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Розв’язана задача ідентифікації величини і 
зони впливу на верхній шар двошарової конструк-
ції, що знаходиться під дією нормально розподіле-
ного навантаження і власної ваги, для забезпечен-
ня повного контакту. Досліджено можливість 
застосування методу обернених задач, реалі-
зованого за допомогою методу вектора спаду. 
Зроблено чисельний аналіз збіжності проце-
су усунення деформації моделі в залежності від 
механічних і геометричних параметрів системи

Ключові слова: плоска контактна зада-
ча, односторонні зв’язки, ідентифікація впливу, 
метод обернених задач

Решена задача идентификации величины и 
зоны воздействия на верхний слой двуслойной 
конструкции, находящейся под действием нор-
мально распределенной нагрузки и собствен-
ного веса, для обеспечения полного контакта. 
Исследована возможность применения мето-
да обратных задач, реализованного с помощью 
метода вектора спада. Проведен численный ана-
лиз сходимости процесса устранения деформа-
ции модели в зависимости от механических и гео-
метрических параметров системы

Ключевые слова: плоская контактная зада-
ча, односторонние связи, идентификация воздей-
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1. Introduction

The	 phenomenon	 of	 separation	 of	 interlayer	 bonds	 is	
observed	 in	 the	 operation	 of	 highways,	 airfield	 pavements,	
foundations	of	high-rise	buildings	with	supports	or	isolation	
joints.	 The	 contact	 between	 the	 building	 sole	 and	 the	 base	
often	 leads	 to	 emergency	 situations.	 Such	 phenomena	 are	
modeled	by	contact	problems	with	unilateral	constraints.

A	 detailed	 research	 of	 the	 fundamental	 laws	 of	 contact	
interaction	 requires	 a	 comprehensive	 consideration	 of	 the	
geometric	 features	 and	 imperfections	 of	 the	 conjugate	 sur-
faces,	 physical	 and	 mechanical	 phenomena	 in	 the	 areas	 of	
their	 direct	 attachment	 (friction,	 slippage,	 adhesion,	 etc.).	
The	 numerical	 solution	 of	 contact	 problems	 is	 usually	 car-
ried	 out	 on	 the	 basis	 of	 the	 finite	 element	 method.	 For	 the	

modeling	of	unilateral	constraints,	various	physical	models	
are	used.	The	research	on	the	stress-strain	state	of	the	model	
and	the	state	of	the	contact	zone	(presence	of	a	friction	zone	
and	 a	 separation	 zone)	 can	 be	 defined	 as	 the	 solution	 of	 a	
direct	problem.

Studies	of	contact	problems	of	mechanics	of	deformable	
media	 are	 conducted	 in	 two	 directions.	 Within	 the	 frame-
work	of	the	first	direction,	problems	of	conjugation	of	media	
with	sharply	differing	mechanical	properties	(layer-inhomo-
geneous	elastic	and	elastoplastic	bodies,	conjugation	of	sol-
ids	to	liquid	or	gaseous	media,	etc.)	are	considered.	In	such	
problems,	 the	boundaries	of	 the	contact	area	are,	as	a	 rule,	
specified	and	not	changed	in	the	course	of	deformation.	To	
solve	these	problems,	the	methods	of	the	function	theory	of	
a	complex	variable	and	the	theory	of	potentials	with	integral	
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transforms and paired integral equations, paired trigono-
metric series, integral and integral-differential equations 
and systems of equations and so forth are used. The second 
direction of the study of contact problems of mechanics 
includes contact problems with the unknown in advance 
boundaries of the contact area. When modeling such con-
tact problems, the conditions imposed on displacements and 
forces in the contact zone are often presented as inequalities. 
Problems of this kind are called problems with unilateral 
constraints. They are characterized by significant changes in 
system properties when the state of the contact changes and 
are essentially nonlinear even for linearly elastic media. The 
configuration of contact or separation zones (and also slip-
page-adhesion regions when friction is taken into account) 
is unknown in advance and shall be determined only in the 
process of problem solving.

Proceeding from this, the research of the problem shall 
include two main problems – construction of a physical mod-
el of unilateral constraint taking into account friction and 
separation, its algorithmic implementation, and determina-
tion of the parameters of exposure needed to prevent separa-
tion. Determination of this exposure will allow ensuring the 
reliability of the corresponding structures using the results 
obtained, which determines the relevance of the problem. 
The peculiarity of the statement and solution methodology 
of the problem, along with the possibilities of wide practical 
application, can stimulate further development of this direc-
tion of solid mechanics.

