Bgeodeno siocmanv Dpewe mixnc depesamu ma
dosedeno, wio us sidcmans € mempuxoio. Pospooneno
Memo0 i anzopummu Gu3HAMEeHHA 6i0CMmaHi MijC
He onyxaumu odnacmamu. Cnpoexmosanuii i npo-
2PAMHO peaniz08anuii MoOYb UIHAMEHHS 6I0CMAaHi
Dpewe mizc ckenemonamu. /Jocnionceno noxudoxu
pe3yavmamie ceemenmauii 0ns mempux Xaycoopga
ma Dpewe mixnc depesamu na npuxiadi diomeoun-
Hux 300pancens

Kniouosi cnosa: mempurxa Dpewe, mempuxa
Xaycoopga, ne onyxni odnacmi, 6iomedunni 300pa-

Beeoerno paccmosinue Dpewe mesxncoy odepesosi-
Mu u 00KA3aHO, UMO IMO PACCMOAHUE ABNACMCS
Mempuxoil. Paspaboman memoo u anzopummot onpe-
OeJleHUss paccmosiHus Mexcoy He BbINYKAbIMU 00a-
cmamu. Cnpoexmuposan u npozpammio peaiu3o6an
MoOys onpedenenust paccmosinus Opewe mesncoy
ckenemonamu. Hccedoearvt nozpeunocmu pesyio-
mamog ceemenmayuu ona mempux Xaycoopda u
Dpewe mexncoy Oepesvamu na npumepe ouomeou-
UuHCKUX U300parcenuil

Kmouesvie cnosa: mempurxa Dpewe, mempuxa
Xaycoopga, ne evinyxavie oonacmu, duomeouyun-
cKue u306pancenust, N0ZPewHoCmu ceemMeHmayuu
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1. Introduction

Digital microscopy plays an important role in the anal-
ysis of biomedical images and in diagnosis. We define bio-
medical images as the images obtained using the technical
tools employed for medical purposes in order to visualize
processes. Of special importance is the quality of digital im-
ages in oncology. To diagnose a patient in oncology, images
of individual cells (cytological images) and the images of a
group of cells (histological) are used.

Modern digital microscopy has travelled a long way in
its development from hand microscopes to modern robotized
complexes.

To categorize digital microscopy, we shall introduce the
following criteria: automation, software, the use of network
technologies.

According to the first criterion, there are hand micro-
scopes, which are independently operated by laboratory
staff. Such microscopes are most common in the clinics of
Ukraine. Automatics of the automated microscopes controls
the motion and focusing of the preparation, change of filters,
lenses, lighting [1]. Hardware of the system of automated mi-
croscopy (SAM) consists of a microscope, a video camera, and
a computer. The basis of SAM software is the systems of image
analysis (SIA). The latest modern group is the automated (ro-
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botized) microscopes that enable automatic processing of im-
ages. Based on the automated microscopes, modern complexes
of automatic microscopy are built (CAM) [2, 3].

In terms of software, there are software systems (SS)
that perform systemic functions: control over a microscope,
a video camera, etc. Another class of SS is the information
systems, in which databases of images, databases of patients,
incoming and outgoing reporting documents are implement-
ed. The next class of SS is the systems for analysis of images,
in which image processing algorithms are implemented at
three levels — low, medium and high. A separate class of
SS is the expert systems that can simulate reflections of a
physician-expert when diagnosing a patient. The combina-
tion of expert systems and systems for analysis of images
have spawned hybrid systems that combine technologies
of knowledge bases and computer vision. This direction is
promising at the present stage. Modern CAM include pro-
grams that enable the organization of telemedicine.

The level of using network technologies determines
CAM that are implemented on separate workstations. Such
use is limited by the local work of individual laboratory staff.
Another level is the use of CAM in a local network of a clinic,
hospital, which makes it possible for several specialists to
work simultaneously. The use of CAM in the global Internet
makes it possible to implement the technology of telemedicine.




