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botized) microscopes that enable automatic processing of im-
ages. Based on the automated microscopes, modern complexes 
of automatic microscopy are built (CAM) [2, 3].

In terms of software, there are software systems (SS) 
that perform systemic functions: control over a microscope, 
a video camera, etc. Another class of SS is the information 
systems, in which databases of images, databases of patients, 
incoming and outgoing reporting documents are implement-
ed. The next class of SS is the systems for analysis of images, 
in which image processing algorithms are implemented at 
three levels – low, medium and high. A separate class of 
SS is the expert systems that can simulate reflections of a 
physician-expert when diagnosing a patient. The combina-
tion of expert systems and systems for analysis of images 
have spawned hybrid systems that combine technologies 
of knowledge bases and computer vision. This direction is 
promising at the present stage. Modern CAM include pro-
grams that enable the organization of telemedicine.

The level of using network technologies determines  
CAM that are implemented on separate workstations. Such 
use is limited by the local work of individual laboratory staff. 
Another level is the use of CAM in a local network of a clinic, 
hospital, which makes it possible for several specialists to 
work simultaneously. The use of CAM in the global Internet 
makes it possible to implement the technology of telemedicine. 

1. Introduction

Digital microscopy plays an important role in the anal-
ysis of biomedical images and in diagnosis. We define bio-
medical images as the images obtained using the technical 
tools employed for medical purposes in order to visualize 
processes. Of special importance is the quality of digital im-
ages in oncology. To diagnose a patient in oncology, images 
of individual cells (cytological images) and the images of a 
group of cells (histological) are used. 

Modern digital microscopy has travelled a long way in 
its development from hand microscopes to modern robotized 
complexes.

To categorize digital microscopy, we shall introduce the 
following criteria: automation, software, the use of network 
technologies. 

According to the first criterion, there are hand micro-
scopes, which are independently operated by laboratory 
staff. Such microscopes are most common in the clinics of 
Ukraine. Automatics of the automated microscopes controls 
the motion and focusing of the preparation, change of filters, 
lenses, lighting [1]. Hardware of the system of automated mi-
croscopy (SAM) consists of a microscope, a video camera, and 
a computer. The basis of SAM software is the systems of image 
analysis (SIA). The latest modern group is the automated (ro-
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We analyzed commercially available systems of digital 
microscopy that vary in price depending on configuration. 
For example, price of the system BioVision [4] is USD 1,850, 
VideoTesT-Morpho-5 [5] – USD 3,440, MEKOS-C2 [6] – 
USD 12,208. 

The bulk of the price of such systems is the software.
The base of all SAM and CAM are SIA. SIA include all 

image processing levels: low, middle and high. Low level is 
used to improve the quality of images and contains algo-
rithms for image filtering, histogram equalization, contrast 
improvement, etc. Middle level carries out segmentation, 
differentiation of image contours, calculation of contour and 
texture features. High level performs classification of micro 
objects based on attributes [7, 8].

The main operation at the middle level is segmentation. 
The accuracy of segmented objects affects subsequent cal-
culations of quantitative attributes. At present, there is no 
universal image segmentation algorithm. Each algorithm is 
designed for a specific subject area. That is why assessment 
of the quality of segmentation results is very important. To 
assess the quality of segmentation, objective and subjective 
criteria are applied. Classification criteria for the evaluation 
of segmentation is given in paper [9].

Subjective estimate is given by a human and is based on 
qualitative indicators. An objective assessment is based on 
quantitative indicators. The advantage of employing quan-
titative indicators to evaluate segmentation is the absence 
of the human factor. The highest accuracy of segmentation 
evaluation is demonstrated by methods that are based on the 
use of metrics. 

Therefore, it is important in terms of quantitative estima-
tion of the quality of image segmentation to apply an approach 
that is based on using the Hausdorff and Fréchet metrics [10].

2. Literature review and problem statement

We shall analyze modern algorithms for calculating the 
Hausdorff and Fréchet distances. Algorithms to compute the 
Hausdorff distance are developed only for convex polygons. 
In paper [11], authors constructed an algorithm to reduce 
the number of vertices of a convex polygon for the set error 
ξ in the Hausdorff metric. The algorithm is used for convex 
polygons only. In article [12], authors calculated the Haus-
dorff distance between algebraic flat curves using the Vor-
onoi diagrams. The algorithm is applied for particular cases 
of algebraic curves and has high computational complexity. 
The algorithm for finding the minimal Hausdorff distance 
in metrics Li and L∞ is reported in work [13]. The resulting 
computational complexity is O(n2log2n). A search method for 
a given pattern of the image that has the smallest distance 
in the Hausdorff metric is given in paper [14]. In this case, 
the authors use a transmission of the assigned pattern to 
the desired image. The algorithm has high computational 
complexity. Article [15] reports a method of finding the 
minimum weighted tree based on the Hausdorff metric for 
a d-dimensional space. The problem of the approximation of 
such a tree is solved over polynomial time.

