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1. Introduction

2. Literature review and problem statement

The present stage of development of automated sys-
tems and control devices is characterized by active mod-
ernization of tools for automation and measurements. New
devices and means of automation possess high accuracy,
wide scope of application, self-adjustment and self-calibra-
tion algorithms. Microcontroller equipment has also been
actively developed, its reliability improves and computing
power increases. However, such a development is levelled
off by employing control algorithms that have been ap-
plied for quite a long time — more than 90 % of industrial
objects of control (OC) are run using a classical PID-
algorithm [1, 2].

A controller that implements a given algorithm is
linear, while the real objects of control, such as heating
furnaces, widespread in the industry, are in most cases
essentially nonlinear [3]. The approximation of a nonlin-
ear function (non-linearity) of the object of control by a
linear function of the PID algorithm leads to a decrease
in the quality of control, overconsumption of energy, and,
in some cases, to defects in products. Therefore, it is an
important task to build a control system that would be
capable of taking into consideration the non-linearity of
the object of control.

One of the ways to solve a given problem is to use the
classical optimal [4, 5] and adaptive [6, 7] control systems.
Their application, however, is related to certain difficulties.
The effective use of such systems requires a reliable math-
ematical model of the object of control, which necessitates
an identification procedure. In this case, under industrial
conditions, it is rather difficult to perform the procedure
of identification of thermal objects. It is possible only when
a heating furnace is not loaded or is idle. Identification by
methods that employ testing control actions can disrupt
technological process and lead to defects, which does not
make it possible to perform it on running equipment.

Most often, a possibility for the identification appears
when a repair is finished or when a heating furnace is not
used.

Another option to solve a given problem is to move away
from close connection with the model of control object.
Such a possibility is provided by intelligent adaptive control
methods, which make it possible, to a certain degree, to
simulate human behavior, in particular, expert systems (ES)
[8], fuzzy logic [9, 10], neural networks [11—-13]. One of the
disadvantages of expert systems methods [8] is the absence
of possibility of rapid learning, due to the high complexity




of initial formalization of the knowledge of an expert about
nonlinearity and peculiarities of the controlled object. In-
formation on any changes in the object of control must be
entered to ES manually, during work, the result of which is
the relevance of ES only for one particular state of the object
of control.

Among the studies that investigate a fuzzy logic appa-
ratus in order to configure settings of the controller, we can
highlight those that address configuration of parameters of
the controller [9, 10]. The main drawback of the proposed
solution is the implementation of method with specific values
of coefficients of normalization for the inputs and outputs of
the tuner. When changing a control object or at a significant
change in the state of the current one, it is necessary to select
anew the values of such coefficients.

We shall also consider a neural network apparatus
(NN) since NN possesses properties of nonlinearity and ca-
pability to operational learning. That is why applying NN
renders adaptive properties to control systems. One of such
solutions is the circuit for neural-network configuration of
a PID-controller proposed by Sigeru Omatu in [12]. The
advantage of the given solution is the superstructure char-
acter of the adaptation system, which greatly facilitates
its integration into existing control contours, taking into
consideration nonlinearity of the object of control. The ap-
plication of S. Omatu scheme is described in papers of many
scientists and developers [11, 13]; the solutions obtained,
however, are not universal. Their successful application
requires significant modification for a specific task and the
object of control.

Interest in using these methods is explained by the fact
that controllers are set by an ACS TP engineer based on own
knowledge, practice, and without employing models.

Analysis of intelligent methods makes it possible to
choose a direction in building the systems for automated
operational tuning of PI-controllers parameters based on
the joint use of the apparatus of expert systems and neural
networks. The choice of the PI-controller is predetermined
by its wide application at thermal objects of control.

This solution will make it possible, by using ES, to ac-
count for the specificity of control object (such as the impos-
sibility of forced furnace cooling), while applying an appara-
tus of NN would allow the system to learn during operation.

