
Information technology

49

 I. Bibichkov, V. Sokol, O. Shevchenko, 2017

1. Introduction

Currently, there is an increased use of the ontological
model of domain description. This is the result of the ver-
satility and flexibility of this model. Reasoners, which ac-
counted for most of the time spent on processing ontologies,
play an important role in it [1].

The standard solution for ontologies with unchanged
structure of the classes and properties is a preliminary run
of a reasoner during the load process of an ontology. This
approach is effective on the condition that the result of the
reasoning is cached. However, if you need to change the
structure of an ontology, it becomes rather time-consum-
ing, which is a problem for intelligent systems working in
real time.

The possibility of combining different reasoning models
depending on the type and structure of the ontology is being
researched as an alternative solution to this problem.

The study has compared the characteristics of the most
popular reasoners: FaCT++ Pellet, HermiT [1, 2]. The
possibility of the combined use of these reasoners and onto-
logical information store Virtuoso Server [3] has also been
evaluated.

The particular attention has been paid to the description
of optimization techniques based on the use of the HermiT
reasoner. This particular reasoner is of great interest because
unlike its analogues, such as FaCT++, Pellet, RacerPro,
whose work is based on the standard tableau algorithm, it
uses the hypertableau algorithm as an alternative. The appli-
cation of the hypertableau algorithm is extremely useful and

16. Wikström, G. LTE latency reduction: preparing for 5G [Electronic resource] / G. Wikström // ERICSSON. – 2016. – Available at:

https://www.ericsson.com/research-blog/lte-latency-reductions-preparing-5g/

17. Teyeb, O. Evolving LTE to fit the 5G future [Electronic resource] / O. Teyeb, G. Wikström, M. Stattin, T. Cheng, S. Faxér,

H. Do // ERICSSON Technology Review. – 2017. – Available at: https://www.ericsson.com/assets/local/publications/erics-

son-technology-review/docs/2017/etr_evolving_lte_to_fit_the_5g_future.pdf

18. Tikhonov, V. I. Conveyor module resource scheduling in packet based communication channel [Text] / V. I. Tikhonov, A. Taher,

O. V. Tykhonova // Bulletin of the National Technical University «KhPI». A series of «Information and Modeling». – 2016. –

Issue 21. – P. 152–161. doi: 10.20998/2411-0558.2016.21.17

ONTOLOGICAL
KNOWLEDGE

BASES
PRODUCTIVITY
OPTIMIZATION

THROUGH THE USE
OF REASONER
COMBINATION

I . B i b i c h k o v
Postgraduate student*

E-mail: bibi4kov@gmail.com
V . S o k o l

Postgraduate student*
E-mail: sokol@sw-expert.com

O . S h e v c h e n k o
PhD, Associate Professor*

E-mail: shevchenko@sw-expert.com
*Department of Artificial Intelligence

Kharkiv National University of
Radio Electronics

Nauky ave., 14, Kharkiv, Ukraine, 61166

Проведено аналіз різонерів для роботи з онтологічни-
ми базами знань з метою збільшення швидкодії цих баз.
Запропоновано варіант рішення, в якому комбінуються
переваги «tableau»-based і «hypertableau»-based різоне-
рів. Проведено аналіз можливості застосування такого
рішення на сервері онтологічних баз знань «Virtuoso». В
результаті дослідження був розроблений метод комбі-
нації різонерів для оптимізації роботи онтологічних баз
знань. В результаті застосування даного методу було
отримано збільшення продуктивності роботи баз знань
при роботі з різнотипними онтологіями

Ключові слова: комбінація різонерів, Jena, Virtuoso,
hypertableau, tableau, HermiT, Pellet, FaCT++, ABox,
TBox, RBox

Проведен анализ ризонеров для работы с онтологи-
ческими базами знаний с целью увеличения быстродей-
ствия этих баз. Предложен вариант решения, в кото-
ром комбинируются преимущества «tableau»-based и
«hypertableau»-based ризонеров. Проведен анализ воз-
можности применения такого решения на сервере онто-
логических баз знаний «Virtuoso». В результате иссле-
дования был разработан метод комбинации ризонеров
для оптимизации работы онтологических баз знаний. В
результате применения данного метода было получено
увеличение производительности работы баз знаний при
работе с разнотипными онтологиями

Ключевые слова: комбинация ризонеров, Jena, Virtuoso,
hypertableau, tableau, HermiT, Pellet, FaCT++, ABox,
TBox, RBox

UDC 004.8
DOI: 10.15587/1729-4061.2017.112347

Eastern-European Journal of Enterprise Technologies ISSN 1729-3774 5/2 (89) 2017

50

even indispensable when working with the nondeterministic
ontologies, which currently prevail.