2. Literature review and problem statement

The development of a physical model is the subject of the 
research [1–5]. In [1], two types of contact zone models are 
considered – bilinear and exponential, which describe the 
damaged bonds leading to stratification (separation). Here, 
the model parameters are investigated from the point of view 
of the possibility of separation. The authors of [2] proposed a 
contact model, which is implemented in two stages – in the 
first, layers press against each other, and in the second they 
interact by means of tangential stresses, responsible for con-
tact with friction. The contact zone with separation in [3] is 
modeled by varying-rigidity rods, and the separation zone – 
directly by the finite element method. In [4], a synergy 
approach is used that allows modeling on the basis of finite 
elements in order to study wear mechanisms for two groups 
of doped carbide inserts (coated and uncoated). The au-
thors of [5] consider a quasistatic and velocity-independent 
evolution in small stresses and the concept of the so-called 
energy solution. This concept is applied to cohesive contact 
problems and stratification in various regimes.

The algorithms used for numerical analysis are very di-
verse. Thus, in [6], in the study of a constructively nonlinear 
problem with unilateral constraints and friction with an 
unknown contact zone, an iterative approach was applied 
to model the bonds using special contact elements in a thin 
friction layer in combination with a finite element model of a 
plane problem. In [7], on the basis of the domain decomposi-
tion method, contact interaction was studied by the method 
of penalty functions, which are the conditions for kinemat-
ic admissibility of displacements. In the case when large 
deformations are observed [8, 9], a hierarchical algorithm 
for constructing a binary tree for the current state of the 
contact surface geometry is proposed. Two procedures are 

used – global, defining all pairs of candidates, and then local, 
defining elements with a weakened connection. The paper 
[10] is based on the application of finite element software to 
simulate the behavior of laminated composite plates at a low 
impact speed, and it examines exposure, post-exposure and 
destruction of these structures.

Thus, the presented sources consider only the direct 
problem – determination of the stress-strain state of the 
two-layered system and evaluation of possible development 
of the separation zone. Meanwhile, with combinations of 
loads and geometric parameters, it is necessary to ensure the 
interaction of layers, which can be achieved by additional 
mechanical exposure, rigid inclusions, etc.

3. The aim and objectives of the study

In the paper, the statement of the problem of determining 
additional exposure with the aim of eliminating the sepa-
ration zone (identification of the parameters of its location 
and magnitude) according to the known characteristics in 
the contact zone obtained from the solution of the direct 
problem is defined as the statement of the inverse problem.

The aim of the paper is to investigate the possibility of 
using the inverse problem method to identify the magnitude 
and location of exposure on the upper layer of the two-lay-
ered base that is under the action of a normally distributed 
load and its own weight.

To achieve this aim, the following objectives were set:
– to perform parameterization of the system under study 

and construct its finite element model;
– to determine the stress-strain state of the system under 

consideration on the basis of the finite element method and 
the algorithm allowing to take into account the contact zone 
variability and the presence of friction at fixed values of 
exposure parameters;

– to determine the values and location of exposure, 
ensuring the presence of complete contact between the two 
infinite layers in question by the inverse problem method;

– to investigate the convergence of the process of elim-
inating the model deformation depending on the friction 
force, height and rigidity of the upper layer.

4. A mathematical model of the inverse problem

We consider the problem of determining the value and 
location of exposure p (Fig. 1), providing a complete contact 
of the two infinite layers considered in the regions

{ } = ÎW = 
−¥ £ £ ¥ £ £ − £ £

( ) ( ) 2
1 2

( ) (1) (2)
1 2 1 2 2

, , ,

,0 0,

k k k k

k k

x x x x R

x x h h x

which are under the action of normal pressure q(x1), 0£  
£q(x1) £ q*, where q* is the limit load value, k is the layer 
number.

