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1. Introduction

When studying behavior of control systems, dynamic
conditions require special consideration. Apparatus of or-
dinary differential equations is most often used as a mathe-
matical tool for studying such systems. General methods of
solution have only their linear forms. For this reason, linear
(linearized) approaches are used to construct models of
object and controller. However more exact models are rep-
resented by nonlinear differential equations. This situation
leads to the fact that the results obtained can only be used
within the range of small variation of parameters of the con-
trolled processes nearby the linearization point.

The use of fuel of a variable composition [1, 2] in power
equipment instead of certified fuel with a constant composi-
tion brings about a continuous variation of the fuel calorific
value, amount of combustion products, their temperature,
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thermophysical properties, etc. In turn, this causes variation
in a wide range of the process parameters subject to control.
In such a situation, application of the results obtained by
analysis of linear models is very problematic and even unfea-
sible in most cases.

The search for new approaches to analysis of nonlinear
models is an important element in solution of the problem of
optimal control of power equipment using non-certified fuel
of a variable composition.

2. Literature review and problem statement

An effective way to simplify the study of complex models
is to make them dimensionless. Reduction of dimensionality
of the modeling space makes it possible both to reduce num-
ber of experimental (full-scale and numerical) studies by




orders of magnitude and facilitate derivation of analytical
dependencies. In most cases, when a standard application
of this approach takes place, the number of variables and
parameters is reduced by an amount determined by the
-theorem. As practice shows, this is not the limit. There
are works, for example [3, 4], in which the possibility of a
deeper transformation of models is substantiated with an
even greater reduction of the number of variables. It was
observed that the greatest possible reduction of the number
of dimensionless parameters was achieved with the help of
the proposed method but without their complete exclusion
from consideration.

The smallest possible number of dimensionless quantities
is determined by the number of independent variables. In
the standard approach to deletion of dimensions, additional
parameters appear besides them. Similarity criteria appear
in their quality. Consequently, there is a need to consider
elimination of all or at least most of the criteria. In [5], this
feasibility is illustrated by the simplest example and consid-
ered only as a favorable, desirable but a stochastic possibility
leading to self-similarity.

Self-similarity of the model and its solution are achiev-
able if the set of parameters determining the system state
does not contain characteristic scales of independent vari-
ables. The standard approach to deletion of dimensions of
mathematical models is based primarily on introduction of
such scales. This contradiction is the cause of a rare achieve-
ment of self-similarity. The ways of excluding characteristic
scales of independent variables from the process of deletion
of dimensions have not been found in literature.

As another method of generalized analysis and solution
of differential equations, the Lee group theory can be consid-
ered. Initially, the group theory was created (the end of the
nineteenth century) as a demonstration of universality of ap-
proach to already known disconnected solutions of ordinary
differential equations and did not make any new solutions
in this sense. However, the incorporated idea turned out to
be productive in the study of models in the newly emerging
fields of research when new types of equations were used. As
a rule, these are partial differential equations [6]. Based on
the group theory, both analytical and numerical solutions
can be obtained [7]. In addition to the exact solutions, there
is a trend of using approximate symmetries in the group
theory [8] and, correspondingly, obtaining approximate
solutions.

A special feature of application of the group methods
when trying to solve an equation is the use of arbitrary, con-
venient, or even random initial solutions for the case under
consideration. One of the most known mathematical appli-
cations of continuous groups is found in the control theory
[9]. In the reviewed literature, it has not been possible to
find examples of use of linearized models as the initial most
developed solutions for investigating the processes described
by nonlinear equations.

Unidirectionality of the methods for deletion of dimen-
sions and the group theory to simplification of solution of
differential equations has led to an attempt of their union
[10]. In a narrower application in [11], deletion of dimensions
of the original differential equations was used to simplify
analysis of the algebraic equations derived from them by
means of the Laplace transform. This operation is a tool for
identifying a group of uniform stretches. Within the frame-
work of this approach, the question is considered in [12]:
“What is the goal: deletion of dimensions of variables or re-

ducing the number of model parameters? An unbiased view
of this question suggests that the goal is precisely to reduce
the number of parameters and the deletion of dimensions is
just a means enabling achievement of exactly this result in a
number of cases”. Sometimes this is called “the problem of
reducing to a minimally parametric form” [13]. But as noted
above, this attitude to deletion of dimensions is determined
by the standard approach used. In the literature [13], it
was not possible to find examples of combination of special
methods for deletion of dimensions that ensure achievement
of self-similarity in terms of parameters (similarity criteria)
and the ideas of the group methods for solution.