The main problem, which you are bound to face when
working with ontology knowledge bases is the significant
time cost of both obtaining a list of the properties and
objects and checking the knowledge base for consistency.
Therefore, only those researches should be recognized rel-
evant, which are aimed at increasing the performance of
ontological knowledge bases, containing a great volume of
stored information.

2. Literature review and problem statement

The study has analyzed the works on the optimization of
ontological knowledge base performance [4–10].

Reasoners are one of the main components of the onto-
logical systems and the performance of reasoners is the most
resource-intensive task in ontology processing. Ontology
performance largely depends on the performance of a rea-
soner, which is used in it. The application of the HermiT
reasoners reduced ontology processing time 4–15 times, and
in some cases up to 25 times or more [4] compared to other
reasoners (Pellet, FaCT++).

At the moment, the main methodologies implemented by
the reasoners are: tableau and hypertableau. For example,
hypertableau reasoners are the most effective when process-
ing medical ontologies [5]. However, [5] does not provide
examples of the application of reasoners for ontologies that
contain the abundance of role axioms and their hierarchies.

The modification of the standard tableau algorithm
designed to increase productivity when working with on-
tologies has been suggested in [6]. Algorithm modification
methods, proposed by the authors, were implemented in the
developed LIGHT reasoner. The disadvantage of the con-
cept suggested in [6] is that the method is exclusively limited
by ontologies based on the descriptive logic ALC.

Tableau algorithm modification, presented in [7] is based
on the application of hypertableau and hyperresolution algo-
rithm components. In addition, [7] contains the presentation
of “Anywhere Pairwise Blocking” blocking system, which
provides an additional optimization. The method proposed
in [7] is effective for GALLEN ontologies. The disadvantage
of the concept suggested in [7] is the limited application of
this method as it is effective only for the GALLEN and NCI
ontologies.

[8] looks through ontology optimization method, de-
veloped on a version of a model that was built by the Pellet
reasoner. The drawback of this research is the limited
application of this method by ontologies containing only
complex ABox.

Reasoner performance enhancing optimization in on-
tological knowledge bases can be obtained through input
preprocessing. The study [9] is devoted to this type of
optimization. The drawback of this study is the lack of prac-
tical results of applying the method for different reasoners.
Furthermore, the peculiarities of the ontology structure, for
which this approach should be applied, have not been taken
into account.

[10] introduces the ontological system optimization
methods by applying an alternative classification algorithm.
The disadvantage of this study is the lack of study validation
for tableau-based reasoners.

On the basis of these studies, it can be seen that the
various reasoners show good results on speed processing of
certain ontologies whereas with other types of ontologies
they show rather poor performance. The studies mentioned
above neither include the detailed comparison of reasoners
nor investigate the possibility of combining them in order to
enhance the performance of ontological systems.

3. The aim and objectives of the study

The aim of this research is to develop a generic method
of application of combinations of reasoners in ontological
knowledge bases to increase their performance. This will
make it possible to extend the application area of ontologies
and move on to the concept of a single repository for hetero-
geneous systems.

In order to achieve the aim, we set the following objec-
tives:

– to investigate the peculiar features of reasoners;
– to justify the choice of performance enhancing optimi-

zation method for ontological knowledge bases;
– to carry out testing of the developed method.

4. The research of the characteristics of reasoners

The important point for enhancing the performance of
ontological knowledge base is the selection of a reasoner.
The proper selection of a reasoner requires an understanding
of its structure, internal structure and the specificities of
the application, as well as the understanding of the internal
structure of the ontology, with which it will interact.

The study reviewed the reasoners, whose work is based
on the two most popular methodologies tableau and hyper-
tableau, such as:

– FaCT++;
– Pellet (tableau);
– HermiT (hypertableau).
Virtuoso server has been used as a knowledge base

storage server. We also used Jena Framework to retrieve the
ontology from Virtuoso server, and create a model ontology
for the work of a reasoner. The justification in favour of such
a selection can be found in [11].