We analyzed commercially available systems of digital
microscopy that vary in price depending on configuration.
For example, price of the system BioVision [4] is USD 1,850,
VideoTesT-Morpho-5 [5] — USD 3,440, MEKOS-C2 [6] —
USD 12,208.

The bulk of the price of such systems is the software.

The base of all SAM and CAM are SIA. SIA include all
image processing levels: low, middle and high. Low level is
used to improve the quality of images and contains algo-
rithms for image filtering, histogram equalization, contrast
improvement, etc. Middle level carries out segmentation,
differentiation of image contours, calculation of contour and
texture features. High level performs classification of micro
objects based on attributes [7, 8].

The main operation at the middle level is segmentation.
The accuracy of segmented objects affects subsequent cal-
culations of quantitative attributes. At present, there is no
universal image segmentation algorithm. Each algorithm is
designed for a specific subject area. That is why assessment
of the quality of segmentation results is very important. To
assess the quality of segmentation, objective and subjective
criteria are applied. Classification criteria for the evaluation
of segmentation is given in paper [9].

Subjective estimate is given by a human and is based on
qualitative indicators. An objective assessment is based on
quantitative indicators. The advantage of employing quan-
titative indicators to evaluate segmentation is the absence
of the human factor. The highest accuracy of segmentation
evaluation is demonstrated by methods that are based on the
use of metrics.

Therefore, it is important in terms of quantitative estima-
tion of the quality of image segmentation to apply an approach
that is based on using the Hausdorff and Fréchet metrics [10].

2. Literature review and problem statement

We shall analyze modern algorithms for calculating the
Hausdorff and Fréchet distances. Algorithms to compute the
Hausdorff distance are developed only for convex polygons.
In paper [11], authors constructed an algorithm to reduce
the number of vertices of a convex polygon for the set error
& in the Hausdorff metric. The algorithm is used for convex
polygons only. In article [12], authors calculated the Haus-
dorff distance between algebraic flat curves using the Vor-
onoi diagrams. The algorithm is applied for particular cases
of algebraic curves and has high computational complexity.
The algorithm for finding the minimal Hausdorff distance
in metrics L, and L is reported in work [13]. The resulting
computational complexity is O(n?log®n). A search method for
a given pattern of the image that has the smallest distance
in the Hausdorff metric is given in paper [14]. In this case,
the authors use a transmission of the assigned pattern to
the desired image. The algorithm has high computational
complexity. Article [15] reports a method of finding the
minimum weighted tree based on the Hausdorff metric for
a d-dimensional space. The problem of the approximation of
such a tree is solved over polynomial time.

An algorithm to compute the discrete Fréchet dis-
tance for polygonal curves is given in article [16]. A given
algorithm employs groups of conversion of rigid motions.
Computational complexity is O(m?n*), where m and n are
the number of segments along the first and second curve.
In paper [17], authors show an algorithm for computing

the Fréchet distance for surfaces, which are represented by
simple polygons. The algorithm has polynomial complexity.
In work [18], author developed an algorithm to calculate the
Fréchet distance between two curves, which are assigned by
a set of m+n linearly approximated segments. Computational
complexity is O(mxn). Authors of [19] obtained, for closed
polygonal curves, a computational complexity of O(mxn) for
the Fréchet metric. In [20], authors demonstrate an algo-
rithm to compute a discrete Fréchet distance with inaccu-
rately assigned vertices. For a d-dimensional space, they re-
ceived computational complexity O(dxmxn). An algorithm
to calculate the Fréchet distance between non-flat surfaces
is given in paper [21]. The authors reached the polynomial
time in the L_metric. In article [22], authors developed a fast
algorithm for finding a similarity of polygonal trees in the
Fréchet metric. The algorithm has polynomial complexity. In
works [23, 24], finding the distance between parametrically
set curves is carried out over polynomial time.