An algorithm to compute the discrete Fréchet dis-
tance for polygonal curves is given in article [16]. A given 
algorithm employs groups of conversion of rigid motions. 
Computational complexity is O(m2n2), where m and n are 
the number of segments along the first and second curve. 
In paper [17], authors show an algorithm for computing 

the Fréchet distance for surfaces, which are represented by 
simple polygons. The algorithm has polynomial complexity. 
In work [18], author developed an algorithm to calculate the 
Fréchet distance between two curves, which are assigned by 
a set of m+n linearly approximated segments. Computational 
complexity is O(m×n). Authors of [19] obtained, for closed 
polygonal curves, a computational complexity of O(m×n) for 
the Fréchet metric. In [20], authors demonstrate an algo-
rithm to compute a discrete Fréchet distance with inaccu-
rately assigned vertices. For a d-dimensional space, they re-
ceived computational complexity O(d×m×n). An algorithm 
to calculate the Fréchet distance between non-flat surfaces 
is given in paper [21]. The authors reached the polynomial 
time in the L∞ metric. In article [22], authors developed a fast 
algorithm for finding a similarity of polygonal trees in the 
Fréchet metric. The algorithm has polynomial complexity. In 
works [23, 24], finding the distance between parametrically 
set curves is carried out over polynomial time.

Thus, an analysis of the scientific literature reveals that 
modern algorithms for finding the Fréchet distance for 
flat closed curves have the least computational complexity 
O(m×n). Algorithms for finding the Hausdorff distance 
between regions are computationally complex. There are no 
efficient algorithms for computing the Hausdorff distance 
for non-convex regions. 

Therefore, it is necessary to develop a metric for finding 
a distance between non-convex regions. For this purpose, we 
shall use a description of the image region by skeletons [8]. 
Skeletons are the middle lines, which describe arbitrary re-
gions and reduce dimensionality of a region description. Thus, 
skeletons are graphs without cycles, in other words, trees.

Therefore, further direction of present research is to 
develop a Fréchet metric between trees (skeletons), which 
would make it possible to find distances between arbitrary 
(convex and non-convex) geometrical objects. In addition, 
by employing the developed metric, it is necessary to con-
struct a method and algorithms for computing the distance 
between non-convex regions.

3. The aim and objectives of the study

The aim of present study is to introduce a metric between 
trees to find the distance between non-convex regions of 
segmented images. This would make it possible to decrease 
the computational complexity of algorithms that compare 
non-convex regions.

To accomplish the aim, the following tasks have been set:
– to introduce and substantiate the Fréchet metric be-

tween trees;
– to devise a method for comparison of non-convex re-

gions of images, based on the Fréchet metric between trees;
– to construct algorithms for computing distances be-

tween non-convex regions; 
– to perform computer experiments to find distances 

between non-convex regions.

4. Computation of distance between non-convex regions 
based on the Fréchet metric

4. 1. The Fréchet metric between trees
A tree is a connected graph without cycles. A tree is 

called the root tree if it contains a selected point (root) [26]. 
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We shall consider a topological tree in Rn(R2), that is, topo-
logical embedding of tree graphs. Thus, a topological tree is 
a triple (T, α, x0), where T⊆Rn, ∈0x T  and there is graph-
tree T` and embedding f f: T`→Rn, α(T`)=T, f(x0)=x0.

At each topological tree T there exists, therefore, two 
metrics. The first is induced from Rn (denoted as d) and the 
second is induced from a geodesic metric into T` by map-
ping α – denoted as ρT. How do we find ρT(x, y)? It is neces-
sary to take prototypes of α-1(x), α-1(y) in T`, and measure in 
graph T` the length of the segment connecting these points.

The mapping of graphs is called monotonous if it is mo-
notonous along all segments that originate from the roots. 

That is, the mapping f: T`→S is monotonous if f(x0)=y0 
(root in S) and, at distance x from x0 along the segment (in 
metric ρT), point f(x) is monotonously distanced from y0 (in 
metric ρS). 

We shall determine the Fréchet distance between topo-
logical trees T and S:

( )
( ) ( )( ){ }{ }

=

= ∈ → →

,

inf sup , : , : .

Fd T S

d f x g x x R f R T g R S ,
  

(1)

here R is a tree and f, g are onto maps.
An example of trees mapping is shown in Fig. 1. 

 

Fig. 1. Trees mapping: R,T,S – topological trees 

Then f maps the left side R to T, and the right side is 
along the right side of T. Accordingly, g maps the right R to 
the right side S, and the left side R to the left side of S, mak-
ing up the two ends of the fork. 