4. 1. The application of the tableau and hypertableau

methodologies
Below is a comparison of two major methodologies, tab-

leau and hypertableau, used in the HermiT, FaCT++ and
Pellet reasoners and reviewed in this study.

The Pellet and FaCT++ reasoners are written using the
tableau methodology, and the HermiT reasoner is based on
hypertableau one.

The standard knowledge base consists of the following
components: the properties of axioms (RBox), classes of axi-
oms (TBox) and facts (ABox), within the Description Logic
knowledge base.

Rbox is the axioms containing roles and the role hierar-
chies. The R in the RBox represents a final set of the tran-
sitivity axioms of Trans type (R) and inclusion role axioms.
TBox (from Eng. terminology) is a set of general concept
inclusions. Abox (from Eng. assertions) – a set of concept
assertions – is individuals.

Information technology

51

The advantages of application of the hypertableau al-
gorithm in practice in comparison with its analogues, such
as tableau, can be seen when performing standard oper-
ations. For example, to check the ontological knowledge
base (K=(R, T, A)) for satisfiability, the tableau algorithm
builds the output which is a sequence of ABoxes A0, A1,..., An

where A0=a and every (A)(i) is obtained from (A)(i)-1 on the
application of the rule of inference. Inference rules make the
implicit information in the axioms R and T explicit and, thus,
the development of ABox (A) in the direction of the model K.
The algorithm stops operating in two cases:

1) if there are no applicable inference rules for some (A)n.
In this case, An represents the model K;

2) if (A)n contains an obvious contradiction.
The hypertableau algorithm, which is used, for example,

in the HermiT reasoner, performs the optimization in knowl-
edge bases, including through absorption. This is due to the
alignment of the axioms of descriptive logic to a specific
form. This form allows you to run standard, role or binary
absorption at the same time, which is a distinctive feature
of the hypertableau algorithm in comparison with tableau
one. In the latter, the application of additional absorption
algorithms is impossible.

Tableau algorithm and the corresponding reasoners,
written on its base, use a standard data blocking mechanism
for the integrity of the created model. In such case, each
specific individual may be blocked only by its ancestors;
the algorithm is called ancestor blocking, or the blocking
by the ancestors. In contrast to this approach, hypertableau
extends the algorithm through an advanced algorithm of
blocking, anywhere blocking (i. e. blocking from anywhere).
Within this algorithm, the individual may be blocked almost
by any other individual.

Although the anywhere blocking can often hamper the
creation of multiple copies of identical individuals, it is often
possible to create models for tableau procedures that can
contain similar individuals.

Standard reasoners based on tableau algorithms apply
the nearest neighbour search algorithm to retrieve the root
individuals. Neighbours are identified recursively, starting
with individuals located in the initial ABox. Tableau al-
gorithm implies the exact number of neighbours that will
be present in the final model. Then, follows the creation of
the appropriate number of root elements (individuals). In
contrast to this algorithm, hypertableau uses an alternative
method that prevents the creation of unnecessary root indi-
viduals. The essence of this method is that instead of having
to add new root individuals, the existing ones are simply
marked as root. If you make sure the root individuals remain
unique, you can ensure the correctness of the algorithm,
without increasing the size of the constructed models.

4. 2. The application of the HermiT reasoner
HermiT is an open source reasoner, based on the hypert-

ableau methodology [4].
HermiT uses the direct semantics and meets all the re-

quirements of the OWL2 semantic data reasoning.
Starting with version 1.1, HermiT can process DL Safe

rules. In addition, rules can be directly added into incoming
ontology in a functional style (for data preprocessing) or in
other OWL syntaxes, supported by OWL API. It should be
noted that reasoning through DL Safe rules will be incom-
plete if the ontology contains the property chains, transitiv-
ity axioms, or complex properties used within the rules.

The reasoner is based on the principle of hypertableau
calculus. The specific features of the reasoner eliminate the
performance problems associated with nondeterminism
and large amounts of data, which are currently the primary
sources of complexity in modern OWL models. HermiT
has an improved locking strategy that provides additional
benefits when processing large-sized ontologies compared
to other reasoners. HermiT also includes some other new
improvements such as a more efficient approach to the
processing of nominals and various optimization methods
for the classification of ontologies. HermiT, in some cases,
contributes to a significant performance enhancement as
opposed to other reasoners, for instance, in the classifica-
tion of complex ontologies [4]. This is due to the application
of the classification mechanism for a number of ontologies.
At this point, such a mechanism does not exist in the an-
alogues.