Thus, an analysis of the scientific literature reveals that
modern algorithms for finding the Fréchet distance for
flat closed curves have the least computational complexity
O(mxn). Algorithms for finding the Hausdorff distance
between regions are computationally complex. There are no
efficient algorithms for computing the Hausdorff distance
for non-convex regions.

Therefore, it is necessary to develop a metric for finding
a distance between non-convex regions. For this purpose, we
shall use a description of the image region by skeletons [8].
Skeletons are the middle lines, which describe arbitrary re-
gions and reduce dimensionality of a region description. Thus,
skeletons are graphs without cycles, in other words, trees.

Therefore, further direction of present research is to
develop a Fréchet metric between trees (skeletons), which
would make it possible to find distances between arbitrary
(convex and non-convex) geometrical objects. In addition,
by employing the developed metric, it is necessary to con-
struct a method and algorithms for computing the distance
between non-convex regions.

3. The aim and objectives of the study

The aim of present study is to introduce a metric between
trees to find the distance between non-convex regions of
segmented images. This would make it possible to decrease
the computational complexity of algorithms that compare
non-convex regions.

To accomplish the aim, the following tasks have been set:

— to introduce and substantiate the Fréchet metric be-
tween trees;

—to devise a method for comparison of non-convex re-
gions of images, based on the Fréchet metric between trees;

—to construct algorithms for computing distances be-
tween non-convex regions;

—to perform computer experiments to find distances
between non-convex regions.

4. Computation of distance between non-convex regions
based on the Fréchet metric

4. 1. The Fréchet metric between trees
A tree is a connected graph without cycles. A tree is
called the root tree if it contains a selected point (root) [26].



We shall consider a topological tree in R"(R?), that is, topo-
logical embedding of tree graphs. Thus, a topological tree is
a triple (7, 0, x,), where TER", x,€T and there is graph-
tree T and embedding f f: T—R", (T)=T, f(x,)=x,.

At each topological tree T there exists, therefore, two
metrics. The first is induced from R” (denoted as d) and the
second is induced from a geodesic metric into 7" by map-
ping a — denoted as p,. How do we find p,(x, y)? It is neces-
sary to take prototypes of a_(x), o () in T, and measure in
graph T the length of the segment connecting these points.

The mapping of graphs is called monotonous if it is mo-
notonous along all segments that originate from the roots.

That is, the mapping /> T—.S is monotonous if f(x,)=y,
(root in §) and, at distance x from x, along the segment (in
metric p,), point f(x) is monotonously distanced from y, (in
metric py).

We shall determine the Fréchet distance between topo-
logical trees T'and S:

dl-‘(T7S)=
= inf{sup{d(f(x),g(x))|xe R}|f:Re T,g:R— S}, )

here R is a tree and f, g are onto maps.
An example of trees mapping is shown in Fig. 1.

Fig. 1. Trees mapping: R, 7,S — topological trees

Then f maps the left side R to T, and the right side is
along the right side of T. Accordingly, g maps the right R to
the right side S, and the left side R to the left side of .S, mak-
ing up the two ends of the fork.

Consider root trees in the plane R?. If (T, ¢,) is such a
tree, then for each €T through ||t|| we denote d(t, t,). Here
and hereafter, d denotes a geodesic distance inside the tree,
that is, d(¢, t,) indicates length of the arc inside 7, which
connects ¢ and .

Mapping of root trees.

We believe that f:(S,s,)—(T,t,) has the property that
J(sy)=t,, and, for each geodesic segment J originating from
point ¢, we obtain

ss’e Jlsl<ls1=1/(9)<[ /()

To denote the Fréchet metric on the set of all embedded
trees in R?, we shall denote as p the Euclidean metric in R?.
Assume

: 2)

D(T,S)=
= inf{sup{p(f(r),g(r))|reR}|f:R—> T,g:R —>S}. (3)

First, it is necessary to make sure that the given defi-
nition is valid. Having 7, S, we shall denote through R the
bouquet of these two trees, R=TV.S (that is, the factor-space
of combination TuU.S relative to the equivalence relation,
which identifies point ¢, and s,) (Fig. 2).