3. The aim and objectives of the study

This work objective was to develop a method for ap-
proximate solution of nonlinear differential equations using
results of deletion of dimensions resulting in self-similarity,
and group methods of solution.

To achieve this goal, the following tasks were set:

—to show feasibility of deletion of dimensions with no
use of characteristic scales of independent variables, which
will reduce the number of similarity criteria to the values
less than those prescribed by the z-theorem;

— to choose the initial solutions convenient for the case
under consideration, obtained from the initial equations
with dimensions deleted by the proposed method,;

—to show efficiency of the developed method and esti-
mate feasibility of its application in engineering calculations.

4. Deletion of dimensions of the mathematical models
with no use of characteristic scales of independent
variables

In accordance with the Fourier theorem, in the case of
polynomial equations, all terms connected by plus or minus
sign must have the same dimensionality. With the standard
method of deletion of dimensions in such equations, the in-
dependent variables are normed by means of characteristic
scales. All scales are constants and are taken out of the op-
erator in each term of the equation. As a result, each term of
equation is the product of a complex (parameter) of constant
dimensional quantities and the operator over the indepen-
dent variables with deleted dimensions. All parameters have
the same dimensionalities. Further, all terms of equation are
divided by the value of one of the parameters. As a result,
all quantities acting as parameters become dimensionless
as well. The parameter by the quantity of which all other
parameters were divided remains equal to one. Thus, the
mathematical model becomes dimensionless with a simul-
taneous reduction of the number of parameters. However,
this method is not the only way to reduce their number. For
example, this is demonstrated by comparison of the Coulomb
law notation:

Feg, T, M

in SI and CGEE measurement systems. For example, the
electric constant £5=8.99-10° [N-m?-C2] has a certain mean-
ing and dimension in SI system while gy=1 and dimension-
less in CGEE system. A similar picture can be observed



in writing magnetic constant in the Ampére law in SI and
CGEE systems, etc. This situation is caused by different sets
of independent dimensions (independent variables) for the
mentioned measurement systems.

With the standard method of deletion of dimensions,
the possibility of changing the type of scales in the case of
change in the mathematical model equations, for example,
when it is detailed, is not considered. This is a limitation for
reducing the number of model parameters determined by
the mn-theorem. For example, in work [14], when discussing
the Fourier similarity criterion Fo which includes the time
scale ¢

a-t*

Fo a A)Z’ 2)
it is noted that it is impossible to single out such a scale for
a number of processes. If the periodic process is considered
as a scale, its period can be adopted. And, for example, there
is no characteristic scale for the process of nonstationary
heating of a body. In this situation, a method of introduc-
tion of the similarity criterion (it is constant for the process
being considered) can be applied under the time differential
operator in a corresponding term of the energy conservation
equation. Taking (2) into account, the following is obtained:

106_ 96 96 98 98 3)
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Here, 0,f are dimensionless temperature and time, re-
spectively.

In (3), it is taken into account that ¢*-¢ =t is the
running dimensional time, and (Ho) in the last expression
denotes relative time (in a dimensionless form) called the
number of homochronality. Comparison of the first and last
expressions in (3) shows that if the dimensionless type of
notation is retained, parameter in the form (1/Fo) is absent
in the last expression.

Such transformations are only possible with the equation
terms including variables not entering other members of the
mathematical model. Consider for example equation of the
law of conservation of momentum in the Navier-Stokes form
without taking into account mass forces for a one-dimen-
sional distributed model
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which will have the following form under a standard ap-
proach to deletion of dimensions:
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Here, Sh, Eu, Re are the Strouhal, Euler and Reynolds
criteria, respectively. The Sh criterion is the criterion of
homochronicity for the process under consideration and can
be introduced under the time-differential operator similarly
to the Fo criterion in (3). However, such an operation fails
for the Re criterion. It is even more difficult with the Eu
criterion. In equation (5), pressure contains only one term
in its composition as well. The Eu criterion in this term
can be formally introduced under the pressure-differential