The HermiT reasoner implements the methods that
provide additional calculation optimization and are used to
build the data model. These include:

1. Checking the satisfiability of a concept. The aim of this
method is for the HermiT reasoner to create some knowledge
base K’ for checking the feasibility of a concept A.

2. Caching Blocking Labels. This is the locking method,
which prevents the creation of multiple identical submodels
during the check for consistency. Conceptually, instead of
performing different tests, while generating n different mod-
els, one test that builds one model containing n independent
fragments is performed.

4. 3. The use of FaCT++ and Pellet reasoners
FaCT++ (Fast Classification of Terminologies) is a

reasoner based on the descriptive logic [12]. FaCT++ 1.0 is
a relatively new OWL DL reasoner designed as a separate
platform. The FaCT++ reasoner contains various algorithms
and optimization techniques. It includes most of the stan-
dard optimization techniques available within ontological
systems. The FaCT++ architecture is better suited for more
complex algorithms and is open to a wider range of heuristic
operations.

The distinctive feature of this reasoner is the support of
the performance optimization through a series of optimiza-
tion methods within preprocessing of an ontology. The most
effective methods are absorption and simplification.

One of the optimization techniques used in the FaCT++
reasoner is the subsystem of simplifying complex logical
operations and bringing them to a certain simplified normal
form (SNF). The aim of SNF is to bring the complex logical
operations to the simplest four: negation “¬”, conjunction
“∩”, universal restriction “∀”, at-most restriction “≤”.

Absorption is the exclusion of the so-called “General
Concept Inclusion”, which is the most costly.

The Pellet reasoner is an open source reasoner, written
in the Java language. It is based on the principles of the de-
scription logic, which comply with the OWL-DL standard.

The Pellet reasoner implements most modern optimiza-
tion techniques, such as: simplification, absorption, semantic
branching, dependency-directed backjumping [13].

The difference between the Pellet reasoner and the other
ones represented in this study is that the Pellet reasoner is
more flexible when working with different data types, even
with user-defined data types (based on numeric and date/
time data types). It gives a reasoner an advantage over other
tableau-based reasoners, in particular, FaCT++.

Eastern-European Journal of Enterprise Technologies ISSN 1729-3774 5/2 (89) 2017

52

5. The development of the reasoner combination method
in order to enhance the performance of ontological

systems

Development of the reasoner combination method in-
cludes two phases. Firstly, there is the load of the ontology
from the knowledge base server and the formation of the
model, with which the reasoner will later interact. Then,
on the basis of the specific features of the loaded ontology,
there is the selection of a reasoner and connection it to the
ontology model.

5. 1. The creation of the ontology model for the per-
formance of a reasoner

Jena Framework is used when designing a data model for
the further work of a reasoner. This framework is a set of Java
libraries for working with a variety of ontological systems.
In particular, Jena Framework provides the ability to work
with a Virtuoso.

Virtuoso server is a versatile server to work with differ-
ent data types. The study investigates the possibility of using
Virtuoso as a triplet store.

Jena is a free open source Java platform for Semantic
Web applications (SW). Its latest version is Jena 3.1.0,
which uses Java 8 [14].

Currently, Jena is one of the most popular Java tools that
is used in developing SW applications [14].

The use of Jena Framework when developing SW appli-
cations is extremely effective because it contains the support
for the following components:

– RDF API;
– OWL API (can be used as RDFS API);
– Reading and writing of RDF in RDF/XML, N3 and

N-triple format;
– Temporary and permanent store of RDF models;
– SPARQL request handler;
– Request handler based on inference rules.
Jena Framework supports most of the functions of RDFS

standard.

5. 2. The description of a reasoner selection method
The development of the reasoner selection method has

been based on this study. Fig. 1 displays how this method
works.

The application loads the ontology into the system.
Jena ontology model. After loading the ontology, Jena

Framework builds an appropriate model, with which a rea-
soner will later interact.

The JDBC driver manager and DBC driver are the spe-
cific libraries, which are used for Jena Framework and triplet
store.

Triplet store is a place which stores an ontology in the
form of triplets. Virtuoso server is used as triplet store.