T S TvS
Fig. 2. A bunch of tree Tand S

Then f:R—T we can accept the mapping that deforms §
to a point, and g:R—S, respectively, as the mapping that
deforms T to a point.

Theorem. The function D is a metric.

Proof.

1) It is obvious that D(T, $)20 for each T, S. It is also
clear that D(T, T)=0 (it will suffice to accept the identical
mapping as f and g).

Next, assume that D(7, §)=0. Hence, it is easy to derive
p,;=(T, §)=0 (p, denotes the Hausdorff metric on the plane).

Thus, T=S.

2) The symmetry of function D directly follows from the
definition.

3) Triangle inequality.

Let T, S, U be the trees and €>0. There are trees P, R and
mapping “onto” /:P—T, g:P—S and k:R—S, h:R—U so that

sup{p(/(p).8(p))|peP}<D(T.S)+e,
sup{p(k(r).h(r))|r e RYT(S,U) +e.
Consider the pullback of trees Pand R, that is a tree

Q= {(p,r)erR|g(p)= k(r)}.

If Q is not a tree, one may consider an onto map Q'—Q,
where Q is a tree.

Let a:Q—P, B:Q(r) be the projections.

Then, for each (p,?’) €@, we have (4):

p(fo(p.r)).hB(p.r)=
=p(/(p)h(r)<p(/(
(

h p).go(p.r))+p(kB(p.7),h(r))=
=p(/(p).&(p))+p(k

r).h(r))<D(T,8)+D(S,U)+2e.  (4)

Thus, the theorem proved makes it possible to apply the
Fréchet metric between trees to find a distance between
non-convex regions.

4. 2. A method for estimating distance between skele-
tons of the non-convex regions

As a result of the skeletonization process, we obtain skele-
ton Sk of the image, which is a tree. Therefore, skeleton Sk=G=
=(V, E) is a non-directed graph where V={v,, v,,..., v,} is the set
of vertices, E={u,, u,,..., u, } is the set of edges. For a non-direct-
ed graph, the edge is the set {u, v}, where v,v eV, u#o.

For the assigned graph G=(V, E), the path (route) of
length & from vertex u to vertex u is a sequence of ver-
tices {vy, v,,..,0,), such that w=u, u'=v, (vi—1’0i) eE for
i=1,2,..., k. The path includes vertices v,, v,,..., v, and edges
@y, 0,), @4, 0)yes (@4, vy)- If there is a path P from vertex u



to vertex u, then one can say that vertex u’is reachable from
vertex u along path P, that is, u—Z—u'. A path is called sim-
ple if all the vertices of the path are different.

Let two connected planar graphs without cycles be as-
signed (Fig. 3).

S

So

Sq
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i 12 53

Fig. 3. Planar graphs 7and S

The merging of graphs Tand Sis a set of C pairs of (, s)),
which has the following properties:

1) (¢0,5,)€C

2)if ¢, is the end vertex in T, then there is such an end
vertex s;in §'so that (¢,,s;)eC;

3) if s, is the the end vertex in S, then there is such an end
vertex ¢, in T'so that (¢,,s,)eC;

4)if (¢,,s;)€C is a pair of end-vertices, then at the seg-
ment that connects (¢, s,) and (¢, s;) the set C assigns the
connection.

We selected root ¢, in the graph and there are the end
vertices. If we take one more similar graph with root s0, then
the Fréchet distance between these graphs is computed in
the following way:

D.(T,S)= mgn(([ma)xc Dy ([ty,,). 505, ])) (5)

Thus, formula (5) for finding the Fréchet distance makes
it possible to calculate distances between trees (skeletons)
and to construct algorithms for finding a distance between
non-convex regions.