operator. But in the case under consideration, equation (5)
is presented in isolation and was only used to demonstrate a
feasible procedure. When writing a mathematical model and
investigating feasibility of modeling, boundary conditions
have to be taken into account. In the initial condition, the
time variable t=0. Consequently, it will be zero in both the
form of £ =¢ /¢* made dimensionless by a standard method
and the form of the relative variable (Ho). Therefore, put-
ting FO under the differential sign in the basic equation will
not affect the time value in the initial condition. But the
members in the marginal conditions that contain pressure
do not have the Eu criterion in their composition. Therefore,
putting it under the differential sign in the basic equation
and the use of the pressure variable in a relative form con-
tradicts the simply dimensionless pressure value in the
boundary condition. A similar thing is observed for the rest
of variables. For this reason, when performing the described
procedure for Fo in [14], only self-similarity of the form rep-
resentation (but not the physical situation of the process) is
achieved. In no other case throughout the text of [14] such a
procedure is repeated and only availability of studies in this
direction is mentioned in the last sentence.

In contrast to the results of [14], work [5] points out that
self-similarity of the representation form can be achieved for
all members of the mathematical model in a simple particular
case. The case of an ideal oscillatory system (a load suspend-
ed on a spring with no energy dissipation) is considered. The
mathematical model has the form:

m

2
-‘j{tf+k~x:0;at t=0: x=39, %:0. (6)

Here, m, k, § are the load weight, spring stiffness, max-
imum deviation of the load from the equilibrium position
(oscillation amplitude), respectively.

Upon performing deletion of dimensions in the following
way, the model (6) is obtained as:

I’ _ — dx

m+x=0; at £ =0: E:O, 7)
which really does not contain any parameters. Attention
should be paid to the deletion of time dimensions by using an
expression having time dimensionality instead of the scale
2. An analogy with transformation of (3) and transition to
relative dimensionless variables can be observed here.

Summing up, the above techniques which make it pos-
sible to reduce the number of parameters in mathematical
models should be pointed out:

a) use of values of the expressions having corresponding
dimensionality for deletion of dimensions instead of the
characteristic scales;

b) change of the type of the measuring scales when the
form of the equations under consideration changes;

¢) transition to the dimensionless relative variables.

In the above examples, all techniques are used separately.
It can be assumed that their joint use will ensure obtaining
new results.

As already noted, in order to perform an adequate mod-
eling, it is necessary to consider basic equations of the model
together with the boundary conditions. But, on the one
hand, this can be cumbersome for complex models and on
the other hand, such a notation reflects just a particular case.
Therefore, to demonstrate fundamental feasibility of obtain-



ing new results, it seems rational to use a separate general
equation. To this end, consider equation (5) once more. The
dimensionless complexes (similarity criteria) are obtained
for the characteristic scales of the described processes. They
are marked with symbol «*» in the presented expressions:
A A A
Sh=—"_; Bu=—2L  Re=2" ®)
t"u p-(u®) Y

Here AP, p, v are the pressure variation between the
characteristic points of the space under consideration, den-
sity, and viscosity of the medium in this space, respectively;
X8, 8, u® are the characteristic scales for deletion of dimen-
sions of the coordinate, time, and velocity of the medium in
the described process, respectively.

The standard method of transformation features corre-
spondence of the physical nature of the characteristic scales
and the quantities that become dimensionless with their
help. The characteristic size is chosen as x, the character-
istic velocity as u?, etc. But the need for such a choice is not
substantiated anywhere. In fact, only correspondence be-
tween the dimensionality of the scale and the quantity that
is disdimensioned with its help is mandatory. The following
expressions can be used as scales:

/ x —v\/i —v é. 9)

They have necessary dimensionalities and when substi-
tuted in (8), they transform all criteria into quantities iden-
tical to one. This substitution demonstrates feasibility of ob-
taining the number of parameters less than that prescribed
by n-theorem when the expressions are dimensionless.

In the case under consideration for equation (5), self-sim-
ilarity by all similarity criteria is achievable. It should be
noted that expressions (9) are not artificial but can be
related to each other or reflect certain relationships. The
expression x*=u’-t* reflects relationship of speed, time and
coordinate. The values in the expression for u* reflect their
interrelation in determining volume flows:

O=u-S=¢-5. /%:uze.ﬁ. /A;’

Let us consider the case when the process under investi-
gation is described by an equation analogous to (4) but ex-
panded by introduction of a term taking into account action
of the field of mass forces. Following deletion of dimensions
in the standard way, it will have the form similar to (5)