The selection of the reasoner depending on the ontolo-
gy type. This phase includes the identification of the most
effective reasoner for a particular ontology. At first, the
system makes a choice between tableau-based and hyper-
tableau-based reasoners. If it has been identified that it is
optimal to use tableau-based reasoners, then there is a choice
between the FaCT++ and Pellet reasoners. In another case,
the hypertableau-based HermiT reasoner is selected.

The choice between tableau-based and hypertab-
leau-based reasoners is based on the identification of the
existence of many complex RBox [15]. If these components

make up more than 8 % of RBox, TBox and ABox in the on-
tology, the system selects the tableau-based reasoner. If such
items are missing or their number is negligible (less than 8 %
of RBox, TBox and ABox), the system selects the hypertab-
leau-based reasoner. Thus, this is the criterion for choosing
between tableau-based and hypertableau-based reasoners.

If the system has identified that the tableau-based rea-
soners are optimal, then there is a choice between the Pellet
and FaCT++ reasoners. If the ontology contains multiple
complex ABox, as well as complex data types, the system
selects the Pellet reasoner as the main one.

The activation is conducted after selecting a suitable
reasoner.

Fig.1. Scheme for choosing a reasoner

The functionality of reasoners implies the identification
of an ontology for consistency (coherence), as well as its ex-
pansion by adding triplets.

6. The results of the application of reasoner combination
method

To test the effectiveness of the developed reasoner com-
bination method, 8 different ontologies have been selected
in this study (Table 1). The selected ontologies are charac-
terised by expressivity (in terms of Descriptive logic), the
number of TBox, ABox, RBox, individuals and classes that
determine the structure of the ontology.

The structure of the ontology is crucial when choosing
a reasoner. Table 1 lists the different types of ontologies
and their characteristics, the most important for the perfor-
mance of a reasoner.

The advantage of the HermiT reasoner is the ability to
process ontologies that cannot be processed by other reason-
ers, or their work is insufficiently productive.

When working with ontologies that contain a branched
structure of description graphs, the HermiT reasoner works
faster in comparison with the analogues (Table 2). This type
of ontologies prevails in biomedical systems (e. g. FMA Lite).

Information technology

53

The enhancement of the HermiT reasoner performance is
mainly a consequence of the application of the hypertableau
algorithm, instead of tableau, which is the basis for the Pellet
and FaCT++ reasoners.

Table 1

The quantitative structure of ontologies

Ontology
name

Number
of classes

Number
of individ-

uals
TBox RBox Abox

Expres-
sivity

BP XP
OBOL

10,295 43,446 6,980 0 43,446 ALE

FMA Lite 75,141 46,225 119,558 3 46,225 ALEI+

Fly
Taxonomy

6,602 5,350 6,603 0 5,350 AL

Biological
Process

14,955 73,901 27,051 1 73,901 EL++

DLP
ExtDnS

96 0 606 384 0 SHIN

MGED 216 579 430 240 642
ALCOF

(D)

DOLCE-
Plans

118 27 265 948 68
SHOIN

(D)

SWEET
Numerics

1,506 113 2,784 305 340
SHOIN

(D)

The application of the hypertableau algorithm in the Her-
miT reasoner when working with ontologies involves the use of
the developed locking strategy. In addition to the locking strat-
egy, the performance efficiency is enhanced by the use of in-
ference rules, different from those used in Pellet and FaCT++.

The use of the HermiT reasoner implies some limitations.
For example, in the tests using such ontologies as ExtDnS,
DLPMGED, the HermiT reasoner proved to be worse than
FaCT++ and Pellet [13] (Table 2). This is due, in particular,
to the fact that DLP ExtDnS ontology includes a much more
complex RBox structure than most other ontologies.

There are some disadvantages of the HermiT reasoner,
which subsequently have a negative impact on the overall
performance. These include limited support for data types
and the peculiarities of realization of transitivity, which is
done by overwriting the axioms.

Table 2

Comparative table of reasoners work time

Ontology Pellet (ms)
FaCT++

(ms)
Hermit

(ms)

The com-
bination of
reasoners

(ms)

BP XP
OBOL

505, 100 1, 742, 300 8, 700 10, 440

FMA Lite Error Error 43, 800 50, 370

Fly
Taxonomy

1, 200 5, 300 1, 100 1, 280

Biological
Process

10, 700 79, 200 2, 400 2, 830

DLP
ExtDnS

7, 100 100 95, 800 120

MGED 800 249 5, 700 291

DOLCE-
Plans

105, 150 Error 1, 080, 950 120, 175

SWEET
Numerics

3, 800 210 76, 520 245

The results of the studies cited above (Table 2) clearly
show that the application of the reasoner combination meth-
od outstrips the performance of any reasoner, considering
that a reasoner will process ontologies of different types.

