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1. Introduction

Railroad transport is currently functioning under ex-
tremely difficult conditions. A decrease in the volumes of 
freight transportation has led to closing some low-perform-
ing stations, and, accordingly, to a change in the structure 
and direction of wagon flows from consignors to consignees.

Instability of economic processes in the organization of 
transportation reduces the level of energy efficiency of rail 
transport operations. At the same time, in terms of con-
sumption of fuel and energy resources per unit of a delivered 
article, railroad transport that performs the vast majority of 
transportation volumes in the state is the most cost-efficient. 
From the point of view of energy saving, there exists a huge 
reserve in the optimization of energy consumption, both by 
the railroad transport and by infrastructure units, related in 
one way or another to transportation. The main direction of 

activities aimed at reducing consumption of energy resourc-
es is to improve structures in the infrastructure, power sup-
ply systems and rolling stock, as well as methods of control 
over the motion of trains.

In order to organize wagon flows in the railroad network, 
a plan of freight train formation is calculated, which is based 
on the modifications of the network configuration, techno-
logical equipment of sections and stations, traction means 
and capacity of electricity supply system.

Given various factors that affect calculation of the train 
formation plan, as well as intentions of carrier companies to 
optimize the motion of their wagons, it is possible to argue 
about the relevance of the issue on rationalization of the 
organization of wagon flows in order to improve energy ef-
ficiency of transportation. In other words, there is a need to 
devise a procedure for solving a problem on the organization 
of wagon flows, which would make it possible to determine 
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the optimal variant for handling wagons at technical sta-
tions, as well as to direct wagon flows by the most promising 
destinations.

2. Literature review and problem statement

Many scientific methods were proposed in order to im-
prove the system of organization of wagon flows on railroads. 
For example, authors of paper [1] propose to improve a sys-
tem of organization of wagon flows by considering a combi-
nation of a larger number of related routes in the formation 
plan, by searching and accounting for of a larger number of 
influencing factors, consideration of financial efficiency by 
reducing a wagon’s turnover. 

In article [2], it was noted that the improvement in com-
petitiveness of railroads in Spain is carried out by seeking 
new routes for the motion of cargoes. These approaches en-
able solving a task on the organization of wagon flows only 
as a single-criterion problem.

Paper [3] describes a method for calculating the optimal 
multiphase routes for the motion of wagons. The paper in fact 
addresses complex problems on linear programming of the 
transportation type. The method to tackle these problems 
is a method of their reduction to the task on constructing 
a minimum cost flow in an appropriate transportation net-
work. 

Authors of article [4] proposed a new method for solving 
the knapsack type problems, which makes it possible to re-
fuse the Boolean variables and to solve a basic optimization 
problem employing the Lagrange multipliers. The method 
proposed allows significant adaptation of the problems on 
vector optimization to the problems of rational organization 
of wagon flows with constraints for the handling capacity of 
technical stations and the throughput of sections.

In the consideration of improving the effectiveness of 
management, there is always a problem of rational invest-
ment. In mathematical terms, this problem is known as the 
knapsack problem (backpack). A detailed overview of these 
problems is given in paper [5] that tackles the problem with 
multiple knapsack. 

Article [6] should be noted, which proposed an approach 
for determining a rational ratio between the components of 
the investment process ‒ volume of investment, profitability, 
and the time of implementation of particular projects.

Based on an analysis of the scientific literature, we can 
say that when designing an algorithm in order to solve a 
problem on selecting the optimal plan of train formation, it 
is necessary to determine:

– organization of conducting a given calculation;
– procedure for collection and preparation of initial data;
– procedure for selecting rational variants, making the 

final decision, and assignment of tasks for railroads and 
stations.

Mathematical approaches proposed in the considered 
sources make it possible to apply interactive methods to 
solve a multicriteria problem. These methods construct a 
subjective utility function, reflecting the actual state of af-
fairs in the polygon at selected railroad stations, rather than 
a formal model of reduced costs. That is why the statement 
and the solution of the problem on the rational organization 
of wagon flows considering the improvement of energy effi-
ciency of transportation as a multicriteria one will make it 

possible to better account for various aspects in the organi-
zation of wagon flows.