The resolving system of equations of the plane elasticity 
theory in the regions Wk given h2/h1>>1 has the form

( )graddiv 0,k k
k k ku u Qλ + m + m Δ + =   (1)

where { }1 2,
Tk k ku u u=  is the displacement vector of the k-th 

layer,
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,kλ  km  are the Lame coefficients, Ek, νk is the elastic modulus 
and Poisson’s ratio (k=1,2) for the upper layer (k=1) and the 
base (k=2), respectively; Q is the load including its own weight.
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Fig.	1.	Loading	diagram	of	the	two-layered	structure

We denote the sections of the boundary Btop (x2=h1) as

{ }1 1 1, ( ) ( ), ,pB x l b x l b l b x l b= − + £ £ − − − £ £ +  

{ }1 1, .qB x a x a= − £ £

Then it is necessary that

( ) ( )1
22 ,u qσ =  1 ,qx BÎ

( ) ( )1
22 ,u pσ =  1 ,px BÎ

( ) ( )1
22 0,uσ =  1 ,qx B∉  1 ,px B∉

( ) ( )1
12 0,uσ =  1 ,x−¥ £ £ ¥   (2)

where ( ) ( ),k
ij uσ  i, j=1,2 are the stresses expressed through 

displacements.
At the interface between the upper layer and the base 

(x2=0), in the contact zone Bcon there are the boundary 
conditions 

( ) ( )1 2
22 22 ,σ = σ  ( )

2 0ku £  or ( )
22 0,kσ £  ( ) ( )

2 22 0,k ku ⋅σ =  1,2.k =  (3)

It is assumed that there are boundaries BA, BSl, BSep, cor-
responding to the adhesion, slippage and separation zone, 
respectively, such that BAÈBSlÈBSep=Bcon, BAÇBSlÇBSep=Æ.

In the adhesion zone x1ÎBA, the conditions are satisfied

( ) ( ) ( ) ( )1 2 1 2
1 1 2 2, ,u u u u= =

( ) ( )1 1
12 22 ,Kσ £ σ  (4)

where K is the coefficient of friction.
In the slippage zone for all x1ÎBSl

( ) ( )( ) ( ) ( )( )1 1 2 2
2 1 1 2 1 1 ,u x u u x u+ = +  

( ) ( )
12 22 0,k kKσ − σ ³  ( ) ( )1 2

1 1 .u u≠  (5)

In the separation zone for all x1ÎBSep,

( )
22 0,kσ =  ( )

12 0.kσ =  (6)

Here, ( ),k
ijσ  ( ),k

iu  i, j=1,2 are the components of the stress 
and displacement tensor in the k-th layer, k=1, 2.

Further, it is assumed that for the loading values 0£q£qcr, 
the layers are in contact through complete adhesion or 
slippage, separation zones appear at a load value q=qcr with 
further development of these zones q>qcr (Fig. 2).

 
 

Fig.	2.	Dependence	of	the	relative	separation	zone	on	load	at	
h=0.2:	1	–	K=0,	χ=0.01;	2	–	K=0.3,	χ=0.01;		

3	–	K=0,	χ=2;	4	– K=0.3,	χ=2

To determine the value and location of exposure p, en-
suring the absence of separation zones z1£x1£z2, –z2£x1£–z1, 
x2=0, where σ22=0, we formulate the problem of identifica-
tion of the parameters V={l, b, p}T as inverse. Then the value 
of the vector V is defined as

arg min ( ),
V V

V J V
Î

=
�

  (7)

where

( )2(1) (2) 2
2 2 1( ) ( ) d ,

L

L

J u V u V x
−

 = − − ε  ∫ � �  
(8)

ε<<1 is a small value, V�  is the domain of the vector V, ( )
2
iu�  is 

the value of the function ( )
2 1( ,0)iu x  for a fixed vector V on the 

contact line Bcon.

5. Method and algorithms for solving  
the identification problem 

Let us formulate the method for solving a direct prob-
lem – determination of the stress-strain state of the system 
under consideration at a fixed vector V [11].

