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1. Introduction

Variational principles and optical-mechanical analogy 
were essential for the development of quantum mechanics. 
The analogy of motion of the mechanical conservative sys-
tems and the propagation of light rays in an optically het-
erogeneous medium was first paid attention to in paper [1]. 
Thus, from the stationary Hamilton-Jacobi equation 
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where W(q) is the Hamilton’s characteristic function, U(q) is 
the potential energy of a particle, E is the total energy of a 
particle, m is the mass of a particle; and the eikonal equation 
that describes the propagation of a light ray
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where ( )ϕ q  is a function of the eikonal ‒ a light wave phase, 
λ is the light wavelength, it follows that these equations are 
similar in the general form. 

L. de Broglie shed a new light on the optical-mechanical 
analogy [2–4]. He considered the correspondence between a 
wave and a particle based on equations (1) and (2), and on 
the basis of variational principles by Maupertuis and Fer-
mat. It is the very optical-mechanical analogy at the level 
of geometrical optics that allowed L. de Broglie to establish 
wave properties of the particle. Thus, if one puts / ,ϕ = W h  
in (2), then we obtain from (1) and (2)
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where h is the Planck’s constant. 
Optical-mechanical analogy and the ratio of Lou-

is de Broglie (3) were consequently employed by Schroding-
er to formulate a wave equation [5]. 

Experimental achievements in the study of the behavior 
of separate microscopic systems revive in turn sustainable 
interest in verifying the basic provisions of quantum theory 
and stimulate a deeper rethinking of its physical principles, 
a role of information in the theoretical description of the 
micro-particle behavior [6, 7].

2. Literature review and problem statement

Optical-mechanical analogy is, first of all, a view of the 
nature of light. Optical-mechanical analogy has remained 
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relevant up to now [8–10]. Study [8] shows the existence of 
connection between the trajectories of particles under the ac-
tion of nonholonomic constraint, and the trajectories of light 
rays with a variable refractive index. Article [9] provides a 
proof of the existence of a new optical-mechanical analogy 
between the equation of rotational motion of the body in 
mechanics (taking into account the principle of relativity) 
and the first pair of Maxwell’s equations. The Hamilton’s 
optical-mechanical analogy between a material’s particle 
trajectory in potential fields and the trajectory of light rays 
in media with a continuously changeable refractive index has 
played an important role in the substantiation of Schröding-
er’s wave mechanics [10]. In this case, based on the existing 
variational principles, this analogy is drawn only at the level 
of geometrical optics. In the given paper, the motion of an 
object is explored using a V-function method, which consists 
of a local variational principle (LVP), new statement of the 
direct and inverse problems of dynamics [11, 12].

In some problems, light manifests itself as a particle. 
In other problems ‒ as a wave. In other words, a dualism 
of the wave and the particle is detected. The same dualism 
manifests itself also for the particles of matter. Continuing 
attempts to comprehend paradoxical manifestations of a 
corpuscular-wave dualism in the motion of the electron (as 
well as other micro-particles) do encourage undertaking new 
research [13–16].

This makes it possible to argue about theoretical inter-
est in the approach based on corpuscular-wave monism to 
explaining the nature of the particles (the object). In partic-
ular, a theory being developed can apply the description of 
physical reality where the existence of the particle trajectory 
is taken into account, which reflects the fact of the existence 
of the particle, while it is also accepted that the motion of a 
particle is determined by a physical wave V(x,t).

3. Research goal and objectives

The goal of present work is to demonstrate the capabili-
ties of a V-function method to study the motion of an object.

To accomplish the goal, the following tasks have been set:
– to perform optical-mechanical analogy at the level of 

wave optics based on the local variational principle, taking 
into account the wave and the trajectory motion of the object;

– to conduct research into the properties of wave nature 
of the electron motion in the hydrogen-like atom as a solu-
tion to the direct problem of dynamics;

– to devise a technique for finding the ultimate solution 
to the stationary wave equation for a hydrogen-like atom.

4. Research materials and methods

We shall define the content of a V-function method. Let 
the trajectory motion of an object is assigned by a system of 
differential equations from classical physics:

( ),d x f x
dt

=   (4)

where the vector of phase particle coordinates T
1 2( ) ( , ,..., )= nx t x x x 

T
1 2( ) ( , ,..., )= nx t x x x is assigned in n-dimensional Euclidean space 

( Î nx R ), t is the time.  