Paper [7] considers a well-known combinatorial opti-
mization problem of a single criterial knapsack with a wide 
range of applications. This paper deals with the problem of 
an integer multiple criterion of knapsack (MCKP), explores 
basic MCKP and its more complex extensions, including 
binary variables, multiple constraints, and time-dependent 
criterion functions. It was proposed a comprehensive pro-
gram DP-framework, which is capable of solving a wide 
range of problems using the knapsack models that represent 
uncertainty, or are dependent on time constraints. The 
continuation of this research area might include effective 
implementation of the proposed DP approaches.

Authors of article [8], to solve multi-purpose knapsack 
problems, proposed an approach based on dynamic pro-
gramming. The main idea of this approach is based on using 
several complementary relations of domination, in order to 
reject partial solutions that cannot lead to the emergence of 
new non-directed vectors of the optimization criterion. An 
effective method is thereby obtained, which is superior to ex-
isting methods, both in terms of the utilization of CPU time 
and the dimension of the solved multicriteria problems. The 
article provides data from extensive numerical experiments 
for different types of cases. A comparison with other precise 
methods is also included. In addition, for the first time, the 
solution to the problem with three complementary relation-
ships of domination is presented.

One should note paper [9], which addresses two catego-
ries of optimization methods with multiple triggers: proce-
dures based on memory and without memory. The former are 
based on the identification and recording of specific types of 
information (attributes) for use in the future optimization. 
The latter are based on the sample order statistics and the 
generation of disjoint outcomes. The interaction between 
functions of these two categories constitutes a promising 
area for the future research into optimization.

The application of mathematical modeling methods 
when building a route of wagon flows in trains in a polygon 
at the stations is addressed in [10]. The author proposed to 
change the pre-routing of wagons on the railroads of Chi-
na and to optimize a standard plan of train formation. To 
reduce the complexity of the problem, this article suggests 
a nonlinear binary programming of the model to improve 
the integrated plan of train formation. The proposed model 
comprehensively examines various operational require-
ments to the calculation of freight train formation plan 
taking into account the throughput constraints of spans 
between stations, but it does not consider own limitations 
for the handling capacity of train formation stations and its 
road development.

Based on an analysis of the scientific literature, it became 
clear that at all the variety of techniques to solve the knap-
sack type problems and the areas of their application, there is 
a possibility to employ this class of problems for the rational 
organization of wagon flows in trains using a function of the 
set and vector optimization.

3. The aim and objectives of the study

The aim of present study is the adaptation of a method for 
solving the knapsack problem using a function of the set to 
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determining the rational organization of wagon flows in trains 
in order to improve energy efficiency of transportation.

To achieve the set aim, the following tasks have to be 
solved:

– to adapt the proposed method for solving knap-
sack-type problems to a normal optimization problem by the 
Lagrange multipliers by eliminating the Boolean variables;

– to apply the adapted method and developed software 
for solving knapsack-type problems under conditions of a ra-
tional system of the organization of wagon flows in a polygon 
at the selected railroad stations;

– to prove adequacy of the proposed algorithm and to 
confirm correctness of mathematical notation of the solution 
to knapsack type problems in order to apply it for the ratio-
nal organization of wagon flows to improve energy efficiency 
of transportation.