Such an intelligent system is a neural network tuner of
PI-controllers’ parameters [14]. This development has led
to an improvement in energy efficiency of furnace opera-
tion under transient modes and perturbation working out.
Practical implementation also made it possible to perform
a field experiment at a laboratory muffle furnace, where the
neuro-tuner proved its effectiveness. However, when con-
structing a model of the heating furnace, which was used for
modeling and for full-scale experiments, the influence of the
controlling element was not taken into consideration. The
reason for it was that the electric heating muffle furnace was
investigated, where a controlling element is the triac whose
time constant is too small to influence the results obtained.
In reality, however, industrial furnaces, in most cases, are of
the gas type, and controlling element is the gas supply valve
whose time constant affects control process, which requires
its inclusion in the model. That is why the purpose of present
study is the operability testing of a neural-network tuner on
the model of a heating furnace, taking into consideration
influence of the controlling element.

3. The aim and objectives of the study

The aim of present work is to explore the possibility
and effectiveness of using a neural-network tuner on the
model of a heating furnace that includes a gas flow control
circuit.

To accomplish the set aim, the following tasks have been
identified:

— to recalculate the model of electrical heating furnace
model for a gas furnace, similar in capacity, containing a gas
flow control circuit;

— to compare the effectiveness of using a neural-network
tuner with a PI-controller within the framework of model
experiment.

4. Problem statement and tuner description

A neural-network tuner consists of two subsystems: a
neural network and the rule base. The function of rule base
is to determine the moments at which it is required to tune
a specific channel of the controller. A rule base in essence
is the formalized description of empirical rules that allow
an ACS TP engineer to tune a controller. As an example,
we shall consider a situation that occurs at heating objects
of control: an operator, in line with technology, changed a
temperature setpoint. In this case, a heating technological
card assigns a range of heating rates. A rule base, by mon-
itoring the current heating rate and by comparing it to the
technologically required, determines a point in time and a
coefficient of the controller, which must be set to maintain
the rate in a given range (Fig. 1).

The rule base [14] contains information about 15 dif-
ferent situations (combinations of values for readjustment,
static error, self-oscillation, etc.) that may occur during pro-
cesses of heating, cooling, and under the action of perturbing
influences on the system. The task of a neural network is the
numerical changing of controller parameters.

Three sets of weight coefficients and offsets are imple-
mented in a neural network, which makes it possible to
determine the optimal coefficients (in terms of the required
quality of transient processes) for each of the thermal pro-
cesses: heating, cooling, and compensation for perturbing
influences. The need for three sets of coefficients is explained
by the different character of nonlinearity in a control object
during heating and cooling. Functioning on one set of scale
leads to the selection of non-optimal parameters and the
deterioration in a transition process [15].

Functional diagram of the obtained system is shown in
Fig. 2.

A neural network used in the structure of neural-net-
work tuner represents a three-layer network of direct propa-
gation of signal whose selection is described in detail in [15].
The input layer is represented by four neurons that receive:
temperature setpoint, averaged output of the control object,
delayed by 1 s, Az, and output from a PI-controller. Calcula-
tion of At coefficient was performed according to [15]. In the
experiment described in the paper, we used value At=20 s.
The hidden layer contains 12 neurons with sigmoidal activa-
tion functions. The output layer contains two neurons with
linear functions of activation whose outputs are coefficients
Kpand K. The network is trained using an error back prop-
agation method [12].
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In the present experiment, given that the model of muf-
fle furnace is a model of a typical thermal object [17], it is
proposed to accept this model as a model of the gas heating
furnace. In this case, we add a gas circuit to it and recalcu-
late it with respect to amplification factor of the object of
control. Structural diagram of the model obtained is shown
in Fig. 3.

We shall briefly describe a modeling scheme: controlling
influence U(0+100 %) arrives from unit OPC-Read1 from
the PI-controller Simatic. Next, controlling influence is
multiplied by factor F. This product represents a task for the
gas flow control circuit.

v
OPC Read Q b

(Dizabled)
T

OFC Readl

L{ aperiod |—>| aperiodl ?Ilii(s:ag:;)e
2 S-Function S-Functionl OPC Writel
NN for heating Kp, K;
Parameters from Processes Fig. 3. Structural scheme for modeling a gas furnace
control system N, (1 — gas circuit, 2 — object of control)
NN for cooling Kp, K Kp, K; ’
processes
To obtain this factor, we performed calcu-
o lation in order to convert thermal power of the
perturbations heating electrical element of a muffle furnace
Switch into an analogue for gas furnaces. Electric pow-
Fig. 2. Functional diagram of a neural-network tuner er of the furnace SNOL is 2.1 kW-h. We shall
derive maximal gas consumption per hour from
Further objective was to study the work of a neural-net- formula (2):
work tuner on the model of a thermal object that contains
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gas furnace with a gas circuit 100 %