Along with a system of equations (4), we shall also in-
troduce a wave function V(x,t). The rate of its change for the 
system being studied (4) will be determined by expression

T .∂ ∂= +∂ ∂
d V V V f
dt t x

Consider an isochronous variation of the rate in the wave 
function change

( ) T T ,∂ ∂ ∂d = d + d + d∂ ∂ ∂
d V V V f V f
dt t x x

 

here

T ,∂d = d∂V V x
x

 .∂d = d∂f f x
x

 

We accept that at a variation in the rate of change in  
 
wave function ( )d d V

dt
, an object from a certain initial state 

passes into the state that is different by a new spatial coor-
dinate .+ dx x  Such a transition will be referred to as a wave 
transition of the object, at which a magnitude dV  assigns 
the possible wave transition from the initial state to the new 
state, while dx  determines trajectory variations. When im-
plementing a wave transition, the spatial variation takes the 
form of displacement .d = = �x dx xdt, implemented in space.

Let us formulate an LV principle: out of all the possible 
transitions to a new state, the only one, which is actually car-
ried out, is the one at which in each moment a rate of change 
in the wave function V(x,t) takes a stationary value

( ) 0.d =d V
dt

  (5)

By assuming the feasibility of (5), we also accept that a 
wave function satisfies additional condition for a full varia-
tion in the change rate of wave function V(x,t):

( ) 0,Δ =d V
dt

    
(6)

where ( ) ( ) ( ). . . .d t
dt

Δ = d + Δ

Once we have classical equations (4) and conditions (5), 
(6), we shall derive a wave equation for V(x,t), taking into ac-
count the implementation of wave transition (d = = �x dx xdt) 
in (5) and (6):
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∂ ∂
→ − − =

∂ ∂

  

(7)

where V(x,t) is the piecewise continuous, finite, single-val-
ued function, 2[ ( , )]= ∂

i jx xW V x t  is the function matrix. 
Equation (7) is a necessary and sufficient condition for the 
feasibility of (6). We shall demonstrate that there is equality
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According to the method of a V-function, particle motion 
occurs in such a manner that at each point in time, the parti-
cle’s velocity is co-directed with the wave function gradient, 
that is

T .∂ ∂=∂ ∂
� �V x V x

x x
 

Hence, we obtain 2/ ( ) .∂ ∂ = �V x k x x  Further, we assume 
that a velocity field in a three-dimensional space coincides 
with the field gradient corresponding to it, which occurs at 

2 2( ) =k x k , and, accordingly, we obtain equality

2/ .∂ ∂ = �V x k x  (9)

In the case when a wave transition is implemented, rela-
tion (5) takes the form

T T T

0 const.
d V d V V

x xdt x
dt x dt x x

   ∂ ∂ ∂
d = = ⇒ =   ∂ ∂ ∂   

� �  (10)

Then, taking into account (9) and (10), the equality (8) 
should hold, that is,
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Consequently, equation (7), considering (8), takes the form

2 T 0.∂ − =� �
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Moreover, if the following condition is satisfied
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equation (11), considering (9), takes the form:
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Equations (4) and (12) describe trajectory and wave 
motion of the particle being studied. In order to find a solu-
tion to this system of equations, it is required to know the 
boundary conditions. Note that we shall use as the boundary 
conditions for (12) the properties of a wave on the trajectory 
of a particle. The proposed approach to the description of 
particle behavior includes a system from the trajectory equa-
tion (4) and the wave equation (12). Further, we shall find 
the boundary conditions for wave V(x, t) on the trajectory 
of a particle.

Condition 1. 
We obtain from equality (9) a boundary condition for 

wave in point = Mx x  of the trajectory of a particle

2/ .= =∂ ∂ = �
M Mx x x xV x k x  (13)

Condition 2.
Assuming the implementation of wave transition in (5), 

we shall obtain

T const.∂ =∂
�V x

x
   (14)

Employing condition (14), for a full variation (6), we in 
turn obtain equality

( ) 0,∂ =∂
d V
dt t

 

applying which we find, respectively, condition 2 for wave 
behavior on the trajectory of a particle

1
0

,
=

∂ =∂ t
V k

t
  (15)

where 1,2k  are some constants. 
Condition 3. 
It follows from the condition of connectedness between a 

wave and a trajectory (wave amplitude V(x, t) is equal to zero in 
the point of particle position with coordinate = Mx x  in time t)

( , ) ( , 0) 0.= = = =MV x x t V x t   (16)

Direct problem of dynamics in the method of V-function 
is stated as follows: 

The differential equations are given that describe the 
motion of an object (4). 