7. Discussion of the results of application of the
combination method

The method of reasoner combination, proposed in the
study showed the enhancement of reasoning performance
when working with different types of ontologies. This is
due to the fact that in each case a reasoner with the optimal
performance is selected in accordance with the structure
and type of ontologies. The method of reasoner combination
selects a reasoner with the optimal performance for each
ontology. This method gives an advantage over any of the
reasoners when compared to the entire set of ontologies used
in this study. The results in Table 2 show the effectiveness of
the proposed method. The differences between the results of
the work of a reasoner and the combination method are due
to the fact that the method of reasoner combination spends
time analyzing ontologies. The development of the ontology
model through using Jena and Virtuoso server has been
reviewed. This model is used to analyze the ontology struc-
ture, which, in turn, allows us to select the most effective
reasoner for this particular ontology.

The disadvantages include a small number of ontologies
which were tested. This is due to the large amount of time
required for the preparation of each ontology. It is worth
noting that even such a number of ontologies is sufficient for
the research. It also should be noted that the study does not
contain a description of the interaction between the HermiT,
Pellet and FaCT++ reasoners and Virtuoso server since the
study of this interaction was not part of this work. But such
interaction could increase the performance of the ontological
knowledge base, which can be a subject for a separate study.

The enhancement of a reasoner performance opens up
new possibilities for the application of ontological knowledge
bases, because the main problem of such systems is a poor
performance, and their slowest component is a reasoner. At
a high enough speed when the reasoner performance allows
working in real time (delay will be indistinguishable to the
user), ontological systems will be able to replace databas-
es and provide a great intellectual toolkit for processing
the stored knowledge. Principles of optimization described
above can be used when working with large amounts of in-
formation which require the use of reasoning.

The advantage of this study is an attempt to combine
different methodologies (tableau and hypertableau) in one
method, which allows obtaining higher performance com-
pared with a single reasoner.

The limitation of this method is the need for ontology to
meet the OWL DL specification, as the Pellet and FaCT++
reasoners may cause the hangup of reasoning on the ontolo-
gy relevant to the OWL Full specification.

The study echoes the paper [16], but is not a direct
sequel. The paper [16] contains outstanding optimization
techniques aimed at building optimal SPARQL requests,
which were not reviewed in this study.

In the future, it is planned to continue the research on
the improvement of ontological knowledge repositories and
development of productive samples of ontological knowl-
edge bases.

Eastern-European Journal of Enterprise Technologies ISSN 1729-3774 5/2 (89) 2017

54

8. Conclusions

1. The generic method of reasoner combination for en-
hancing the performance of ontological systems has been
developed. Its essence is the selection of the appropriate
reasoner depending on the type of ontology. The distinctive
feature is the combination of the advantages of tableau and
hypertableau methodologies. Such an approach provides the
maximum performance of the proposed combination method
among the HermiT, Pellet and FaCT++ reasoners.

2. The HermiT, Pellet and FaCT++ reasoners were used
for carrying out the experiments. The application of the Her-
miT reasoner for BP XP OBOL ontology was 6 times more
effective (compared to the Pellet reasoner) and 20 times
(compared to the FaCT++ reasoner). When working with
Fly Taxonomy, the HermiT reasoner proved to be 5 times
more effective in comparison with the FaCT++ reasoner
and 100 ms faster than the Pellet reasoner. When processing
Biological Process, the HermiT reasoner was 4 times as good
as Pellet and 25 times faster than FaCT++.

3. For ontologies that contain description graphs, the
application of the HermiT reasoner is much more bene-

ficial in comparison with the analogues (such ontologies
are often found in biomedical ontologies). For instance,
the application of the HermiT reasoner for processing
FMA Lite ontology took 43 800 ms. For comparison, the
Pellet and FaCT++ reasoners did not cope with this task
at all.

4. It has been found that the HermiT reasoner is not
always the best choice. For example, it took the HermiT
reasoner considerably more time than the Pellet and
FaCT++ reasoners to process the DLP ExtDnS and
MGED ontologies. It took the HermiT reasoner 950 and
13 times more time than the FaCT++ and Pellet reason-
ers, respectively, to process DLP ExtDnS ontology. It is
similar for MGED ontology, where the HermiT reason-
er spent 7 and 22 times as much time as the Pellet and
FaCT++ reasoners, respectively.

