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1. Introduction

Many WRANs (Wireless Regional Area Networks) of 
the same type have been deployed in recent years within a 
small territorial proximity. Different WRANs in a particu-
lar area can be deployed by different providers.

In such a dynamically growing environment, a large 
number of problems arise related to security, coexistence, 
network topology, etc. All providers must coordinate 
their actions so that users can share the same resources 

in different WRANs. Control over the environment in a 
cognitive radio system requires a detailed consideration 
of the functions of spectrum management and radio com-
munication with programmable parameters. Such control 
is implemented at the physical layer (PHY) in line with 
the IEEE 802.22 standard. Wireless local area networks 
(WRANs) are an important component of cognitive radio 
platforms.

There are different models to construct WRANs sys-
tems. Hardware tools that make it possible to carry out 
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development of strategy for resource allocation have been 
implemented on their basis.

Results of the research imply the introduction of modern 
cognitive functions to the existing architecture, the creation 
of a flow chart for the environment control algorithm using 
a neural network to achieve information allocation and 
distributed solution among the multitude of WRANs. Pro-
viders of WRAN can work under two modes. The first one is 
a self-organizing regime under which a cognitive radio net-
work (CR) performs tuning, network analysis and organizes 
coexistence with the functioning WRANs. The second one 
is a manual mode under which providers establish service 
level agreements with each other (volume of information, 
signal strength, security, etc.).

Thus, the relevance of present work is determined by the 
need to solve the problems arising in the course of control 
over the environment of a cognitive radio system in order to 
improve the efficiency of their functioning.

2. Analysis of the published data and problem statement

Cognitive radio of the IEEE 802.22 standard is designed 
to solve such communication problems as: limited frequency 
resource [1], dynamic access to the environment [2], decen-
tralized management of network resources [3]. The standard 
is expected to be used in the regional wireless networks 
(WRANs). At present, there are a lot of methods to con-
trol the environment: systems with a centralized controller 
[4], decentralized systems [5], self-organizing systems [6], 
multiagent systems [7]. The main disadvantages of these 
methods are:

– redundancy of the software and technical means for 
the allocation of information flows between network nodal 
elements;

– low fault tolerance of the system;
– absence of accumulation of the accepted right and 

wrong decisions;
– lack of mechanisms for the implementation of dynamic 

change in the environment;
– decrease in productivity and increase in the cost of 

deployment of a radio system due to increase in scalability.
For the further development and implemen-

tation of cognitive radio, a number of improve-
ments have to be carried out to eliminate the 
above shortcomings, and it is also proposed to 
consider a neural network as a method to im-
prove control over cognitive radio environment.

The architecture of the cognitive network is 
not considered in paper [8]. Some elements of the 
architecture and their interactions are described, 
such as security, the script of initialization of 
frequencies, validation. In [9], the architecture 
of WRAN is partially considered. There are 
no basic elements of the network. Methods of 
control, training and frequency analysis are not 
considered. In [10], separate blocks of the phys-
ical level of cognitive radio are considered. In 
article [11], the architecture is considered and a 
reference is given to the architecture in line with 
the IEEE 802.22 standard, but in the standard 
the development of these elements is assigned 
to the provider’s and integrator’s sides, and it is 
considered only superficially.

In addition, some methods have a complex software or 
technical component, others have low fault tolerance or lack 
of accumulated solutions. Cognitive functions (analysis of 
the environment, application of experience, learning sys-
tems) are practically not implemented, or possess a cumber-
some structure. Given the aforementioned, there is a need to 
study a system that maximally eliminates the shortcomings 
considered using cognitive functions. As a result of the anal-
ysis performed, a PNN neural network has been selected for 
the present study.

3. The aim and objectives of the study

The objective of present research is within the field of al-
gorithms for the functioning and architecture of a cognitive 
radio system and implies improvement of the method to con-
trol the environment of cognitive radio using a probabilistic 
neural network (PNN), as well as its implementation.