It is required to determine wave function V(x,t) that 
satisfies equation (12). For the case = ϑ�x  (n=1), we obtain 
a solution to equation (12) considering (13)–(16) in the 
following form:

( , ) .
ω ± −ω  ϑ= ±

i x t

V x t Ae  (17)

Inverse problem of dynamics is stated as follows: 
For a given wave function V(x,t), which satisfies equation 

(12), it is required to derive differential equations of the mo-
tion of an object (4). 

At the given wave function, a solution to the inverse 
problem of dynamics immediately follows from (9):

.
∂

=
∂

�
i

i

V
x k

x
 (18)

For the one-dimensional case (n=1), equation (11) takes 
the form:

2 2
2

2 2

( , ) ( , )
0.

∂ ∂
− =

∂ ∂
�V x t V x t
x

t x  (19)

Assume that the wave function is given in the form of a 
plane wave equation (17), which propagates in the motion 
direction of the object. Then (17) will satisfy (19) if .= ϑ�x  
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In this case, it follows from equality (15), where the wave 
function is given in the form (17), that

( , )
const.

ω ± −ω  ϑ∂
= ω =

∂
∓

i x tV x t
iA e

t

 
(20)

The constant in the right part (20) is a real number. 
Therefore, in order to satisfy condition (20), the phase should 
take the values:

,
2

ω π   φ = − ω = ω − = + π      ϑ ϑ
x

x t t n  (n=0, 1, 2, 3....). (21)

Since = ϑ ⇒�x ,− =
ϑ
x

t C  equality (21) takes the form:

0(1 2 ) (1 2 ),
2 2 2

C n n n
C

ωπ π
ω = + π ⇒ ω = + = +   (22)

that is, in solution (17), natural frequencies can take only cer-
tain discrete values. Then (20), considering (21) and (22), will 
take the form:

0 (1 2 ) const.
2

ω
ω = + =A A n  (23)

This means that equality (22) also takes only discrete 
values. 

From equality (9), considering (17), it follows that

2 2

( , )
.

ω ± −ω  ϑ∂ ω
= ± = = ϑ

∂ ϑ
�

i x tV x t A
i e k x k

x  (24)

Hence, considering (20), we obtain

2
2

( , )
const.

∂
ϑ = ϑ =

∂
V x t

k
x  (25)

Equality (25) is nothing else than the fulfillment of (10) 
at n=1.

5. Results of studies into particle motion

5. 1. Continuation of the optical-mechanical analogy
Let us consider the trajectory motion of a particle, which  

 
satisfies equation (18) 

∂
=

∂
� V
x k

x
. Trajectory motion of the 

particle, as follows from (18), is matched with the wave mo-
tion, which satisfies wave equation (19):

22 2

2 2

( , ) ( , )
0.

∂ ∂ ∂ − =  ∂ ∂ ∂
V x t V V x t

k
t x x  

(26)

Function (17) 
( )

( , )
ω −ω
ϑ=

i x t
V x t Ae  will satisfy equation (26), 

if equality (21) holds. In this case, we obtain 

2
2 .
ϑ

=
ω

k
A  

Let here 2 =k m  be the mass of the particle. Then am-
plitude A  takes dimensionality of the action. If we accept  
 

,
2

= =
π
�

h
A  h is the Planck’s constant, then the rule of energy 

quantization follows from (23), similar to that by Schröding-

er in the case of Planck oscillator. In this case, we obtain 
from (24) considering (21)

.
ω

= ϑ
ϑ
�

m
 

(27)

By employing the results obtained, it is possible to draw 
such a correspondence between the wave and the particle [9]

,ϑ = ϑ  
2 2

,
ϑ

ω = =
� �

m E

,λ =
ϑ

h
m

 
.= �A
 

(28)

In this case, the wave and trajectory measurements can 
be described by a single wave function:

( )
1 1

( , ) .
ω ω   ± −ω ± − ω ± ϑ −      ϑ ϑ= = =

�
�
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i x t i x t i m x Et

V x t Ae e e  (29)