5. The testing of the proposed method provided the
results proving its effectiveness. The reasoner combination
method selects a reasoner with the optimal performance for
each ontology. This method gives an advantage over any
reasoner when compared to the entire set of ontologies used
in this study.

References

1. List of Reasoners [Electronic resource]. – OWL. – Available at: http://owl.cs.manchester.ac.uk/tools/list-of-reasoners/

2. Reasoners and rule engines: Jena inference support [Electronic resource]. – Apache Jena. – Available at: https://jena.apache.org/

documentation/inference/

3. OpenLink Virtuoso Universal Server Documentation [Electronic resource]. – OpenLink Software. – 2017. – Available at: http://

docs.openlinksw.com/virtuoso/

4. Sheare, R. HermiT: A Highly-Efficient OWL Reasoner [Electronic resource] / R. Sheare, B. Motik, I. Horrocks // Available at:

http://www.cs.ox.ac.uk/boris.motik/pubs/smh08HermiT.pdf

5. Motik, B. Hypertableau Reasoning for Description Logics [Text] / B. Motik, R. Shearer, I. Horrocks // Journal of Artificial Intelli-

gence Research. – 2009. – Issue 36. – P. 165–228.

6. Zuo, M. Intelligent Tableau Algorithm for DL Reasoning [Text] / M. Zuo, V. Haarslev // Lecture Notes in Computer Science. –

2013. – P. 273–287. doi: 10.1007/978-3-642-40537-2_23

7. Motik, B. Optimized Reasoning in Description Logics Using Hypertableaux [Text] / B. Motik, R. Shearer, I. Horrocks // Lecture

Notes in Computer Science. – 2007. – P. 67–83. doi: 10.1007/978-3-540-73595-3_6

8. Pukancová, J. Tableau-Based ABox Abduction for Description Logics: Preliminary Report [Electronic resource] / J. Pukancová,

M. Homola // Available at: http://ceur-ws.org/Vol-1577/paper_23.pdf

9. Surianarayanan, C. A survey on optimization approaches to semantic service discovery towards an integrated solution [Text] /

C. Surianarayanan, G. Ganapathy // ICTACT Journal on Soft Computing. – 2012. – Vol. 02, Issue 04. – P. 377–383. doi: 10.21917/

ijsc.2012.0059

10. Glimm, B. Optimising Ontology Classification [Text] / B. Glimm, I. Horrocks, B. Motik, G. Stoilos // Lecture Notes in Computer

Science. – 2010. – P. 225–240. doi: 10.1007/978-3-642-17746-0_15

11. Shevchenko, A. Modern ontological knowledge base management systems comparison [Text] / A. Shevchenko, E. Shevchenko //

Visnyk SevNTU. – 2012. – Issue 131. – P. 82–86.

12. Dentler, K. Comparison of Reasoners for large Ontologies in the OWL 2 EL Profile [Text] / K. Dentler, R. Cornet, A. Teije, N. Kei-

zer // IOS Press. – 2011. – Issue 1. – P. 1–17.

13. Sirin, E. Pellet: A practical OWL-DL reasoned [Text] / E. Sirin, B. Parsia, B. C. Grau, A. Kalyanpur, Y. Katz // Web Semantics:

Science, Services and Agents on the World Wide Web. – 2007. – Vol. 5, Issue 2. – P. 51–53. doi: 10.1016/j.websem.2007.03.004

14. Apache Jena Overview [Electronic resource]. – Apache. – Available at: http://jena.apache.org/documentation/javadoc/jena/

15. Fokoue, A. The Summary Abox: Cutting Ontologies Down to Size [Text] / A. Fokoue, A. Kershenbaum, L. Ma, E. Schonberg,

K. Srinivas // Lecture Notes in Computer Science. – 2006. – P. 343–356. doi: 10.1007/11926078_25

16. Bibchkov, I. Optimizing the performance of ontological knowledge bases built on the basis of «VIRTUOSO» [Text] / I. Bibch-

kov, V. Sokol, A. Shevchenko // Eastern-European Journal of Enterprise Technologies. – 2014. – Vol. 5, Issue 2 (71). – P. 4–8.

doi: 10.15587/1729-4061.2014.28553