4. 3. Algorithm for finding a distance between the
non-convex regions based on the Hausdorff metric

Let the two non-convex polygons P and Q received after
segmentation be assigned (Fig. 4).

" &

Fig. 4. Polygons Pand @Q

The algorithm for computing the Hausdorff distance
between them is the following:

1) According to algorithm [27], we shall split polygons P
and Q into sets of convex regions, that is:

P:OP1 u...uOR u...uOP”,
where i=1,n is the quantity of convex regions of polygon P;

Q:OQ‘ u...uOQ/ u..u0 o

where j=1,m mis the quantity of convex regions of polygon Q;

2) Denote:

0p U..U0, L..LO, =V,

OQ‘ u...uOQ’ u..‘uOQm =W;

3) Distance between polygons P and Q that is equal to
the distance between inner regions of convex polygons P, and
Q; will be represented as:

d(V,W)= inf{g>o|w=1,7,3j=17n
and

d,(0,0,)<e (6)

and vice versa

V,=1m, Ji=1n and d,(0,0;)<e,

where d,; is the Hausdorff distance;

4) the Hausdorff distance will be found based on the At-
talah’s algorithm [28]. Computational complexity of a given
algorithm is O(m, n), where m, n is the number of vertices of
polygons.

4. 4. Algorithm of distance estimation between skele-
tons of the non-convex regions

Trees of the graph can exist without a selected root and
with a selected root, that is, free trees. The following theo-
rem holds for them.

Theorem [25]. Let G=(V, E) be a non-directed graph.
Then the following holds:

1. G is a free tree.

2. Any two vertices of G are connected through a single
simple path.

3. G is a connected graph, but, when any edge is deleted
from E, it ceases to be such a graph.

4. G is a connected graph, |E|=|V|-1.

5. G is the acyclic graph, |E|=|V|-1.

6. G is the acyclic graph, but, when adding any edge to E,
we obtain a graph that includes a cycle.

We shall describe the main steps of the algorithm:

1. Following the skeletonization process over two images,
we obtain skeletons Sk,=G,=(V,, E,) and Sk,=G,=(V,, E,),
respectively. Let us represent the obtained trees G,=(V,, E,)
and G,=(V,, E,) by applying adjacency matrices A, and A,.
The vertices should be numbered and arranged by num-
bers 1, 2, ..., |V| Then the adjacency matrix A=(ay), the size
of |V| ><|V|, is such that

{1, if (i, j) e E,
a. =

710, otherwise.

Adjacency matrix A for a non-directed graph is equal to
transposed matrix A”. That is why we shall consider only
those elements of the matrix, which are located along the
main diagonal and above, that is, the submatrix A".

2. Form submatrices A", and A", based on incidence
matrices A, and A, of graphs G, and G,.

3.Based on them, create arrays of end-vertices M,=
={m,, m,..., m;} and M,={m,, m,,..., m}.

4. By using submatrices A and A, and arrays of end-verti-
ces M, and M2, we shall find sets of paths P,={p,, p,,..., p,} and



P,={p,, Dy, P}, €ach of which is the subset p!={,,7,,..,v,}
i=17€, and pf ={1,,0,,...,0;} i=1,r, where kand ris the num-

ber of end-vertices of trees G, and G,, respectively.
5. Then the Fréchet distance will be computed from
expression

D, (P,P,)= min[maxDF ([pé,pi]y[péypf])}

(sl )ec

6. Computer experiments

The polygons that are examined in the present study
were obtained following the segmentation of histologic and
cytologic images from database [29]. As a result of the skele-
tonization process over polygons, we obtained skeletons of
the examined micro objects.

Examples of polygons and their skeletons are shown in
Table 1.

Table 1
Examples of polygons and their skeletons
No. of Polygon Skeleton
expertl— Polygon of | Polygon of | Skeleton of | Skeleton of
men region 1 region 2 region 1 region 2
; %
4 \Jﬂ/
6 %

Values of the Hausdorff distance between polygons are
given in Table 2.