In relations (28), principal is the equality between the 
wave phase velocity and the particle speed, while in quan-
tum mechanics, the particle’s speed equals the group ve-
locity of waves by L. de Broglie. The energy quantization 
condition (23) is produced naturally as a result of solving the 
inverse problem. According to the second relation in (28), 
energy is transferred by a particle. In turn, according to the 
third relation in (28), the pulse of a particle determines wave-
length λ, which coincides with the known formula by Louis 
de Broglie. In the physical sense, wave ( , )V x t  characterizes 
properties of the activity that manifests itself in the motion of 
a particle. Thus, the wave is connected by its node with the lo-
cation of the particle and thus guides it, however, the particle 
(trajectory) generates a wave that propagates with it.

In addition, equation (26) has a solution at 2 0.= →k m  In 
this case, we obtain a wave function in the form of a mono-
chromatic flat wave without the particle, which propagates 
at a given speed and with a given frequency. This can explain 
the interference pattern when the particle (photon) passes 
through two slits.

5. 2. Motion of the electron in a hydrogen-like atom
Let us consider the motion of an object (a particle) in a 

3-dimensional potential force field in the Cartesian coordi-
nate system. Let the trajectory equations of the object (the 
particle) (4) allow the first integral of motion in the form of 
the law of conservation of energy of a particle, that is, 

2 2 2( )
( , , ) ,

2
+ +

+ =
� � �m x y z

U x y z E  (30)

where m is the mass of a particle, E is the total energy of 
a particle, U is the potential energy of a particle. Then the 
object motion (of the particle) is fully described by the fol-
lowing system of equations (30) and (12):

2

2
2 2

2

,
2

0,

m
U E

V
V

t

 ϑ
+ =


∂ − ϑ ∇ = ∂

 (31) 

where 
2 2 2

2
2 2 2

∂ ∂ ∂
∇ = + +

∂ ∂ ∂x y z
is the Laplace operator, 2 2 2 2ϑ = + +� � �x y z  

 
2 2 2 2ϑ = + +� � �x y z  is the square of the particle velocity. Hence, the 

second equation, considering the first one, takes the form:
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−∂
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∂
E UV

V
t m  (32)

We shall apply a method of separation of variables in 
equation (32) ( )( , , ) ( )=V X x y z T t ,

2

22
2

( )
2( ) ( , , )

.
( ) ( , , )

− ∇
= = −ω

d T t
E U X x y zdt

T t mX x y z  
(33)

Consequently, we obtain the following stationary equation

2 22( )
0.

−
∇ + ω =

E U
X X

m

 
 (34)

As is known, potential energy of a hydrogen-like atom 
is equal to

2( ) .= −U r Ze r  (35)

Then equation (34), considering (35), takes the form

2 2
0 0,

a −β + Δ + ω =  
X X

r
  (36)

where 

2
0

2
,β = −

E
m

 22
.a =

Ze
m

In equation (36), we shall proceed to a spherical coordi-
nate system

2
0

2
2

2 2 2 2 2

2

1 1 1
sin

sin sin

0.

r

r X
r r r r r

X

a −β + ´  

 ∂ ∂ ∂ ∂ ∂   ´ + θ + +       ∂ ∂ θ ∂θ ∂θ θ ∂φ 
+ω =

 

(37)

where

2
2 2

2

2 2 2

1 1
sin

sin

1
,

sin

r
r r r r

r

∂ ∂ ∂ ∂   + θ +      ∂ ∂ θ ∂θ ∂θ
∂

+ = Δ
θ ∂φ

 

 

is the Laplace operator in a spherical coordinate system.  
We shall search only for the spherically symmetric solu-

tions. Then ( ),=X R r

2
2

2 2
2

2 2 2

1

1 2
2

d d
r

r dr dr

d d d d
r r

r dr dr dr r dr

 Δ = =  

 
= + = +  

 

and equation (37) takes the form

2 2 2
0 2

1
0.

a   −β + + ω =      
d dR

r R
r r dr dr

  (38)

We shall replace =
u

R
r

 in equation (38) to obtain

2 2 2
0 2

2
2 2

0 2

2 2

2 2

1
0

1
0

0.

u
dd urr

r r dr dr r

d u u
r r dr r

d u r
dr r

 
a   −β + + ω = ⇒       

a ⇒ −β + + ω = ⇒  

ω
⇒ + =

a − β
 (39)