To describe unknown areas of the boundaries, we intro-
duce the characteristic functions for the points of the bound-
aries BA, BSl, BSep in the form

( ) 12 22

1

12 22

1 at , ,

0 at , ;
Sl

A

K x B
x

K x B

 σ ³ σ Îγ = 
σ < σ Î

( ) 22

2
22

0 at 0, ,

1 at 0, .
Sep

Sep

x B
x

x B

σ < ∉γ =  σ ³ Î
 (9)

Taking into account the relation (9), a variational state-
ment of the boundary value problem (1)–(6) will have the form

( )*arg min , ,
W W

W G u u
Î

=
�

     (10)

under the preliminary fulfillment of the condition (4), where 
u={uk}T, k=1,2, W={u, u*}T,
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,i
ij

j

u
x

∂
ε =

∂
 i, j, l, m=1,2, *

iku  are the variable values of displace-

ments on the contact line, ( ) ( ),k k
ij uσ  are the values of stresses 

and displacements from the region Wk on its boundary.
To construct the solution of the problem (10), the tran-

sition to a discrete model is performed using finite element 
approximation is carried out. To this end, a grid with nodes 
at the points with coordinates Xs, 1, ,s N=  where Xs={x1s, x2s} 
is introduced in the region Wk, then the unknown functions 
u (x), σij (x), u* (x) are presented as vectors whose components 
are the values of the problem functions at the grid nodes.

{ } { }, ,
TT

i ij ijsu u= σ = σ  { } { } { }* * , , ,i i ik ik iksu u u u u u= = =

{ } { } { } { }* * * *, , , ,
T T T

i ik ik iks k k ksu u u u= = γ = γ γ = γ

, 1,2, 1, , 1,2.i j s N k= = =  (12)

The nodes lying on the boundary Bcon are numbered as 
P={p1, p2,..., pM}, the number M is chosen by a numerical ex-
periment. The elements of the vector P can form the vectors

{ }
11 2, ,..., ,A A A A

rP p p p=

{ }
21 2, ,..., ,Sl Sl Sl Sl

rP p p p=

{ }
31 2, ,..., ,Sep Sep Sep Sep

rP p p p=

1 2 3 ,r r r M+ + =   (13)

which define the grid nodes corresponding to adhesion, slip-
page and separation zones by calculating the values of γk in 
accordance with the conditions (9).

After substituting the finite element approximation into 
the functional (11), integrating and performing the proce-
dure (10), we obtain a resolving system of the N-th order 
linear equations 

,Au R=   (14)

equivalent to the condition * 0,isG u∂ ∂ =�  i=1,2, 1, ,s N=  
*G�  are the values of the functional G�  after substituting the 

finite element approximation and performing the integration 
procedure, A is the stiffness matrix depending on the values 
of the vectors γ, R is the vector depending on u*.

When constructing the stiffness matrix, it is taken into 
account that

,Duσ =     (15)

where 

{ }T
, , 1,2, 1, ,ijs i j s Nσ = σ = =  

D is the functional matrix of the coefficients obtained from 
physical and geometric relationships.

To fulfill the minimum condition G�  by * ,isu  1, ,s N=  the 
gradient descent method is used

( ) ( ) ( ) ( )1 1 1* * .n n n nu u − − −= − α σ  (16)

Here

( ) ( ){ }T1 1 ,n n
s

− −σ = σ

( ) ( ) ( ){ }T1 1 1
12 22 ,n n n

s s s
− − −σ = σ σ  1, ,s N=

where n is the iteration number.
The coefficient α(n) is determined from the condition

( ) ( )( )1*arg minn nG u −

α
α = �   (17)

using the half division method.
The value of the function γks is determined in accordance 

with the condition (9). The solution of the problem is carried 
out using algorithm 1.

Algorithm 1
0. To set t=1, n=1, 0

22s sqσ =  for «xsÎBq, 0
22r rpσ =  for 

∀xrÎBp, 1, ,r m=  σ12s=0 for ∀xsÎBtop, ( )* 1,1 0,isu =  ( )1,1 0,ksγ =  k= 
=1, 2, ε is a small number α(1,1), q*, pcur, Δq=q*/n*, Δp= 
=pcur/n*, n* is the number of steps, q(1)=Δq, p(1)=Δp.

1. To construct a grid with the nodes Xs, 1, .s N=
2. To form a vector of unknowns u, taking into account 

the conditions ( ) ( )1 2
1 1 ,s su u=  ( ) ( )1 2

2 2s su u=  for the nodes Xs such 
that XsÎBA.

3. To form a system of equations (14).
4. To determine the vector u(n,t), σ(n,t) by the equations (15).
5. To determine the vector ( ), ,n t

ksγ  XsÎBcont, k =1, 2 in ac-
cordance with the conditions (9).