4. Procedure and solution to the knapsack problem in 
terms of set functions in the rational organization of 

wagon flows

4. 1. Procedure of the knapsack problem in terms of 
set functions

Set functions. Let Ω  be a certain set, and ( )ℵ Ω  is a set 
of subsets of the set Ω, which has the following properties:

1. If A  and B  belong to ( ),ℵ Ω  then their union is

( );A B∪ Îℵ Ω

2. If A  and B  belong to ( ),ℵ Ω  then their difference is

( )\ ;A B Îℵ Ω

3. The set Ω  itself also belongs to ( ).ℵ Ω
In other words, set ( )ℵ Ω  is algebra. 
Definition 1. Mapping ( )ℵ Ω  onto a valid axis R  accord-

ing to some rule F will be called the set function. Among the 
various functions of the set, we shall select the one that has 
the following properties:

1. ( ) ( ) 0;A A∀ Îℵ Ω → µ ≥
2. ( ) 0Aµ = , if and only if ;A = ∅
3. ( ) ( ) ( ) ( );A B A B A Bµ ∪ = µ + µ − µ ∩
4. If { }, 1,2...nB n =  is some sequence approaching B, then 

( ) ( )lim .nn
B B

→∞
µ = µ

Definition 2. Function ( ),Aµ  which has the specified 
properties, will be called a measure for ( ).ℵ Ω  

Derivative from the set function for measure [7] 
If we have a sequence { },nB  1,2...,n =  each element of 

which belongs to ( ),ℵ Ω  ( )F A  is the set function, then a 
sequence of the following numbers is considered

( ) ( )
( ) ( ) ,n

n
n

F A B F A
a

A B A

∆ −
=

µ ∆ − µ

where Δ is the operation of symmetric difference of two sets. 
Definition 3. If there is a limit lim ,nn

a a
→∞

=  then this limit 
is called a derivative from the set function ( )F A  for measure 
μ on sequence { }, 1,2...nB n =  and is denoted in the form:

( )
{ }

.
nB

dF A
a

d
∆

µ
     (1)

Paper [7] proved a theorem of the existence of this de-
rivative at a converging sequence { },nB  if function ( )F A  is 
continuous, that is, there the following takes places

( ) ( )lim ,nn
F A F A

→∞
=

where sequence { }nA  is arbitrary, converging to ,A  and then 
the following takes place

( )
{ }

( ) ( )
( ) ( ) .

n

n

nB B

F A B F AdF A

d A B A
→

∆ −
=

µ µ ∆ − µ
   (2)

Theorem [7]. If ( )* ,A Îℵ Ω  is such that ( ) ( )*F A F A£  for 
every ( )A Îℵ Ω  and there exists a derivative, then

( )
{ } *

0.
nB B A

dF A

d
→ ⊆

£
µ

   (3)

Thus, condition (3) is necessary for determining the  
set *,A  at which the set function assumes the minimum value. 

The Lagrange method for set functions. 
The main method for solving the problems on conditional 

extremum is the Lagrange method. 
In a general case, a problem on the conditional extre-

mum, in terms of set functions, is

( ) minF A →      (4)

under condition ( ) ( ){ }: 0, 1, .iA U A G A i mÎ = Îℵ Ω £ =
The Lagrange function takes the form

( ) ( ) ( )
1

, .
m

i i
i

L A F A G A
=

λ = + λ∑    (5)

We shall demonstrate that there are such * 0,iλ ≥  that 
problem (10) is reduced to finding a minimum of the La-
grange function (5). 

Definition. The pair *
*,A λ  is called a saddle pair of the 

Lagrange function, if there is

( ) ( ) ( )* *
* *, , , ,L A L A L Aλ £ λ £ λ .   (6)

Lemma. The pair *
*,A λ is the saddle pair when and 

only when

( ) ( )* *
*, , ,L A L Aλ £ λ     (7)

( )*
* *0, 1, , .i iG A i m A Uλ = = Î    (8)

Theorem. If the pair *
*,A λ  is the saddle pair of the La-

grange function, it is the solution to problem (4). 
Proof. Lemma. Necessity 
Let the pair *

*,A λ  belong to ( ) ,ℵ Ω ´ Λ  where

{ }1 2, ,..., : 0, 1, ,m i i mΛ = λ λ λ λ ≥ =  

then relation (7) represents the right-hand inequality (6). 
To obtain (8), we shall change the left-hand inequality (6) 
considering the Lagrange function:

( ) ( ) ( ) ( )*
* * * *

1 1

m m

i i i i
i i

F A G A F A G A
= =

+ λ £ + λ∑ ∑

and we obtain
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( ) ( )*
*

1

0.
m

i i i
i

G A
=

λ − λ ≥∑     (9)

We shall put * 1,i iλ = λ +  in this inequality, the rest is 

* ,j jλ = λ  

then we have

( )* 0,iG A− ≥

from which we obtain ( )* 0.iG A £  Due to arbitrariness of i, 
we have * ,A U⊂  which proves necessity. 