(10)
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differing from it by the appearance of a new member and one
more criterion, Froude criterion (Fr). In this expression, 7, is
an overload, a quantity showing how many times intensity of
the active field of mass forces exceeds intensity of the field of
gravitational forces (acceleration of gravity). The Sh, Eu and
Re criteria remain unchanged and will have the form of (8).
The Fr criterion is expressed using the same characteristic
scales and quantities:

G (12)

where g is acceleration of gravity. The use of norming quan-
tities in the form of (9), just as in the previous case, enables
achievement of self-similarity for the Sh, Eu, Re criteria
(convert them to one). But this does not happen for Fr. In
order to achieve self-similarity for all criteria in the consid-
ered case, it is necessary and possible to change the form of
the norming quantities:

ut=3v-g; x —i/i Lz pt=pi(v-g)*. (13)

It should be noted that like in the previous case (9), the
norming quantities (13) have not only corresponding di-
mensionalities but can also be interrelated reflecting general
physical relationships for the coordinate (displacement) and
flow rate (10):

L (14)
Y

The form of the norming quantities (13) shows that they
consist just of the physical properties of the medium under
investigation and the intensity of the field of mass forces. For
example, typical dimensions are not included into them. This
can serve as the basis for distorted modeling, i. e. without a
necessary retention of geometric similarity.

The above examples show that various approaches to
deletion of dimensions are possible. In many cases, the
procedures that were considered make it possible to reduce
the number of model parameters in comparison with that
prescribed by the n-theorem. The best result is obtained by
using not the scales selected on the basis of the characteris-
tic dimensions and parameters of the processes under study
but by constructing norming quantities of the (9) or (13)
type. The use of characteristic scales implies retaining of the
measurement system and only a multiple or partial change
of dimensionality. For example, such characteristic scale
as diameter is measured in meters and all other geometric
dimensions are measured by the number of these diameters.
The use of norming quantities of the (9), (13) form actually
means introduction of a new measurement system. Such a
system can be called natural coordinates. Such measure-
ment system features change of natural coordinates when
the problem of dimension deletion is changed. When using
a complete mathematical model (with taking into account
boundary conditions), one can expect changes in the norm-
ing quantities but the principle of deletion of dimensions
remains in effect. In such formulation, the use of natural
coordinates has something in common with the solution
methods in the group theory.

Application of natural coordinates is not exhausted by
the examples given. The Navier-Stokes equations are a par-
ticular expression of the generalized conservation law [15]
which can be written in a vector form as:

%(p¢)+div(pucb)= div[l-grad(®)]+S. 15)

Equation (15) includes (in the order of notation) the
following: nonstationary, convective, diffusion, and source
terms. By substituting different (by the meaning of the prob-
lem) values of the dependent variable &, diffusion coefficient
I' and source term S for various purposes, one can obtain



expressions for the laws of conservation of various quanti-
ties. For the law of conservation of momentum, it suffices to
perform substitutions: ®=u (velocity), '=p (viscosity), S=ng
(the field of mass forces). For the energy equation: ®=% (spe-
cific enthalpy), I'=k (coefficient of thermal conductivity). In
general, the quantity ® can denote weight concentration of
chemical components, temperature, kinetic energy of turbu-
lence or the scale of turbulence, etc. The continuity equation
is also a variation of the conservation law and follows from
(15): absence of a source at ®=1 and S=0:

%(p)+div(pu):0. (16)

The described procedure of deletion of dimensions can be
applied to all equations of the (15) or (16) form.

5. The method for solving dimensionless ordinary
nonlinear differential equations

Work [16] offers a method for approximate solution of
the problems in which initial description of the investigated
processes is based on distributed mathematical models. To
do this, simplified models are used in a concentrated formu-
lation that describe basic properties of the processes under
consideration and are the core of solution of more complex
models. Simplified models are built on the basis of integral
averaging of distributed parameters using the coefficients
determining completeness of their accounting. Ultimately,
the simplified model is constructed in a dimensionless form
similar to that described in the previous section and all co-
efficients are mapped as one integral. All these coefficients
can be considered as the coefficients of stretch in the group
methods of solution. Solution to the integral coefficient of
the simplified model is considered as the sought one. In turn,
the order of magnitude of the integral coefficient can be esti-
mated by analytical calculations. But its more precise value
is determined on the basis of few model experiments or exact
solutions (both analytical and numerical) of the particular
problems. A small number of necessary experiments or exact
solutions are determined by the use of the above described
method of deletion of dimensions and, as a consequence, by
achievement of self-similarity for all parameters (or at least
for their majority) of the process under consideration. Com-
parison of the resulting solutions with exact ones shows that
they are in a good agreement with the relative errors (e~5 %)
permissible for engineering calculations at their considerable
simplicity.