Values for the Fréchet distance for skeletons are given
in Table 3.

Table 2
Values of the Hausdorff distance between polygons

Polygon of Polygon of The Hausdorff
No. : : . .
region 1 region 2 distance, pixels
1 K * 34.48
2 w i 40.01
: V o ..
4 “ M 5393
6 “ ‘ 71.58
Table 3
Values for the Fréchet distance for skeletons
Skeleton of Skeleton of The Fréchet
No. - - . .
region 1 region 2 distance, pixels
1 % % 34.48
2 7_( J7'< 41.0
3 Lﬁ// 9—(( 36.87
4 ﬂ \’ﬁ 54.20
{ /
6 ~ J 72.42




Time for finding the distance between polygons and skel-
etons is shown in Fig. 5.

2500
2000

1500

1000 -
500 \N/

0

Time. ms

1 2 3 4 5 6 7 8 9 10
No. of experiment

—The Hausdorff distance between regions
——The Fréchet distance between skeletons

Fig. 5. Time for finding the Hausdorff distance between
polygons and the Fréchet distance between skeletons

The values of relative error for the Hausdorff distance
between polygons and the Fréchet distance between skele-
tons are shown in Fig. 6.

3
2,5
2
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1

Relative error, %

0.5

0
1 2 3 4 5 6 7 8 9 10

No. of experiment
Fig. 6. Values of relative error for the Hausdorff distance
between polygons and the Fréchet distance between skeletons

Computer experiments that we performed show that the
deviation in the value of the Hausdorff distance between
polygons and the Fréchet distance between skeletons is
within 2-3 %.

7. Discussion of results of comparing
the non-convex regions of images based on
the Fr chet metric between trees

Modern algorithms for computing the Hausdorff dis-
tance between regions with low computational complexity
exist only for the convex regions. Using the Hausdorff met-
ric to calculate distances between the non-convex regions
is computationally complicated. In this case, non-convex
regions need to be converted into convex regions. This re-
quires additional computational costs.

A characteristic of any region is the skeleton, which is a
tree. That is why finding a distance between regions is re-
placed by finding a distance between skeletons. We proposed
a new mathematical structure — the Fréchet metric between
trees, which allowed us to solve the problem on computing
distances between the non-convex regions.

The advantage of the Fréchet metric between trees is the
possibility to calculate distances between the non-convex
regions. This benefit is achieved by replacing the calculation
of distances between regions with the computation of dis-
tances between skeletons of the regions. The method devised
and the algorithms constructed have lower computational

complexity compared to known algorithms for calculating
the Hausdorff distance between the non-convex regions.
Numerical simulation of the algorithms that we performed
showed that the error in finding a distance based on the
Hausdorff metric and on the Fréchet metric between trees
lies within 2—3 %. In this case, however, the time for finding
distances between regions when using the Fréchet metric
between trees is significantly reduced, compared to the
Hausdorff metric.

The first constraint for the application of the Fréchet
metric between trees is the necessity to find skeletons of the
regions. However, modern algorithms for finding skeletons
possess low computational complexity. That is why finding
the skeletons of regions is not a difficult task.

The second limitation is the need to separate the roots
of skeletons. This limitation is caused by the fact that the
introduced Fréchet metric between trees holds only to the
root trees. This constraint can be eliminated by developing
the Fréchet metric between the non-root trees. This is not
a fundamental limitation. That is why the next steps in the
research imply development of the Fréchet metric Fréchet for
the non-root trees.

Results of the present study could be used not only for
testing known and new segmentation algorithms, but also
for image recognition, as well as image search in databases.
This significantly expands the scope of application of the
constructed metric.