To conduct experiment, we employed a complex of
software, represented by the following systems — Matlab
(modeling of the object of control), Step7, based on which,
using the controller simulator S7-400, we implemented a
neural-network tuner and a PI-controller, and SCADA sys-
tem WinCC, which, in addition to the function of visualiza-
tion, served as a communication connector between Matlab
and Step7. Much of the previous research by authors of the
present study [14—16] was conducted for the model of muffle
furnace SNOL 1,6.2,5.1/11-1, shown as (1).

= K . 1 .
TS+ T,S+1

W(s) e, )

where T7=1,636 s, T»=69.8 s, t=63.8 s, K=20.72.

Next, the task for gas is compared with the actual
consumption, an error is calculated, and it is given to the
PI-controller of the gas circuit. Because of the high speed
of the gas flow meter, its time constant is proposed to be
neglected. Parameters for the PI-controller (Kp, Kj) of a
gas circuit were chosen empirically to ensure sufficient
performance speed and stability of furnace operation mode.
The output of gas PI-controller (0+100 % open) is fed to the
controlling element (gas valve actuator) whose output is
gas consumption. The actuator’s parameters are taken from
the documentation on the drive Bernard-GAM. This drive
is widespread at the enterprises in metallurgical industry
and represents a medium-speed drive. Its opening time is
t+=40 seconds. We shall derive a time constant of the drive
from equation (3):
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Next, the resulting gas consumption is sent to the model
of control object (1), units S-Function, S-Functionl, Trans-
port Delay3, whose output is temperature, which via the unit
OPC_writel is sent to WinCC, and from there to Simatic to
the PI-controller. Gain factor of the control object was recal-
culated based on the maximum gas flow rate (0.244 m3/h)
and the initial furnace gain factor K=20.72 (4):

2072100

=8491.8. 4)
0.244
Such a significant gain factor is explained by technical
features of the furnace and the method of its recalculation
into the gas furnace — with respect to high calorific value of
gas, small working volume of the furnace (10 liters) and its
power (2.1 kW-h), to achieve the required temperatures for
a rather small amount of gas. In this case, maximum furnace
temperature is high, which leads to a significant gain factor.
The adaptation system executed the following schedule
of temperature setpoints: 505 C — 550 'C — 630 "C. A tran-
sition process was considered completed when finding an
error module for temperature in a 5 % range of difference
between current and previous temperature setpoints over
300 seconds. Upon completion of the transitional process,
a temperature setpoint changed. A cascade of temperature
setpoints was repeated 3 times, followed by a change in the
parameters of the control object, which simulates loading a
piecework into the furnace (K=K-0.2-K, T{=T;+1000 s). Fol-
lowing a 4-time work of temperature setpoint cascade, pa-
rameters of the model returned to the initial parameters, and
a temperature setpoint schedule was repeated 4 more times.
The aim of the experiment is to confirm the operability
of a tuner when working with a furnace model, containing
a gas flow control circuit. As a result, we obtained charts,
shown in Fig. 4, 5.
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Fig. 4. Transition processes on the model of control object
with a gas circuit under control of a neural-network tuner
(1 — change in the state of control object,

2 — return to original settings)

Initial settings of the controller are chosen empirically
for an empty furnace and ensure the following quality of
control: absence of oscillations, readjustment and a static
error not exceeding 5 %. These coefficients are starting for
neural-network tuner and primary for the PI-controller:
Kp=0.45, T1=2500s.