To achieve the set objective, the following tasks were 
defined:

– development of the WRAN environment control archi-
tecture using a neural network;

– development of a flow chart for the environment con-
trol algorithm using a neural network;

– PNN simulation as a decision-making subsystem to 
control the environment of a cognitive radio system.

4. Methods to study a control system

Fig. 1 shows an improved environment control architec-
ture for WRAN using a neural network. A variety of differ-
ent WRANs are located together in a specific geographic 
area. A neural network is located in each base station (BS) 
and interacts with other WRANs in line with the IEEE 
802.22 standard. The network environment may include 
other WRANs with which it can interact. These interactions 
can include data sharing and resource allocation coordina-
tion. A separate network may act as a coordinator of the 
environment and interact with multiple WRANs to ensure 
the claimed cognitive radio characteristics described in [3].

 

Fig. 1. Architecture of the WRAN environment control using a neural 
network
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Using the inner organization of a network, a provider can 
set up a billing system inside WRAN or organize a roaming 
service if it concerns another WRAN. Functions related to 
user authentication, tariff setting, security, confidentiality, 
mobility control can also be considered as the parameters 
of a neural network. The application of an additional neural 
network makes it possible to predict the load and mutual 
effect of the parameters on each other. Thus, it is possible to 
predict the throughput of both AP (Access Point) and the 
entire network, the load over different periods of time, etc. 
Based on the accumulated data, the neural network should 
ensure a balanced allocation of resources on the WRAN 
scale. The given network will strive to provide service to the 
maximum number of subscribers, to minimize the cases of 
denial of service at the same time.

A neural network in each WRAN can collect statistics 
about the state of the environment to analyze and estimate 
parameters in order to optimize system performance, which 
can be based on prediction using a neural network or other 
methods. Information can be expanded with additional 
determining components to provide additional data specifi-
cally related to security, unauthorized access, the influence 
of other WRANs. The neural network employs measurement 
results to generate a local control solution and regulates per-
formance of the entire WRAN system.

The interaction of WRAN under control of a neural 
network is an important aspect in the construction of 
multi-cluster systems. Interaction at the trunk level, require-
ment to the throughput, mutual influence on each other were 
not considered.

The architecture of the WRAN environment control 
using a neural network is shown in Fig. 2 in detail.

The given system includes the following functional 
blocks:

– Transmission and reception unit. Serves to receive and 
transmit information.

– Unit of geolocation, spectrum monitoring and measure-
ment of radiation level. It is intended for positioning of the 
system based on GPS or GLONASS, analyzing the environ-
ment and signal power level.

– Data exchange bus. This unit covers all levels of the 
environment control operation. It is intended to exchange 
information of network elements with a subsystem of storage 
and collection of service information.

– Unit for storing and processing of service information. 
In fact, this element is an object-relational database. Its main 
purpose is operational processing, analysis and structuring 
of external data and network state data. Each function unit 
has an individual circuit, which can be accessed for reading 
by any element of the system. However, only a functional 
unit, which includes both the circuit and the control subsys-
tem, can perform recording.

– The control system unit, the learning subsystem, the 
decision-making subsystem are the basic elements and they 
are described in more detail.

4. 1. A cognitive radio network control system
Analyzing [12, 13], the system of indirect control is the 

most widely used. However, identification and control are 
based solely on the error of the neural network identifier. 
Given this, it is impossible to guarantee minimization of the 
error at the output from the entire system. A direct control 
circuit has been chosen.

Stability and manageability of such MS are discussed in 
detail in article [13].

In the direct control circuit, parameters of the neural 
network controller are adjusted in such a way as to reduce 
directly the error of the Ey output shown in Fig. 3.

 Fig. 3. Direct control circuit

As an objective function, which should be min-
imized by the controller, the mean-square error is 
used at the output of the controlled object [4]:
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= −Y gE y y 			   (1)

where EY is the objective function, Yg are the input 
parameters of the network, y are the output parame-
ters of a cognitive radio system.