6. If ( ), 0,n t
ks$γ ≠  then go on, otherwise proceed to step 12.

7. To determine ( ),* n t
isu  by the formula (16).

8. To determine the numbers of the nodes PSep(n,t), PSl(n,t), 
PA(n,t), based on the values of the vector ( ), .n t

ksγ
9. To create the nodes ( ), ,Sep n t

iP  i=1, 2, with the corre-
sponding displacements ( )( ) ( )( )1 , 2 ,

2 2 ,n t n tu u≠  and the nodes ( ), ,Sl n t
iP  

i=1, 2, with the corresponding displacements ( )( ) ( )( )1 , 2 ,
1 1 ,n t n tu u≠  

to form a vector of unknowns u.
10. To determine α(n,t) from the condition (17), t=t+1.
11. If ( ) ( )* , * , 1 ,n t n t

is isu u −− £ ε  then go on, otherwise proceed 
to step 3.

12. q(n)=q(n-1)+Δq, p(n)=p(n-1)+Δp, n=n+1.
13. n£n* go to step 3, otherwise the end.
The inverse problem will be solved by the recession vector 

method. Let us denote the nodes lying on the boundary Bp as 

{ }1 2, ,...,j j jkC x x x=  

and introduce the vector { }, ,F C p= �  where 

{ }1 2, ,...,k k kpC x x x=�  

is the vector of coordinate values of the points of load ap-
plication.

The functional J after sampling takes the form

(1) (2) (1) (2) 2
2 2 2 2( ( ) ( )) ( ( ) ( )) ,TJ u F u F u F u F= − − − ε� � � � �� � � �  (18)

and the condition (7) is written in the form

Î
=

�
arg min ( ).

F F

F J F   (19)

Let W be a discrete point space, F  – a set of admissible 
solutions, ,F WÎ  and W –a metric space with a metric

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )( ) ( )( ){ }
2 1

( )2
2 2 2

1 2 2 1 2 1 2 1
1 ( )

( ) ( ) ( ) ( ) * ( ) ( ) *
1 22 1 2 22 2 2 12 1 1

1, d d
2

d ; (11)

− −+

= W − − − +
=

  = ε ε + + + + 
   

 + γ σ + γ σ − + σ −   

∑ ∫ ∫ ∫ ∫

∫

k
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ijlm k k
k ij lm

k a l b l b
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1
2 2

1 2 1 2
1

( , ) ( ) ,
M

i i
i

F F f f
+

=

ρ = −∑   
(20)

where f 1i, f2i are the coordinates of the points F1, F2 in the 
space W.

Let F ′  be some admissible solution of the inverse prob-
lem (7). We define the vicinity W�  of the point F ′  with the 
radius r1 as a set of possible solutions ,kF ′  1,12,k =  obtained 
by addition (removal) of the elements of the vector C�  to the 
left and right from the points s=xk1, s=xkp and change of the 
corresponding values of p.

The recession vector of the function J  in the vicinity W�  
of an arbitrary point F ′  is defined as a vector with components

( ) ( ),k kJ F J F′Δ = − ′  

where ,kF ′  1,12,k =  are possible solutions of the inverse 
problem that belong to the vicinity W� , and ( ),kJ F ′  ( )J F ′  are 
calculated by solving problems using algorithm 1. Obvious-
ly, for all Δk³0, in the vicinity of the point ,F ′  this point 
is a local minimum of the function J(F). If some Δk<0, and 

* min ,k kΔ = Δ  then the point kF ′  is a point of the speedy re-
cession of the function J(F).

The algorithm that implements the recession method has 
the form:

Algorithm 2
1. To select the starting point F0, form the points ,kF ′  
1,12.k =
2. To determine the components of the recession vector 

for the point F0 in the directions kF ′  by calculating J(F) 
using algorithm 1. If all Δk³0, 1,12,k =  then J(F0)=minJ(F).