Such an approach can also be applied to an approximate
solution in an analytical form of nonlinear ordinary dif-
ferential equations of the automatic control theory having
solutions of their linearized forms. Linearized equations
are subject to deletion of dimensions as described above.
This allows one to minimize the number of parameters
(within the limit sufficient to achieve self-similarity for all
parameters) and obtain solutions in the simplest form. Fur-
ther, the original nonlinear equations are also subjected to
deletion of dimensions using the norming values obtained
by processing their linearized forms. The coefficients of
stretch that transform solutions of the linearized equations
into approximate solutions of the original nonlinear models
are determined from a limited number of numerical reali-
zations of the latter.

6. An example and estimation of adequacy of the
approximate solutions of the nonlinear ordinary
differential equations

As an example of application of the proposed method,
consider solution of nonlinear differential equations describ-
ing motion of a mathematical pendulum in two cases:

1) in the absence of energy dissipation;

2) in the presence of environmental resistance.

The first case is interesting by feasibility of an analytic
solution in terms of elliptic integrals (the Jacobi integral).
This integral itself requires a numerical solution. But there is
a parameter of the process under consideration (the oscilla-
tion period) which can be relatively easily determined based
on the calculation of the sum of a rapidly converging series.
Thereby, this quantity is a convenient example for evaluating
effectiveness of the proposed approximate method.

The linearized form of the equation used to describe the
pendulum motion in the second case, in the linear theory of
automatic control, serves as the basis for the model of the
second-order inertial link. Using the non-linear equation,
the trajectory of the body motion is described in a wider
range of coordinate variation but, unlike the case of linear
formulation, it does not have a solution when using standard
functions. Therefore, even an approximate solution of the
nonlinear problem is of interest.

1) Motion of a mathematical pendulum in the absence of
energy dissipation

On the basis of a nonlinear equation describing motion
of a mathematical pendulum without dissipation of energy

d*x

17 +mgsin(a)=0,

m

(17)

the linearized model after taking into account initial condi-
tions and a corresponding norming in a dimensionless form
will be as follows:

o =0 x=1
Zo4x=0at|_ dv (18)
dt? t=0 —==0.

dt

The variables and parameters that are standard for
writing the equations of motion of the pendulum are used in
(17). Linearization was performed in a same standard way
by replacing sin(a)=a. Here, a=x/7 is the angle of deviation
of the pendulum suspension from the equilibrium position,
r is the length of the suspension thread. Norming and dele-
tion of dimensions were carried out according to the method
considered above:

x=x-xt=¢-t*,

where norming quantities were defined as follows:

Xt =8 t*=\lr/g. (19)

In (19), & is the coordinate of the body at its initial de-
viation from the equilibrium position (amplitude of oscilla-
tions), g is intensity of the field of mass forces (acceleration
of gravity).

In the original equation (17), the function value depends
on three quantities: x=f(¢, m, g). With the conventional
method of deletion of dimensions, the function value de-



pends on two quantities: X = f(Z,0), where o is the nat-
ural frequency of oscillations. But the use of the proposed
method of deletion of dimension has made it possible to
obtain expression (18) in which function depends on just one
variable, X = f(¢). In fact, this means introduction of a new
time unit: in solving problems, time will not be measured in
seconds (minutes, hours) but in fractions of the oscillation
period. Such simplification of the model (18) enables solution
in an extremely simple form

x=cos(t), (20)
in which information about the source object (17) is reduced
in the norming quantities (19) and the oscillation period for
any ratio of the initial equation parameters will be a constant
value equal to 2m.

Before solving the original equation (17), carry out dele-
tion of dimensions for it with the help of norming quantities
(19) obtained on the basis of the linearized model. As a re-
sult, the following is obtained:

\
x . _
a§ﬁ+sm(oﬁ5-x)=0. (21)

Here, it is taken into account that az=38/7 is the angular
amplitude of the pendulum oscillations. Solution of (21) is
sought on the basis of (20) as:

x=cos(t / k). (22)

In this expression, the quantity «k» appears as the co-
efficient of stretch correcting the argument value in the
linearized problem. To determine this coefficient, consider
the relationship known in the practice of solving equations
of the (17) form as a series for determining the period of
oscillations:

’
T,= \/; 2m-k,;
2 2
k,= 1+(1) b +(£) b+
2 2-4
1.3.5Y? (2n—1)n7
+( ) b‘*...[ } b,
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where b=sin(as/2). The expression in the first part corre-
sponds to the period of the pendulum oscillations described
by the linearized equation. Coefficient «k,» is a corrective
coefficient and can be considered analogous to «k» from (22).