Consider root trees in the plane R2. If (T, t0) is such a 
tree, then for each ∈t T  through t  we denote d(t, t0). Here 
and hereafter, d denotes a geodesic distance inside the tree, 
that is, d(t, t0) indicates length of the arc inside T, which 
connects t and t0.

Mapping of root trees. 
We believe that f:(S, s0)→(T, t0) has the property that 

f(s0)=t0, and, for each geodesic segment J originating from 
point t0, we obtain

( ) ( )∈ ≤ ⇒ ≤′ ′ ′, , .s s J s s f s f s   (2)

To denote the Fréchet metric on the set of all embedded 
trees in R2, we shall denote as ρ the Euclidean metric in R2. 

Assume

( )
( ) ( )( ){ }{ }

=

= ρ ∈ → →

,S

inf sup , : , : .

D T

f r g r r R f R T g R S
 

(3)

First, it is necessary to make sure that the given defi-
nition is valid. Having T, S, we shall denote through R the 
bouquet of these two trees, R=T˅S (that is, the factor-space 
of combination ∪T S  relative to the equivalence relation, 
which identifies point t0 and s0) (Fig. 2).

T S T  S
Fig. 2. A bunch of tree T and S

Then f:R→T we can accept the mapping that deforms S 
to a point, and g:R→S, respectively, as the mapping that 
deforms T to a point. 

Theorem. The function D is a metric. 
Proof.
1) It is obvious that D(T, S)≧0 for each T, S. It is also 

clear that D(T, T)=0 (it will suffice to accept the identical 
mapping as f and g).

Next, assume that D(T, S)=0. Hence, it is easy to derive 
ρH=(T, S)=0 (ρH denotes the Hausdorff metric on the plane).

Thus, T=S.
2) The symmetry of function D directly follows from the 

definition.
3) Triangle inequality.
Let T, S, U be the trees and ɛ>0. There are trees P, R and 

mapping “onto” f:P→T, g:P→S and k:R→S, h:R→U so that

( ) ( )( ){ } ( )ρ ∈ ≤ + εsup , , ,f p g p p P D T S

( ) ( )( ){ } ( )ρ ∈ ≤ + εsup ,h , .k r r r R T S U

Consider the pullback of trees P and R, that is a tree

( ) ( ) ( ){ }= ∈ × =, .Q p r P R g p k r

If Q is not a tree, one may consider an onto map Q'→Q, 
where Q is a tree. 

Let α:Q→P, β:Q(r) be the projections.
Then, for each ( )∈, ,p r Q  we have (4):

( )( ) ( )
( ) ( )( ) ( ) ( )( ) ( ) ( )( )
( ) ( )( ) ( ) ( )( ) ( ) ( )

ρ α β =

= ρ ≤ ρ α + ρ β =

= ρ + ρ ≤ +

, , ,

, , , , ,

, , , , .

f p r h p r

f p h r f p g p r k p r h r

f p g p k r h r D T S D S U

 

(4)                                                                            +2ε.

Thus, the theorem proved makes it possible to apply the 
Fréchet metric between trees to find a distance between 
non-convex regions.

4. 2. A method for estimating distance between skele-
tons of the non-convex regions

As a result of the skeletonization process, we obtain skele-
ton Sk of the image, which is a tree. Therefore, skeleton Sk=G= 
=(V, E) is a non-directed graph where V={v0, v1,…, vk} is the set 
of vertices, E={u0, u1,…, um} is the set of edges. For a non-direct-
ed graph, the edge is the set {u, v}, where ∈, ,u v V  ≠ .u v

For the assigned graph G=(V, E), the path (route) of 
length k from vertex u to vertex u’ is a sequence of ver-
tices {v0, v1,…,vk}, such that u=u0, u’=vk, ( )− ∈1, iiv v E  for 
i=1, 2,…, k. The path includes vertices v0, v1,…, vk and edges 
(v0, v1), (v0, v1),…, (vk-1, vk). If there is a path P from vertex u 
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to vertex u’, then one can say that vertex u’ is reachable from 
vertex u along path P, that is, → '.Pu u  A path is called sim-
ple if all the vertices of the path are different. 

Let two connected planar graphs without cycles be as-
signed (Fig. 3).

 

Fig. 3. Planar graphs T and S

The merging of graphs T and S is a set of C pairs of (ti, sj), 
which has the following properties:

1) ( ) ∈0 0 ;, Ct s
2) if ti is the end vertex in T, then there is such an end 

vertex sj in S so that ( ) ∈ ;,i j Ct s
3) if sk is the the end vertex in S, then there is such an end 

vertex ti in T so that ∈( , ) ;l kt s C
4) if ∈( , )i jt s C  is a pair of end-vertices, then at the seg-

ment that connects (t0, s0) and (ti, sj) the set C assigns the 
connection.