3. If $Δk<0 for 1,12,k =  then choose Fk*, corresponding to 
minΔk, which becomes the center of the new vicinity Fk*=F0.

4. Go to point 2. The process continues as long as $Δk<0,
1,12.k =

6. Numerical analysis of the identification problem

With the help of the proposed algorithm, the analysis 
of behavior of the two-layered system having the follow-
ing characteristics is performed: for the first option, the 
specific weight ρ=2.76·10-3 (kg/cm3), Young’s modulus 
E1=7.6·104 (kg/cm2) and Poisson’s ratio ν1=0.4, for the 
lower layer – E2=3.8·104 (kg/cm2), ν2=0.35, for the sec-
ond option – ρ=2.72·10-3 (kg/cm3), E1=7.6·103 (kg/cm2), 
ν1=0.4, E2=7.6·105 (kg/cm2), ν2=0.2.

The dimensions of the modeled semi-infinite base were 
chosen from the condition of the solution damping in case 
of complete adhesion (h2=50 cm, L=150 cm, a=8 cm – the 
zone of distributed surface load q). The solutions of the prob-
lem (10) were carried out with the help of the Cosmos appli-
cation package with automatic preliminary “merging” and 
“disjoining” of the nodes corresponding to adhesion, slippage 
and separation zones. The plane finite element was used.

The solutions were carried out sequentially by fragment-
ing the final element size to obtain the specified accuracy. 
To describe the solution of the problem, we introduced 
dimensionless designations of the parameters – χ=E1/E2, 
h=h1/h2, / *,q q q=  where q*=40 (kg/cm) is the maximum 
load acting on the upper boundary of the layer, and b*=b/a, 
l*=l/a, p*=p/q* are the values of the vector F at which the 
function J(F) reaches its minimum.

Fig. 2 shows the values of the relative separation zone at 
the corresponding load q , depending on the coefficient of 
friction K and the ratio of Young’s moduli χ.

Fig. 3, 4 (curve 1) show the values of the relative opening 
of contact surfaces, from which it follows that the size of the 
separation zone depends on the parameters under study only 
in the zone of large loads. At the same time, opening degree 
changes nonlinearly not only with load variations, but also 
depending on the relative thickness of the layers and their 
modules over the entire range of loads. Fig. 5 illustrates 
the stress values depending on the parameters under study 
at fixed q=0.25. Note that the effect of friction increases 
substantially with increasing relative thickness of the layers. 
Fig. 3, 4 (curves 2–5) present the results of the iterative pro-
cess of the recession vector method.
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Fig.	3.	Relative	displacement	of	the	layer	and	base	points	at	
the	interface	given	χ=2:	a	–	 0.075,q = 	h=0.2;	b	–	 0.25,q = 	

h=0.2, c –	 0.525,q = 	h=0.1,	where	1	–	K=0,	p=0;		
2	–	K=0.3,	p=0;	3	–	K=0,	p0,	l0,	b0;	4	–	K=0.3,	p0,	l0,	b0;		

5	–	p*,	l*,	b*

The results of solving the identification problem are 
shown in Table 1. In the solution of the problem, the initial 
approximations are chosen: p0=0.05q, b0=a/4, l0=5a; 10a 
depending on χ and h.

From the above data (Table 1), it can be seen that the pa-
rameters of additional exposure p*, l*, b* essentially depend 
on the loading level, geometric and physical properties of the 
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system. Note that taking friction into account reduces the 
need for additional exposure.

Table	1

Dependence	of	identification	parameters	on		
system	parameters

q K χ h p* l* b* min J(F) 
0.075 0.0 2.0 0.2 0.03 7.25 1.75 9.13E-11
0.075 0.3 2.0 0.2 0.0225 7.75 0.5 1.56E-12
0.25 0.0 2.0 0.2 0.125 8.25 2.0 5.33E-09
0.25 0.3 2.0 0.2 0.1 9.0 1.5 1.02E-10
0.25 0.0 0.01 0.1 0.1 3.25 1 1.95E-08
0.25 0.3 0.01 0.1 0.0875 3.75 0.25 1.21E-09
0.25 0.0 0.01 0.2 0.025 3.25 0.75 4.23E-09
0.25 0.3 0.01 0.2 0.0188 3.5 0.25 1.14E-10