In the method that employs NN, there are no 
constraints to the linearity of the system. This meth-
od is effective under noise conditions and provides 
real-time control upon completion of learning. This 
satisfies conditions for constructing the cognitive 
radio systems. Neural network MSs are more flexi-
ble to adjust to real conditions, forming the models 
that are fully adequate to cognitive systems, not 

containing constraints related to the construction of formal 
systems. In addition, neural network MSs not only imple-
ment standard adaptive control methods, but also propose 
their algorithmic approaches to a number of tasks. Solving 

 

Fig. 2. Flow chart of the algorithm to control the environment using a 
neural network
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such tasks can be difficult, because of unrealizability, since 
for the NNs only their correlation is important.

4. 2. Development of a training subsystem to control 
the environment of a cognitive radio system using a neu-
ral network

The training subsystem consists of a hybrid form of error 
correction and the accumulation of experience from past 
iterations in the repository of properly classified examples:

( ){ }
1

, ,
=

N

i i i
x d 			   (2)

where xi is the input vector, di is the desired signal corre-
sponding to the input vector.

The given algorithm includes two components:
– a criterion used to determine the vicinity of sample 

xtest ;
– a training rule applied, for example, from the vicinity 

of the selected sample.
In the simplest form, an example closest to the test case is 

included in the vicinity. For example, sample xN∈{x1, x2,…, xN}.
It is considered the adjacent sample xtest, if the following 

condition is satisfied:

( ) ( )min , , ,=i i test N testd x x d x x 			   (3)

where d(xi, xtest ) is the Euclidian distance between the xi, 
and xtest samples.

The class to which the closest sample belongs is also con-
sidered as the class of the tested xtest sample. This rule does 
not depend on the allocation employed during generation of 
learning examples.

In [14], a formal study of the rule of the adjacent sample 
used to solve the task, for example, a problem on the classi-
fication of control signals, is given. In this case, the analysis 
is based on the assumption that signal (xi, di) is independent 
and uniformly distributed in accordance with the collabora-
tive distribution (x, d).

The given system should be well predetermined and must 
fulfill the following conditions:

– Existence. For any x∈X input vector, there is an output 
value y=f(x), where y∈Y. 

– Uniqueness. For any pair of input vectors (x, t)∈X, 
equality f(x)=f(t) holds when and only when x=t.

– Continuity. The mapping is considered continuous if 
for any ε>0 there exists such δ=δ(ε) that the condition px(x, 
t)<δ implies that py(f(x), f(t))<ε, where p() is the distance 
between two arguments in the corresponding spaces. The 
continuity property is also called stability.

Learning is considered as a task of reconstructing of a hy-
persurface based on a set of points, which can be quite sparse.

Correction of errors implies selection of centers on the 
basis of self-organization and submission of an error onto the 
input of the network. For the learning process, it is required 
to develop a clustering algorithm that divides a given set of 
data points into two subgroups, each of which must be as 
homogeneous as possible. For the given situation, we shall 
use the k-means clustering algorithm. This algorithm can be 
described as follows:

1. Initialization. We choose random values ​​for initial 
centers tk(0). The only requirement for their choice at this 
step is the disparity of all initial values.  The values ​​of the 
Euclidean norm should, if possible, be minimized.

2. Sampling. We choose vector x from the input space x 
with a certain probability. This vector is the input for the 
algorithm at iteration n.

3. Similarity matching. We denote k(x) as the index of 
the most satisfying (victorious) center for the given vector x. 
We find k(x) at iteration n, using a criterion of the Euclidean 
distance minimum:

1( ) arg min ( ) ( ) , 1,2, , ,= − = kk
k x x n t n k m 		  (4)

where tk(n) is the center of the k-th radial basis function at 
iteration n.

4. Updating. We update the centers of radial basis func-
tions using the following rule:

( ) [ ( ) ( )],
( 1)

( ) if not,
+ µ −

+ =  −
k k

k
k

t n x n t n
t n

t n
			   (5)

where μ is the learning-rate parameter chosen from the 
range 0<µ<1.

5. Continuation. We increase the value of n by unity and 
return to step 2, repeating the procedure until position of tk 
centers changes significantly.

Using this hybrid system, the probability of a signal er-
ror, when using the nearest neighbor rule, is two times larger 
than the Bayes error probability.