Sufficiency. Let the pair ( )*
*,A λ Îℵ Ω ´ Λ  and relations 

(7) and (8) are satisfied. We shall demonstrate that this pair 
is the saddle one. From (7), the right-hand inequalities (6) 
follow, while it follows from condition (8) that * ,A U⊂  that 
is, ( )* 0,iG A ≥  but * 0,iλ =  that is, we have (9). 

We obtain from (9)

( ) ( ) ( )*
* * 0i i i i iG A G Aλ − λ = −λ ≥

for all 0,iλ ≥  for which ( )* 0.iG A <
By adding the inequalities obtained, we have

( ) ( )*
*

1

0,
m

i i i
i

G A
=

λ − λ ≥∑

for all λ ÎΛ or

( ) ( )*
* *

1 1

.
m m

i i i i
i i

G A G A
= =

λ £ λ∑ ∑

By adding ( )*F A
 
to both parts of this inequality, we 

obtain the left-hand side of (4), which finalizes proving the 
lemma. 

The proof the theorem. We have from condition (8) 

* ,A U⊂  that is, constraints (4) are met. 
Since ( ) ( )*

* *, ,L A F Aλ =  inequality (7) is accepted in 
the form

( ) ( ) ( ) ( )* *
* *

1

,
m

i i
i

F A L A F A G A
=

= λ £ + λ∑

considering

( )*

1

0,
m

i i
i

G A
=

λ £∑  

we obtain ( ) ( )*F A F A£  at all ,A U⊂  which proves the 
theorem. 

Thus, the aforesaid confirms applicability of the La-
grange method to the problems on conditional extremum, 
formed in terms of set functions. 

Next, we shall consider a procedure for solving the knap-
sack problem using the theory of functions of sets.

4. 2. A knapsack problem in terms of set functions
Formal notation of the knapsack problem takes the form

1

max,
n

j j
j

c x
=

→∑     (10)

under condition

1

,
n

j j
j

a x b
=

£∑     (11)

where { }0,1 , 1, .jx j nÎ =
Let the set A  in problem (10), (11) be determined as

{ }: 1, 1, ,jA j x j n= = =

then this problem can be recorded in the form

( ) max;j
j A

F A c
Î

= →∑

( ) .j
j A

G A a b
Î

= −∑

The Lagrange function is as follows

( ) ( ) ( ), .L A F A G Aλ = − + λ

If *A  delivers a minimum of the Lagrange function, then, 
considering (3), we shall obtain

( )
{ }

{ }

→ ⊆

Î Î =

λ
=

µ

 
= − + λ = − + λ £  

∑ ∑

*

*,

0,

nB B A

j j j j
j B j B

B j

dL A

d

c a c a

hence, we obtain

( ) { }* : 0 .j jA j c aλ = − + λ £

Since jc  and 0,ja >  then the set ( )*A λ  can be recorded 
in the form

( )* : .j

j

c
A j

a

  λ = λ £ 
  

For the formation algorithm of set ,A  it is required to 
order the set { }: 1,j j n=  by ratio

1

1

,j j

j j

c c

a a
+

+

≥  1, 1.j n= −

It includes such j, in which relations 
j

j

c

a
 are the largest.  

 
Paper [8] terms this algorithm as heuristic, but, as can be 
seen from the above, this algorithm is required to solve the 
knapsack problem. 