0.525 0.0 2.0 0.1 0.0525 5.25 1.75 9.55E-08
0.525 0.3 2.0 0.1 0.05 5.75 1.5 2.54E-09

1.0 0.0 0.01 0.2 0.1 3.5 1.0 3.02E-08
1.0 0.3 0.01 0.2 0.075 3.75 0.5 1.15E-09
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Fig.	4.	Relative	displacement	of	the	layer	and	base	points	at	the	
interface	given	χ=0.01: a –	 0.25,q = 	h=0.2;	b	–	 1,q = 	h=0.2;	

c	–	 0.25,q = 	h=0.1,	where	1	–	K=0,	p=0;	2	–	K=0.3,		
p=0;	3	–	K=0,	p0,	l0,	b0;	4	–	K=0.3,	p0,	l0,	b0;	5	–	p*,	l*,	b*
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Fig.	5.	Dependence	of	relative	stresses	on	load	given	q=0.25: 
a	–	normal;	b –	tangential:	1	–	given	K=0,	χ=2,	h=0.2;		
2	–	given	K=0.3,	χ=2,	h=0.2;	3	–	given	K=0,	χ=0.01,	

h=0.2;	4	–	given	K=0.3,	χ=0.01,	h=0.2;	5	–	given	K=0,	
χ=2,	h=0.1;	6	–	given	K=0.3,	χ=2,	h=0.1;	7	–	given	K=0,	

χ=0.01,	h=0.1;	8	–	given	K=0.3,	χ=0.01,	h=0.1

7. Discussion of the results of solving  
the identification problem

The computational experiments showed that for a cer-
tain ratio of the values of layer thickness and the values of 
actual loads, the deformation is possible in the presence of 
slippage, normal contact and separation zones. It can be 
noted that the existence of the specified behavior depends 
on system parameters and can be found in a sequential calcu-
lation with a change in the load value from zero to the limit 
value. The analysis of Fig. 5 shows that stress values depend 
significantly on the type of model (considering the presence 
of friction, the height of the upper layer and the layer stiff-
ness) and may differ several times in the case of both more 
rigid and less rigid upper layer.

When determining the effectiveness of the method 
for solving the problem of identification of the magnitude 
and zone of exposure on the upper layer of the two-layered 
structure, as follows from the results obtained (Table 1), 
the significant influence of system parameters is natural. 
In the presence of friction, relative displacements of the 
layer and base points at the interface decrease approxi-
mately two-fold. Obviously, this mechanism of influence 
leads to the following results of solving the problem of 
eliminating the defect obtained: a decrease in the param-
eter b* and an increase in the parameter l*. It should be 
noted that with a thinner upper layer, a decrease in the 
parameters of the identification problem l* and b* is ob-
served both for relatively more rigid and relatively softer 
coatings. In this case, the minimum of the function J(F) is 
reached at a value of the parameter p not exceeding 10 % 
of the load q.
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The results obtained allow us to conclude that the 
problem of identification of the location and magnitude of 
the layer pressing to prevent its separation can be solved by 
the inverse problem method in combination with the finite 
element method and the recession method. The pressing 
zone is separated from the loading zone, the parameters of 
the zone being dependent on the properties of the layers, 
the height of the upper layer, the loading magnitude and the 
coefficient of friction.

The main advantage of the proposed method is its algo-
rithmic nature, which determines the possibility of creating 
a cost-effective integrated algorithm. This algorithm allows 
solving practical problems of designing two-layered systems 
with unilateral contacts.

8. Conclusions

1. Parameterization of the model of the system under 
consideration has allowed developing an algorithm that im-
plements the conditions of contact or separation, as well as the 
presence of friction. Its feature is the combination of the finite 

element method and the method of characteristic functions, 
determined on the basis of the values of variational inequalities.

2. The stress-strain state of the system is studied at 
various values of the model parameters, the dependence of 
the presence and size of the separation zone on them is de-
termined. It is a function of the kind of model (considering 
the presence of friction, the height of the top layer and the 
stiffness of the layers), its values may differ several times in 
case of both more rigid and less rigid upper layer.

3. To determine the value and location of exposure, 
ensuring a complete contact of the layers, the problem is 
formulated as inverse in a variational statement and the al-
gorithm of the recession vector method is applied to solve it. 
It is found that the convergence of the identification process 
by the recession vector method depends on the loading mag-
nitude and the presence of friction.

4. The influence of physical and geometric properties of 
the system on the parameters of additional exposure, ensur-
ing the absence of a separation zone was investigated. It is 
shown that taking friction into account has little effect on 
exposure parameters, which is determined by the geometric 
parameters and the level of the main loading.
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