4. 3. Decision-making subsystem
Based on incoming external data, the decision-making 

subsystem must select the access type based on the signal 
level and control the radiation power, modulation types 
and coding. Based on the work performed in chapter 4.1, a 
system that meets all the requirements is a particular case 
of the radial basis networks ‒ a probabilistic neural network 
(PNN). Fig. 4 shows a PNN network architecture.

 

Fig. 4. PNN network architecture
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The PNN network architecture consists of two layers. 
The first layer is based on the radial basis network architec-
ture, but uses the competing layer as the output layer. This 
layer counts the probability of the belonging of input vector 
to a particular class. Ultimately, the first layer compares the 
vector to that class, the probability of belonging to which 
is higher. The input competing layer does not execute com-
putations and serves to receive and divide attributes of the 
input vector. The number of neurons of the input layer is 
determined by the number of attributes of vector X. The pat-
tern layer contains one neuron per each sample of the input 
vector from the learning sample. That is, for a total volume 
of learning sample that contains N samples, the sample layer 
must possess N neurons. The input layer and the sample layer 
form a fully connected structure.

Let the identified non-linear dependence be represented 
as an “input-output” sample:

( ), .1 1,' ,=i ix y M 				    (6)

where xi=(xi,1, xi,2, …, xi,p) is the input vector; yi is the output 
of the i-th pair; M is the sample size.

The summation layer contains the number of neurons 
equal to the number of classes by which the input patterns 
are divided. Each neuron of the summation layer has con-
nections only with the neurons of the layer of samples that 
belong to the corresponding class. All weights of the con-
nections of the summation layer in a traditional probabilistic 
neural network are equated to unity.

The source neuron functions as a discriminator of the 
threshold magnitude. It indicates which neuron of the sum-
mation layer has the maximum output signal. This defines 
the class to which the provided input pattern belongs. The 
weights of the neuron connections of the output layer are set 
so that the neuron of the summation layer with the highest 
activity value is identified at its output.

During learning, a structure of the probabilistic neu-
ral network is formed. The dimensionality of N training 
sample vectors Xi, i=1, ´L determines the number of neu-
rons and the structure of the incoming layer of the proba-
bilistic neural network. The total size L of training sample 
Xi, i=1, ´L corresponds to the total number of neurons in 
the sample layer.

The presentation of each of L samples to the network is 
accompanied by an indication from the trainer of the num-
ber of k-th class to which the incoming sample belongs. The 
sequence of presentation of learning samples can be any. 
After the presentation of all L vectors of the learning sample, 
the structure and parameters of the network are formed in 
the form of a matrix. After this, the learning process of the 
probabilistic neural network is completed and the network is 
ready to determine the tasks set.

Under normal network operation, an input pattern of the 
unknown X class is entered, which is first normalized, and 
then multiplied by a matrix of weights and it accordingly 
activates the neurons of the sample layer. Each neuron in the 
sample layer shows at its output a certain level of activity 
yi(X). Each k-th neuron of the summation layer sums up the 
equal activities yi(X) of all neurons of the layer of samples of 
the k-th class. It shows at its output the overall activity level 
of the given k-th class yk(X), k=1, ´M. In addition, the k-th 
neuron of the summation layer determines which neuron of 
the summation layer has the maximum output signal yk(X). 

Thus, the number of the k-th neuron determines the number 
of k class, to which the pattern of X belongs with a higher 
probability.

The influence parameter b is critical for the effectiveness 
of PNN. The magnitude of b affects the quality of density 
recovery. It follows from [10] that if the value of b is small, 
then the radial basis function (RBF) is characterized by 
a sharp decrease, and the range of input values, to which 
neurons react, is very small. As the influence parameter b 
increases, the inclination of RBF becomes smoother, and in 
this case several neurons respond to the input vector values. 
The optimal magnitude b is determined by practical means, 
that is, between the accuracy of description of specific data 
and the smoothness of RBF.

