A, <00,

Then

i oc(lnlnM(r u))
o= olnlnr)

= max{1,lim o(Ink) .
o a[ln(zln[Eﬁ (u)]_1):|

Here it is possible to choose au(x)=In, x, where j>1, and
In,x=Inx, ln]. x=In (ln]._1 x)

is the j-th iteration of the logarithm.

Theorems 3, 4 directly follow from inequality (10) and
similar results for entire functions of one complex vari-
able [28].

Theorem 5. Let ue H,. If condition (4) is satisfied, then
function u can be continued to the entire harmonic function
in space R”, n>3, for which

Ao (1) > lim o(pk)

k—mm' 12)

If, in addition, ratio

Ep(u)

£ (u)

is a nondecreasing function of &, and one of the a), b) con-
ditions of theorem 2 is satisfied, then inequality (12) trans-
forms into the equality.

The proof of this theorem is analogous to Theorem 2
proving.

Corollary. Let u be an entire harmonic function in R”,
n=3, Then

M= lim—1E
k—oo
1
VE ()
(1
The inequality becomes an equality when ratio T (u)
R

is a nondecreasing function of &.



In the course of studies, we obtained a criterion of the
continuation of harmonic function in the ball of n-dimen-
sional space to the entire harmonic one. This criterion is for-
mulated in terms of the best approximation of the harmonic
function in the ball by harmonic polynomials. The Lemma
earlier proved in [10] was used to obtain the formulae for
generalized characteristics of growth of a harmonic function
in n-dimensional space.

Taking into account that the harmonic functions are used
not only in mathematics, but also in physics, mechanics, and
other applied sciences, the obtained results are important.

which allows us to estimate the growth of harmonic function
by the behavior of this error.

Since harmonic functions describe various stationary
processes in mechanics and physics, it is important to esti-
mate their growth by expansion coefficients in series or by
other characteristics, for example, approximation error.

Other areas in which further research conducted is using
other norms than the uniform one, as well as consideration
of harmonic functions not in balls but in other domains of
the n-dimensional space and their continuation to the entire
harmonic ones.

6. Discussion of results of examining a uniform
approximation of harmonic functions of several variables

Present study has examined a uniform approximation of
harmonic functions of several variables. An approximation
error of the harmonic function in the ball K by harmonic
polynomials of degree no higher than % is determined as

)= jnf fmarlu)-2(0)]

yeKp

We established a rate of decrease of error E,ﬁ (u), so that
a harmonic function in the ball of several variables continued
to the entire harmonic function. We obtain estimates on the
maximum modulus of harmonic function and approximation
error in terms of uniform norm of spherical harmonics in
expansion of a harmonic function in series. These results
made it possible to obtain the most general characteristics of
the growth of a harmonic function in terms of error Ej (u),

7. Conclusions

1. We obtain the estimate of uniform norm of spherical
harmonics in the expansion of a harmonic function into se-
ries in terms of the approximation error, which made it pos-
sible to obtain the necessary and sufficient conditions under
which a harmonic function in the ball of an n-dimensional
space continues to the entire harmonic function.

2. We obtain the estimates for a maximum modulus of an
entire harmonic function of several variables in terms of the
maximum modulus and the maximum term of some entire
functions of a complex variable, which allowed us to repre-
sent the generalized and the lower generalized orders of the
entire harmonic function in terms of the approximation error
by harmonic polynomials of the continued function.

3. The maximum modulus of an entire harmonic function
was evaluated. It made it possible to explore a slow growth of
harmonic functions and to represent growth characteristics
through the approximation error.
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