Use the value of «k,» in (22) for determining of x. For
comparison and evaluation of the result, equation (21) was
solved using the Runge-Kutta method of the fourth order.
Calculations were performed in the range of the argument
variation ¢ =0...20 by a step of #=0.1. The results obtained
with the help of expression (22) and the numerical method
were compared at each calculation point: an error related to
the double amplitude (peak-to-peak value) was determined.
The maximum error was chosen from among the errors for
all points. The results for various initial angles of deviation
(angular amplitudes) are given in Table 1. Fig. 1 shows exam-
ples of the graphs obtained on the basis of numerical solution

of equation (21) (Runge-Kutta), analytic solutions of (20)
(k=1) of the linearized equation (18) and (22) (k=1.1804) of

(23)

the nonlinear equation (21) at an angular amplitude az=90°.
The choice of such amplitude for graphical illustration
was determined by the maximum relative deviation &y.x=
=1.19 % between the numerical and analytical solutions (22).
But even in this condition, their graphs in Fig. 1 are practical-
ly indistinguishable. The graph for k=1 reflects the difference
between solution of the original dimensionless equation (21)
and its linearized form (18). In the vast majority of cases, the
results show that the simple solution of (22) can be applied
instead of solution in the form of elliptic integrals.

Table 1

Coefficients of stretch and errors of analytical solutions for

different initial angles of deviation (of angular amplitudes) in
absence of energy dissipation

a5, deg. 30° 60° 90°
k, 1.0174 1.0732 1.1804
Emax% 0.12 0.48 1.19
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Fig. 1. The dimensionless x coordinates of the pendulum
position as a function of the dimensionless time ¢ obtained
on the basis of various methods for solving non-linear
dimensionless equation (21)

2) Motion of a mathematical pendulum in the presence of
environmental resistance

Add a term that takes into account action of the forces of
environment resistance to the initial equation (17):

2
Z;,f + c%+ mgsin(a) =0.

m

(24)

Here, ¢ is the coefficient of resistance. Further, like in
Paragraph 1) of the section under consideration, linearize
and delete dimensions for this equation. As a result, a pen-
dulum motion model similar to (18) is obtained on its basis:

t=0 x=1
d’x 1dx ’
—+——+x=0at |_ 25
dt  mdr r=0 £’ﬁ=0, (29)
dt
where the norming quantities have the form:
x*=8; t*=4r/g; m*=cr/g. (26)

Depending on the magnitude 7, solution of (25) has the
form:
a) form>0.5

x _ _
T=e¢ 27 cos(ét )+lsin(%t ) ,
2m p 2m

where

p=A4m’ -1,



b) for m<0.5

Ezl 1+i ,6(01'Z)+1 1_i ,e(‘lz'?)y
20 p 20 p

p=~N1-4m’; a = (1—7p); a,=
2m

_(+p)
2m

(28)

By analogy with the operation performed in paragraph 1),
introduce the coefficient of stretch «k»: in solutions of (27)
and (28) of the linearized equation (25):

ik 7 7
F=e | cos| Lot )y Lsin[ 2L )|,
2m k) p 2m k

t t
37:1 1+i .e(”ﬁ)_,_l 1_i P
20 p 20 p

Using (29) and (30), approximate solutions of the orig-
inal nonlinear equation (24) can be obtained. To estimate
the error of such solution, delete dimensions for the original
nonlinear equation (24) using norming quantities (26). As a
result, an equation analogous to (21) is obtained:

(29)

(30)

d’x X _
a6ﬁ+%ﬁ+sm(a8~x):0. (31)
Numerical solution is obtained using the fourth-order
Runge-Kutta method in the range of the argument variation
t =0...20 with a step £=0.1. Comparison of the results and
the search for errors were performed by analogy with the
similar operation in paragraph a) with an addition of values
m, defining the type of solution of (29) or (30) The results
for various initial angles of deviation are given in Table 2.
Fig. 2 shows examples of the graphs obtained on the basis of
various methods for solving the initial equation (24).