The activity function of the k-th summation neuron de-
termines the value of the probability of density distribution 
for the whole k-th class. In general, it is calculated from 
formula:

( )
( )

( ) ( )
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5. Results of examining the improved method to control 
the environment of a cognitive radio system using a 

neural network

To simulate a PNN neural network, the MATLAB soft-
ware package has been selected. In order to determine the 
two measurable vectors of the input set, four domains of 
input vectors with a normal distribution law with arbitrary 
values have been created. By using standard functions of 
sections “neural” and “Simulink”, the resultant vector, in-
cluded in the existing set and not belonging to the training 
sample, has been modeled. Such samples can be matched 
with a connectivity matrix in the form of a sparse matrix 
that determines the belonging of the first two vectors to one 
class of the input set, the next two vectors to another class 
of input set, etc. The resulting arrays assign the learning set. 
Next, a radial basis network has been formed on the basis 
of the application of the incoming connectivity matrix, the 
resultant vector, the mean-square error equal to 0.1, the 
influence parameter equal to 0.5. As a result, the network is 
trained, which modifies the weighting coefficients and their 
displacement in accordance with a sequential increment 
determined in a practical way. As a result of the network 
modeling, a connectivity matrix corresponding to the input 
vector has been formed. Then the array of the connectivity 
matrix has been converted into indices. Results of the values 
of the input and output subsets are given in Table 1 and are 
shown graphically in Fig. 5.

It follows from Table 1 and Fig. 5 that the network has  
20 neurons. The network trained for 1200 ms, which is 800 ms 
(by 1.67 times) faster than the required value according to 
the IEEE-802.22 standard (2000 ms). The input and output 
magnitudes of sets have small deviations and, in some posi-
tions, are equal to each other, which confirms correctness of 
the network learning. The network defined 4 groups and two 
incoming vectors to one of the groups, where their values are 
shown by asterisks in Fig. 5 (red asterisk – included in the 
learning set, blue one – not included in the learning set), and 
the incoming values of data arrays are marked by dots.
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Table 1

Result of the work of a PNN network 

The first 
value of the 
input set Тс, 

units

The last 
value of the 
input set Тс, 

units

The first 
value of the 
output set 
Тс, units

The last 
value of the 
output set 
Тс, units

Weights 
value, units

0.9422 0.3542 0.9421 0.3532 0.6587

0.9571 0.8212 0.9561 0.8212 2.7821

0.4752 0.1174 0.5752 0.0154 2.6608

0.0991 0.0437 0.0598 0.0430 2.1159

0.1358 0.1699 0.2348 0.1690 4.7856

1.6491 0.2963 1.6491 0.2963 4.9677

1.7317 0.7447 1.7317 0.7447 0.2039

1.5475 0.4890 1.6477 0.1890 4.8169

0.5519 0.9774 1.4509 0.6868 4.6603

1.9474 0.2881 1.5470 0.1835 0.4926

1.2535 1.6251 1.3685 1.7757 4.4364

0.9246 1.2368 1.6256 1.4868 4.8169

1.7801 1.4358 1.7802 1.4359 4.6603

1.7282 1.1043 1.9294 1.3063 0.4926

0.4185 0.9785 0.5085 1.3786 4.4364

0.6328 1.6125 0.5108 1.8116 2.8522

0.8176 1.5328 0.8176 1.5328 2.7421

0.6728 0.8916 0.7948 1.3507 2.5012

0.6510 1.9800 0.6443 1.9390 2.4358

0.9985 1.5474 1.0811 1.4468 0.9975

Fig. 5. Result of the work of a PNN network 

6. Discussion of results of examining the improved 
method to control the environment of a cognitive radio 

system using a neural network

The existing method of the environment control with a 
centralized controller displays a redundancy of software and 
technical means of allocation of information flows between 
the network nodal elements [4]. The improved method was 
simulated in the MATLAB programming environment and 
has a smaller volume of programming code, and, accordingly, a 
less number of the required technical means. This is confirmed 
by an increase in the network performance by 1.67 times in 
comparison with the standard of a cognitive radio, which is 
achieved through the use of parallel processing of information.