If at some j we have 

1

,
j

i
i

a b
=

<∑  

then some elements in set A  should be replaced with .i j>  
Let us consider a multidimensional knapsack problem 

when

( ) maxj
j A

F A c
Î

= →∑

under conditions
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,ij i
j A

a b
Î

£∑  1, .i m=

In this problem, the necessary condition takes the form

1

: 0 ,
m

j i ij
i

A j c a
=

 
= − + λ £ 

 
∑

where iλ  are the Lagrange multipliers. 
It is obvious that this set significantly depends on the 

Lagrange multipliers

{ }0, 1, .i i mλ = λ ≥ =

Sorting the Lagrange multipliers so that there is

( )
1

: 0, , 1, ,
m

j i ij ij i
i j

A j C a a b i m
= ÎΛ

  λ = − + λ £ £ = 
  

∑ ∑

we obtain a possibility to determine function ( )F A  via 
Lagrange multipliers and then we come to the problem of 
finding a maximum of function ( )( )F A λ  by the Lagrange 
multipliers. 

Thus, a knapsack problem is reduced to finding a normal 
maximum ( )( ),F A λ  which is determined algorithmically. 

Example. It is required to find such a set { }1,2,... ,A n⊆  
so that

( ) ( )1 1 max
j A

F A f j
Î

= →∑

under conditions

( ) ( )2 2 2;
j A

F A f j m
Î

= ≥∑

( ) ( )3 2 3.
j A

F A f j m
Î

= ≥∑

In this example, 5,n =  and 1,f  2,f  3f  represent

[ ]1 15,7,8,5,10 ;f =  

[ ]2 20,5,6,7,3 ;f =  

[ ]3 6,2,2,5,4 .f =

By sorting using the Lagrange multipliers, we obtain
 

{ }13 ;A =  1 23;F =  2 26;F =  3 8.F =

In order to test, we shall perform a search for all subsets 
of set {1, 2, 3, 4, 5}, and we obtain the same result.

Software in the Maple environment, which implements 
the algorithm in question, produces the following:

> restart:with(linalg):with(combstruct):
> n:=5;
n:=5
> w:={seq(i,i=1..n)};
w:={1,2,3,4,5}
> AA:=allstructs(Subset(w));
АА:={{2,3,4,5}, {3,4,5}, {1,3,4,5}, {4,5}, {1,4,5}, {2,4,5}, 

{1,2,4,5}, {5}, {1,5}, {2,5}, {1,2,5}, {3,5}, {1,3,5}, {2,3,5}, 
{1,2,3,5}, {1}, {2}, {1,2}, {3}, {1,3}, {2,3}, {1,2,3}, {4}, {1,4}, {2,4}, 
{1,2,4}, {3,4}, {1,3,4}, {2,3,4}, {1,2,3,4}, {1,2,3,4,5},{ }}

> c:=[15,7,8,5,10];
c:=[15, 7, 8, 5, 10]
> a2:=[20,5,6,7,3];
a2:=[20, 5, 6, 7, 3]
> a3:=[6,2,2,5,4];
a3:=[6, 2, 2, 5, 4]
> b2:=15; b3:=9;
b2:=15
b3:=9
> F1max:=0:for t1 from 0 by 0.1 to 20 do for t2 from 

0 by 0.1 to 30 do A:={}:for i from 1 to n do f:=-c[i]-
t1*a2[i]+t2*a3[i]:if f<=0 then A:=A union {i}:end if:end 
do:C:=0:F2:=0:F3:=0:for z in A do C:=C+c[z]:F2:=F2+a
2[z]:F3:=F3+a3[z] end do:if F2>=b2 and F3<=b3 then if 
F1max<C then F1max:=C:Amax:=A:F2max:=F2:F3max-
:=F3:end if: end if: end do: end do:print(t1,t2,F1max,F-
2max,F3max,Amax);