8. Conclusions

1. It was found that the proposed Fréchet distance
between trees is a metric. To establish it, we have prov-
en axioms of identity, symmetry, and the triangle. The
Fréchet metric between trees is based on the Fréchet
metric and makes it possible to find distances between
skeletons of images.

2. Based on the Fréchet metric between trees, we con-
structed a method for comparing the non-convex regions of
images. The method is based on the algorithm of selection of
image skeletons and on the algorithm for finding a distance
between skeletons based on the Fréchet metric between
trees. By employing the devised method, it has become pos-
sible to find distances between the non-convex regions.

3. Based on the method of comparison of the non-convex
regions, we built algorithms for calculating a distance be-
tween the non-convex regions. These algorithms have lower
computational complexity than the algorithms for comput-
ing the Hausdorff distance between the non-convex regions.

4. Computer experiments that we performed have shown
that the error in calculating the distances, found by algo-
rithms based on the Hausdorff metric and based on the
Fréchet metric between trees, is within 2—3 %. In this case,
the time for calculating the Fréchet distance between skel-
etons is on average 2 times less than the time for computing
the Hausdorff distance between polygons.
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Pozenanyma sadana gopmyeanns eubdipro-
BUX OUIHOK KOpenauitinoi mampuui cnocmepe-
JCeHb 3a Kpumepiem <0O0uUCTI08ATbHA CMili-
KiCmb — CHPOMOJCHICIb> Ma NPoaxHaliz0eand
CNPOMONCHICM® CMIUKUX OUTHOK NPU CIMAMUMHIL
peeynspusauii. Busienena npoonema sadaui peey-
Agpusauii ouinoK, 0 GUpimenHs KoL 3anpo-
NOHOBANHO AILMEPHAMUCHUIL MeMOo0 OUHAMIMHOT
pezynapusauii. Ompumana onmumanvHa QYHK-
uisn Ounaminnoi peyaapusauii 6UGIPKOBUX OUIHOK
6 YMoeax anpiopHoi HesuUsHAMEHOCMI MA HAOAHI
HUCeNbHI pe3yivmamu

Kniouosi cnoea: cmamuuna peeynapusauis,
Junamiuna pesynapusauis, cmiixicmo, 301%c-
HICMb, CHPOMONCHICMD OUIHOK, KOpeaauilina
Mmampuys

Paccmompena 3adaua opmuposanus 6o100-
POUHLIX OUEHOK KOPPEAAUUOHHOU MAMPUlbl
HAOMOO0EHUIL NO KPUMEPUIO <EbIMUCTUMENbHAS
Ycmouuugocms — COCMOSAMENAbHOCMb> U NPoa-
HAIU3UPOBAHA COCMOSAMENLHOCMb YCMOUMU-
8bILX OUEHOK NMPU CMAMUYECKOU PeYNapu3auuu.
Boiasaena npoonema 3adauu pezynspusauuu
0UeHOK, OIS peuleHUs KOMOPOU NPedJlodceH alb-
mepHamueHvLil Memoo OUHAMUMECKOU pe2YNApU-
sauuu. Ilonyuena onmumanvnas Qynxyus ouna-
MUMECKOU PeYNAPU3AUUU 8bL00POUHBIX OUCHOK 8
YCIOBUSX ANPUOPHOU HeONPeOesIeHHOCU U npeo-
cmasjienvl HUCIeHHbLE Pe3YTbmamol

Kmouesvie crosa: cmamuueckas peeynapusa-
UUL, OUHAMUMECKAS PeLYAAPUIAUUSL, YCMOUMU-
80CMb, CX00UMOCMb, COCMOAMENLHOCHTL OUCHOK,
KOppensiyuoHHas Mampuua

1. Introduction

Inversion of the correlation matrix of observations be-
longs to the class of problems associated with the reversion of
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cause-effect relationships. This procedure is the basis for solv-
ing inverse statistical problems in applications of spectral anal-
ysis, space-time processing of multidimensional signals, control
theory, identification, prediction and decision making [1-8].