The decentralized method of environment control has a 
low fault tolerance [5]. The improved method is potentially 

fail-safe. Under adverse network simulation conditions, the 
performance of the proposed method deteriorates insignifi-
cantly. With an incorrect or missing neuron or its connec-
tion, retrieval of recorded information is difficult. However, 
taking into account the distributed nature of information 
storage in a neural network, it can be stated that only seri-
ous structure damage of a neural network can significantly 
affect its performance, which has been confirmed by theo-
retical considerations [13] and simulation results. Therefore, 
a decrease in the quality performance of the neural network 
occurs slowly.

In the self-organizing method of control, there is no ac-
cumulation of the right and wrong decisions taken [6]. The 
improved method has a separate data collection and storage 
system, in addition, based on this information, a separate 
system makes a decision.

In multi-agent systems, there is a decrease in perfor-
mance and an increase in the cost of deploying the radio 
system through an increase in the scalability [7]. In the 
improved method, there are no mechanisms for the imple-
mentation of a dynamic change of the environment. This 
method possesses ability to adapt to the environment chang-
es. In particular, a probabilistic neural network, trained to 
operate under certain conditions, can be quickly re-trained 
to operate at insignificant fluctuations in the input parame-
ters. Employing the capability to learn on a lot of examples, 
the improved method is able to solve tasks with unknown 
conditions in the development of a situation and unknown 
dependences between input and output data. Traditional 
mathematical methods and expert systems are ineffective in 
such cases.

The given method also makes it possible to work in the 
presence of a large number of uninformative, noise input 
signals. There is no need to do their preliminary sorting, the 
improved method is capable of determining their suitability 
for the problem and, if necessary, of discarding them.

The time spent on learning, that is, the fact that a net-
work can initially work with errors and some deviations, 
can be noted as a disadvantage of the improved method. A 
change is also possible in the structure of a neural network 
depending on the change in WRAN architecture.

Present research can be considered as the introduction 
of learning functions into the IEEE 802.22 standard by 
describing the architecture of a cognitive radio system using 
a neural network. In addition, the research results could be 
applied when modeling an IEEE 802.22 network, and as an 
element during physical deployment of WRAN.

In the future, in order to improve characteristics of 
WRAN environment and trouble-free operation, it is nec-
essary to continue research related to the development and 
improvement of methods to control the environment of a 
cognitive radio and neural networks. In addition, separate 
subsystems of the proposed architecture are the subjects for 
further studies.

Results obtained in the present work are of independent 
value and could be used both for the modernization of ex-
isting WRAN control systems and in the development of 
promising intelligent radio systems.

7. Conclusions

The developed architecture of WRAN environment con-
trol using a neural network exhibits a special feature in that 
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a neural network is located at each base station (BS) and 
interacts with other WRANs in line with the IEEE 802.22 
standard. The network surrounding may include other 
WRANs, with which it can interact. These interactions can 
include data sharing and resource allocation coordination. 
Due to this, adaptation to changes in the environment and 
an increase in the performance speed by 1.67 times are pro-
vided. This established fact can be explained by that such an 
architecture is better aligned with parameters established by 
the IEE802.22 standard, in comparison with other existing 
methods.

The developed flow chart of the environment control 
algorithm using a neural network possesses a feature demon-
strating that neural network control systems are more flex-
ibly tuned to real conditions, forming the models that are 
fully adequate to cognitive systems. This algorithm applies 

a hybrid learning system. In addition, the developed flow 
chart of the environment control algorithm using a neural 
network is implemented on the basis of a particular case 
of radial basis networks ‒ a probabilistic neural network. 
Due to this, a Bayes error probability is reduced while the 
network performance is increased. This established fact can 
be explained by that the hybrid learning form and a PNN 
network have been employed.

PNN simulation as a decision-making subsystem in the 
environment control of a cognitive radio system has the 
feature showing that the network has one competing layer 
and one layer for receiving and dividing the attributes of the 
input vector. Due to this, a small number of neurons of the 
network are applied and its learning ability is fast. This fact 
can be confirmed by that the neural network, chosen in a 
practical way, is better suited to the tasks set.
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