20.1, 30.1, 23, 26, 8, {1, 3}
> for z in AA do A:={}:for j in z do f:=-c[j]-t1*a2[-

j]+t2*a3[j]:if f<=0 then A:=A union {j}:end if: end do: 
C:=0:F2:=0:F3:=0:for i in A do C:=C+c[i]:F2:=F2+a2
[i]:F3:=F3+a3[i]: end do:if F2>=b2 and F3<=b3 then 
print(z,A,C,F2,F3): end if: end do:

{1, 3, 4, 5}, {1, 3}, 23, 26, 8
{1, 4, 5}, {1}, 15, 20, 6
{1, 2, 4, 5}, {1, 2}, 22, 25, 8
{1, 5}, {1}, 15, 20, 6
{1, 2, 5}, {1, 2}, 22, 25, 8
{1, 3, 5}, {1, 3}, 23, 26, 8
{1}, {1}, 15, 20, 6
{1, 2}, {1, 2}, 22, 25, 8
{1, 3}, {1, 3}, 23, 26, 8
{1, 4}, {1}, 15, 20, 6
{1, 2, 4}, {1, 2}, 22, 25, 8
{1, 3, 4}, {1, 3}, 23, 26, 8
The result of software execution in the Maple environ-

ment is the answer: { }13 ;A =  1 23;F =  2 26;F =  3 8.F =
When comparing results of solving the set problem per-

formed by sorting all subsets of set {1, 2, 3, 4, 5} using the 
Lagrange multipliers and by applying software in the Maple 
environment, the answer is similar. The result obtained 
allows us to confirm the adaptation of the algorithm for solv-
ing vector optimization problems to solving the problems on 
the rational use of resources.

5. Discussion of results of solving a knapsack problem 
and its practical significance

Our work proposes a method for solving the knap-
sack-type problems. The method enables, in contrast to ex-
isting techniques, abandoning Boolean variables and makes 
it possible to solve a basic optimization problem employing 
the Lagrange multipliers. The proposed method allows ad-
aptation of the algorithm for solving a vector optimization 
problem to the problems on the rational use of resources. The 
method proposed outperforms those existing by reducing the 
time of using computer processor. 

We proved applicability of the Lagrange method to the 
problems on a conditional extremum in terms of set func-
tions. The necessary conditions for solving vector optimiza-
tion problems are defined.

A result of the study is the developed algorithm for solv-
ing the knapsack problems without using differentiation 
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operations, implemented to solve a problem on the rational 
organization of wagon flows. By reducing the complexity 
of the problem, it has become possible to employ this al-
gorithm when designing an automated work place (AWP) 
for an engineer responsible for planning the formation of 
trains. 

It should be specially noted that a reduction of the time 
needed to solve a problem makes it possible to timely adjust 
the plan of freight trains formation, to eliminate a lot of irra-
tional variants when handling wagons at technical stations. 
The proposed algorithm helps identify variants to direct 
train flows to the most promising destinations at minimal 
energy cost for transportation.

Limitations of the proposed approach include a closed 
cycle of loaded wagons routes and part of these routes trav-
eled unloaded until the next loading. In some cases, there is a 
need to change a weight of the train composition, associated 
with fractures of weight, and, therefore, a change in the bal-
ance between wagon flows and train flows.

6. Conclusions 

1. We devised a method for solving a knapsack-type 
problem that makes it possible to solve a basic optimization 
problem employing the Lagrange multipliers. Its special fea-
ture is the rejection of Boolean variables. In contrast to ex-
isting techniques, it enables significant adaptation of vector 
optimization problems to the problems on the rational use of 
resources, including investment.

2. The proposed method makes it possible to adapt the 
algorithm for solving a vector optimization problem to the 
rational system of organization of wagon flows in trains, 
leading to greater energy efficiency in railroad transporta-
tion.

3. We confirmed correctness of the mathematical no-
tation of solution to a knapsack-type problem and proved 
adequacy of the proposed algorithm, as well as adapted it 
for adjusting a plan of freight trains formation in order to 
improve energy efficiency of transportation.
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