Represent equation (39) in the following form 

22
20

02 2
0

0,
 a

+ − = a − β 
kd u

k u
dr r   (40) 

where 

2 2
2
0 2

0

.
2

ω ω
= = −

β
m

k
E

 

The solution to be obtained to the direct problem of 
dynamics for equation (40) must satisfy natural condition 

0( ) 0,= =u r r  (here 2 2 2
0 0/ / /= a β = − =r Ze E Ze E ), which 

corresponds to the implementation of boundary conditions 
(16), at which amplitude of the wave becomes zero at 0,=r r  
where, accordingly, as a solution to the inverse problem, the 
particle acquires a trajectory. Find the asymptotic solution 
to equation (40) at .→ ∞r

2
2

02 0.− =
d u

k u
dr

  (41)

We shall record a general solution to equation (41) in 
the form

0 0( ) ( ) ( ) ( ).−
∞ − + − += + = +k r k ru u r u r e f r e f r  

Then

0 02
0 ( ) ( ),± ±

± ±= ± +′ ′k r k ru k e f r e f r  

0 2
0 0( ( ) 2 ( ) ( ))±

± ± ±= ± +′′ ′′ ′k ru e f r k f r k f r  

and equation (40) takes the form

1
0

0

( ) 2 ( ) ( ) 0,± ± ±
β″ ′± + =
−

f r k f r f r
r r   (42)

where

2 2 2 2 21
1 0 0 2/ / ,β = a β = ω ek Ze m E  

2 2 2
0 0/ / / .= a β = − =r Ze E Ze E

  
(43)

Solution to equation (42) will be searched for in the form 
of the following power series

( )( )
00

( ) ,
∞ ±

± =
= −∑ m

mm
f r a r r  (44)

where a particle trajectory actually becomes localized on the 
surface of radius 0.=r r  Equation (42) after the given substi-
tution of (44) takes the form
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∞
−± ± ±

+
=

− − ±

± − − + β − = ⇒

⇒ + + β − =

∑

∑ ∑

∑ ∓

 

(45)

Equality (45) is identically fulfilled only when 0=r r , or 
when all coefficients of the obtained series are equal to zero, 
that is,

( ) ( ) ( )
1 0 1( 1) 2 0.± ± ±

++ + β =∓n n nn na k na a

Hence, it follows that 0 0,=a  while coefficients ( )
1

±
≥na  sat-

isfy recurrent relation

( ) ( )0 1
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2
.

( 1)
± ±
+
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+n n

k n
a a

n n
  (46)

Since, based on the inverse problem of dynamics, we 
search for the trajectory of a particle that holds provided

1 02β = k n  ( 2 2 21
1 2 / ,β = ω eZe m E  

2
2
0 ,

2
ω

= −
m

k
E  1 00, 0β > >k ).  (47)

The given condition is satisfied only when series

( )( )
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∞ +

+ =
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mm
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is discontinued, that is, ( ) 0+ =ma  at 1,≥ +m n  which leads to 
the following solution 

( )0, ( )
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= −∑n
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n m nm
u r Ce a r r    (48)

where C is the constant.
Considering equality (47) and

2 2
2
0 2

0

,
2
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β
m
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E
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2

2
0 2 ,

4
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(49) 

Since, from the results of optical-mechanical analogy (28)  
 
we have 

2
2 2

,
 ω =   �

E
 then we shall obtain, from relation 

(49), the energy value of the n-th state of the particle (a rule 
of energy quantization)

2 4

2 2

1
,

2
= −

�
e

n

Z e m
E

n  
 (50)

which exactly coincides with the solution obtained in the 
Bohr model [17], or based on the stationary Schrödinger 
equation in paper [5].

We shall record a radius of the n-th state of the particles 
considering (50)

2 2 2
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2
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�
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n e

Ze n
r

E Ze m
  (51)

Next, we shall search for the ultimate solution to equation 
(40), because solution (48) approaches infinity ( ) → ∞u r  at 

.→ ∞r  For this purpose, consider a general solution 
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Here solution ( )−u r  is considered also in the form of a 
power series, but a series, as it follows from relation (46), is 
not discontinued. 

It follows from (46) that for sufficiently large values of n, 
a relation of two coefficients of series (44) takes the form
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Therefore, at → ∞r , there are asymptotics 0,( ) ,± → nk ru r e  
which is why, in order 0,∞ →u  the ultimate solution will be 
sought for in the form of ( ) ( ).− += −u u r u r  For this purpose, 
we shall consider the form that functions , ( )− nu r  and , ( )+ nu r  
take at m=1, 2, 3…n.