Table 2

Coefficients of stretch and errors of analytical solutions
for various initial angles of deviation in the presence of
environmental resistance

a5, deg. 30° 60° 90°
m 0.4 20 0.4 20 0.4 20
k 1 10126 | 1.105 | 1.0515 | 125 | 1.126
e’ | 125 | 066 | 100 | 273 | 218 | 550

Fig. 2, a shows results for the case of m=0.4. Fig. 2, b
shows results for the case of m=20. In both cases, the re-
sults were obtained on the basis of:

— numerical calculations using the fourth-order Runge-
Kutta method;

— solution of the linearized equation (25) at k=1 in the
form of (28) for the case of m=0.4, (Fig. 2, a) and solution
of equation (25) in the form of (27) for the case m =20,
(Fig. 2, b);

— solution of the original nonlinear equation (24) in the
form (30) with £=1.25 for the case of m=0.4 (Fig. 2, a) and
solution of the equation (24) in the form of (29) for k=1.126
for the case of m=20 (Fig. 2, b).

The results are given for the case of initial deviation of
the pendulum from the equilibrium position az=90°. The
choice of such amplitude for a graphical illustration as in the

case of Fig. 1 was determined by the maximum relative de-
viation gn,x=5.5 % at this amplitude between the numerical
and analytical solutions for the case of m=20.
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Fig. 2. The dimensionless x coordinates of the pendulum
position as a function of the dimensionless time ¢ obtained
on the basis of various methods for solving non-linear
dimensionless equation (29): a =0.4; b =20

The deviations of the results of approximate analytical
solutions in comparison with the numerical ones do not
exceed or are equal to the permissible errors in engineering
calculations (-5 %).

7. Discussion of the study results: features of the
developed method for approximate solution of nonlinear
ordinary differential equations

A method was proposed for deletion of dimensions in
the mathematical model giving the number of variables less
than that prescribed by the n-theorem. When using the pro-
posed method, it is possible in a number of cases to exclude
from consideration all similarity criteria or, in other words,
to achieve self-similarity for them. In the framework of the
procedure of deletion of dimensions, this is expressed in a
transition from the criteria to the similarity numbers. Thus,
information is reduced without its loss.

The limit reduction of the number of variables in the
mathematical model facilitates application of analytical
approximation dependences for approximate solutions. Solu-
tions of the linearized forms of the original nonlinear equa-
tions with the use of coefficients of stretch characteristic
for the group solution methods were proposed in the quality
of such dependencies. This approach makes it possible to
take into account physical nature of variation of the studied
quantities in the case when solutions of nonlinear equations
cannot be realized by using standard functions.

The limit reduction of the number of variables facilitates
determination of the coefficients of stretch. The feature of
their search in the proposed method of approximate solution
of nonlinear equations consists in the use of not analyt-



ic transformations but numerical solutions or experimen-
tal studies. The minimum number of variables minimizes
amount of the work required.

Although the proposed method is approximate, it enables
obtaining of analytical solutions acceptable from the engi-
neering point of view in the absence of their exact forms. The
method functionality was illustrated by the example of study
of pendulum motion which is a counterpart of inertial link of
the second order in the theory of automatic control.

8. Conclusions

1. A method for deletion of dimensions in mathematical
models based on the refusal to use characteristic scales
of independent variables as the norming quantities has
been developed. In the process of deletion of dimensions,
norming quantities are formed from physical parameters
of the processes under study which is equivalent to the
introduction of a new coordinate system. This approach
makes it possible to reduce number of similarity criteria to
the values less than that prescribed by the n-theorem. In a

number of cases, it becomes possible to completely exclude
criteria from consideration, i.e. reduce dimensionality of
the model.

2.1In the case of a group approach to solving a dimen-
sionless nonlinear model, it is proposed to choose solutions
of their linearized forms as initial ones.

3. Functionality of the developed method for approxi-
mate solution of nonlinear ordinary differential equations
was demonstrated by comparison of the results obtained
with its help with the results of numerical calculations. The
comparison was made using the example of study of pendu-
lum motion which is a counterpart of an inertial link of the
second order in the theory of automatic control. The devia-
tions of the results of analytical solutions in comparison with
the numerical ones do not exceed or are equal to the permis-
sible errors in engineering calculations (=5 %). The proposed
method can be used in the theory of automatic control when
solving nonlinear differential equations describing behavior
of other links. It is of interest to investigate the feasibility of
applying the proposed method to an approximate solution
of other types of differential equations, for example, partial
differential equation.
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