Fig. 4, 5 show that the neural-network tuner functions
successfully on the model of a heating furnace with a gas
circuit. It effectively responds to a change in the state of a
control object, and makes it possible to reduce time of tran-
sition processes. Table 1 gives comparative characteristics of
two experiments.
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Fig. 5. Transition processes on the model of a control object
with a gas circuit under control of the Pl-controller
(1 — change in the state of control object,
2 — return to original settings)

Table 1

Comparative characteristics of using a neural-network tuner
and a Pl-controller

Estimation criterion PI+NN PI
Experiment duration, hours 14.4 19.4
Time saving, % 25.8 0
Total controlling influence (100), units 13,743 | 17,815
Saved for total controlling influence, % 22.85 0

Within the framework of previous studies [14 16], a
similar experiment was carried out on the same model of
the furnace, without taking into consideration a gas circuit.
In that case, using a neural-network tuner, we saved 13 %
of the transition processes time and 16 % of the control
influence.

Research results allow us to draw a conclusion about
effective work of the neural-network tuner on the model of
a heating furnace with a gas circuit. In this case, the ratios,
used in the simulation, of time constants of the furnace and
the controlling element are common for the metallurgical
industry.



6. Discussion of results of the study into using a neural-
network tuner for the PI-controller on the model of a gas
furnace

The main advantage of using a neural-network tuner is
accounting for thermal-technological characteristics of the
controlled objects (employing a rule base) and accounting
for their changes under operational mode (applying a neural
network). Within the framework of present study we exam-
ined the feasibility and effectiveness of control when using a
neural-network tuner on the model of a gas furnace.

One drawback of the study is a rather conditional recal-
culation of the model of an electric furnace into a gas furnace,
based on the recalculation of thermal capacity. In addition,
the designed variant of the tuner can function effectively only
at a stepwise change in the job in control system.

The result of research makes it possible to extend the
class of control objects to which a neural-network tuner can
be applied. Previously, it was used only for electric furnaces
where influence of the controlling element is minimal. Re-
sult of the present study makes it possible to scale up the
solution for gas thermal furnaces, notwithstanding a mark-
edly larger impact of the controlling mechanism. Application
of a tuner makes it possible to improve quality of control over
temperature at a thermal object, which has a positive effect
on energy efficiency.

Present study is continuation of a larger study into devel-
opment and application of a neural-network tuner [14—16].

Our further aim is to study the interzone influence of multi-
zone furnaces for taking it into consideration in a rule base
of the tuner.

7. Conclusions

1. We devised a model of the gas heating furnace using
the recalculation of thermal power of the electric furnace.
Its special feature is the presence of a gas supply control cir-
cuit, which makes it possible to simulate behavior of actual
industrial gas furnaces.

2. The obtained model allowed us to examine the possi-
bility of applying a neural-network tuner for the PI-control-
ler parameters at an object that contains an internal circuit
to control gas supply. The result of applying the tuner is a
decrease in the time of the transition process by 25.8 % and
a reduction of the total controlling influence by 22.85 %.
The presence of the controlling element in this case had no
significant effect on the work of a neural-network tuner.
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1. Introduction

The overwhelming majority of the industrial facility
regulation systems operate on the fundamental principle
of deviation. In the practice of automation, such systems
account for approximately 85 % [1]. This is explained by the
fact that the regulatory action in them is formed regardless
of the number, type and place of application of disturbances.
In this case, with the help of one regulating action, it is often
possible to achieve satisfactory compensation for several
disturbances. However, the regulator in such systems begins
to form regulating effect to compensate for the disturbance
just after emergence of deviation of the regulated value from
the specified one. Therefore, it is impossible to completely
eliminate discrepancy between the regulated quantity and
the task given to the regulator and only minimization of

these deviations can be achieved in the systems operating on
the basis of deviation.

With this approach, it is far from always possible to pro-
vide required quality of regulation if there are delays in the
object’s regulation channel and significant disturbances. In
such cases, systems with a complicated information structure
(e.g. cascade systems and systems with dynamic correction)
are often found to be effective. However, not all objects have
the technical ability to allocate auxiliary regulated values
characterized by their delay and inertiality in relation to the
principal disturbances of the object and the regulatory action
less than the main regulated value. In addition, appearance
of additional loops can be a source of a potentially unstable
system. At the same time, presence of inertiality and delay in
the advance part of the object can result in a loss of any effect
from introduction of an additional status variable.