Because, at m=1, functions ( ), ( )− +u r u r  take the follow-
ing form:
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where equality (47) is taken into account, which takes the 
form 1,1 0,12β = k  and the recurrent relationship (46) for ( )−
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Hence, it is clear that if 0,1 0,12( ) ( )
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,1 ,1( ) ( ).+ −=u r u r
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and, considering solution (48), we shall obtain a solution 
that falls exponentially with distance 0,
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Note that wave , ( )− nu r  changes sign during transition r 
through point , ,o nr  which, in accordance with conditions (3) 
and (4), indicates the existence of a particle’s trajectory at  
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We shall construct charts of functions , ,− nR  using the 
Maple programming complex.

The charts show that starting from second lower state, 
amplitude of the wave crosses zero more than once, but only 
at 0,= nr r  the derivative of wave ( , )∂

∂ nr V r t  changes sign in 
this point, which according to (13), indicates the existence 
of the electron trajectory only on the surface with radius 0, .nr  
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Fig.	1.	Stationary	solution	for	a	wave	of	the	particle	
(electron)	to	first	lower	stationary	state	(n=1)

 Fig.	2.	Stationary	solution	for	a	wave	of	the	particle	
(electron)	to	second	lower	stationary	state	(n=2)

 

Fig.	3.	Stationary	solution	for	a	wave	of	the	particle	
(electron)	to	third	lower	stationary	state	(n=3)

The properties of the trajectory and wave ( , )nV r t , de-
scribed above, indicate a different spatial arrangement of 
the electron in the hydrogen atom compared to the known 
pattern, described by the Schrödinger’s wave function.

6. Discussion of results of the conducted research

The research undertaken indicates that the desire 
of L. de Broglie to overcome a wave-particle dualism 

through the concept of wave-pilot is substantiated here 
via a continuation of the optical-mechanical analogy, 
which is solved at the level of wave optics. In this case, the 
wave function V(x, t) itself is not only connected to the 
motion of the particle in some way, but directly expresses 
the motion itself, which is always of a wave nature, be it 
light, or any other object.

When modeling an electron motion in the Coulomb 
field, the V-function method makes it possible to es-
tablish a rule of energy quantization of a hydrogen-like 
atom, which fully coincides with the classical results by 
Schrödinger and Bohr. In this case, discreteness of energy 
arises from satisfying the conditions following from the 
V-function method. The trajectory and the electron wave 
are interconnected, this relation is described by the meth-
od of V-function based on the local variational principle 
and solution to the direct and inverse problems of dynam-
ics. According to the given approach, stationary behavior 
of the electron on the n-th stable state is described by 
wave Rn, which subsides exponentially to zero at .→ ∞r  
In this case, the amplitude of the wave passes zero on the 
sphere with a Bohr radius , ,o nr  which means the existence 
of the electron trajectory on the sphere of the given radius.

A benefit of the given method is that when simulating 
the motion of an object, one takes into account its wave 
motion and the trajectory motion at the same time. Reli-
ability of the results is achieved by confirming the known 
results of quantum mechanics. In this case, however, the 
inevitability should be noted of the emergence of diffi-
culties for experimental confirmation of the new results. 
It should also be noted that the trajectory motion of an 
object is described by the method of V-function only with 
a system of stationary differential equations, which can be 
regarded a constraint of the performed research.

7. Conclusions

1. Based on the method of V-function, we have drawn 
an optical-mechanical analogy, which thus gained a new 
continuation. Wave function V(x, t) directly expresses the 
motion itself, which is  always of a wave nature, be it light, 
or any other object.

2. We obtained a solution to the direct and inverse 
problems of dynamics in a new statement for a hydro-
gen-like atom. The method of V-function makes it pos-
sible to establish a rule for the energy quantization of a 
hydrogen-like atom, which fully coincides with the clas-
sical results.

3. The ultimate solution to the stationary wave equa-
tion for a hydrogen-like atom was obtained. Stationary 
behavior of the electron is described by wave Rn, subsid-
ing exponentially to zero at unlimited distance from the 
nucleus, and whose amplitude passes through zero on the 
sphere with a Bohr radius.
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