We selected root t0 in the graph and there are the end 
vertices. If we take one more similar graph with root s0, then 
the Fréchet distance between these graphs is computed in 
the following way:

( )
∈

 =   0 0( , )
( , ) min max [ , ],[ , ] .

i j
F F i jC t s C

D T S D t t s s   (5)

Thus, formula (5) for finding the Fréchet distance makes 
it possible to calculate distances between trees (skeletons) 
and to construct algorithms for finding a distance between 
non-convex regions.

4. 3. Algorithm  for  finding  a  distance  between  the 
non-convex regions based on the Hausdorff metric

Let the two non-convex polygons P and Q received after 
segmentation be assigned (Fig. 4).

 

Fig. 4. Polygons P and Q

The algorithm for computing the Hausdorff distance 
between them is the following:

1) According to algorithm [27], we shall split polygons P 
and Q into sets of convex regions, that is:

= ∪ ∪ ∪ ∪
1

... ... ,
i nP P PP O O O

where = 1,i n  is the quantity of convex regions of polygon P;

= ∪ ∪ ∪ ∪
1

... ... ,
j mQ Q QQ O O O

where 1,mj =  mis the quantity of convex regions of polygon Q;

2) Denote:

∪ ∪ ∪ ∪ =
1

... ... ,
i nP P PO O O V

1
... ... ;

i mQ Q QO O O W∪ ∪ ∪ ∪ =

3) Distance between polygons P and Q that is equal to 
the distance between inner regions of convex polygons Pi and 
Q j will be represented as:

{= ε > ∀ = ∃ =(V,W) inf 0 | 1, , 1,d i n j m  

and 

( ) ≤ ε,H i jd O O  (6)

and vice versa

∀ = 1, ,j m  ∃ = 1,i n  and ( ) ≤ ε, ,H i jd O O

where Hd  is the Hausdorff distance;
4) the Hausdorff distance will be found based on the At-

talah’s algorithm [28]. Computational complexity of a given 
algorithm is O(m, n), where m, n is the number of vertices of 
polygons.

4. 4. Algorithm of distance estimation between skele-
tons of the non-convex regions

Trees of the graph can exist without a selected root and 
with a selected root, that is, free trees. The following theo-
rem holds for them. 

Theorem [25]. Let G=(V, E) be a non-directed graph. 
Then the following holds:

1. G is a free tree.
2. Any two vertices of G are connected through a single 

simple path.
3. G is a connected graph, but, when any edge is deleted 

from E, it ceases to be such a graph.
4. G is a connected graph, = −1.E V
5. G is the acyclic graph, = −1.E V
6. G is the acyclic graph, but, when adding any edge to E, 

we obtain a graph that includes a cycle.
We shall describe the main steps of the algorithm:
1. Following the skeletonization process over two images, 

we obtain skeletons Sk1=G1=(V1, E1) and Sk2=G2=(V2, E2), 
respectively. Let us represent the obtained trees G1=(V1, E1) 
and G2=(V2, E2) by applying adjacency matrices A1 and A2. 
The vertices should be numbered and arranged by num-
bers 1, 2, …, .V Then the adjacency matrix A=(αij), the size 
of ×V V , is such that

∈
= 



1,  if ( , ) ,

0,  otherwise.ij

i j E
a

Adjacency matrix A for a non-directed graph is equal to 
transposed matrix AT. That is why we shall consider only 
those elements of the matrix, which are located along the 
main diagonal and above, that is, the submatrix A*.

2. Form submatrices *
1A  and *

2A  based on incidence 
matrices A1 and A2 of graphs G1 and G2.

3. Based on them, create arrays of end-vertices M1= 
={m1, m2,…, mk} and M2={m1, m2,…, mp}.

4. By using submatrices A*
1 and A*

2 and arrays of end-verti-
ces M1 and M2, we shall find sets of paths P1={p1, p2,…, pk} and 
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P2={p1, p2,…, pk}, each of which is the subset =1
0{ , ,..., }i r ip v v v  

 = 1, ,i k  and =2
0{ , ,..., }i r ip v v v = 1, ,i r  where k and r is the num-

ber of end-vertices of trees G1 and G2, respectively.
5. Then the Fréchet distance will be computed from 

expression

( )
( )

( )
∈

 
  =       1 2

1 1 2 2
1 2 0 0

,

, min max , , , .
i j

F F i j
p p C

D P P D p p p p

6. Computer experiments

The polygons that are examined in the present study 
were obtained following the segmentation of histologic and 
cytologic images from database [29]. As a result of the skele-
tonization process over polygons, we obtained skeletons of 
the examined micro objects. 

Examples of polygons and their skeletons are shown in 
Table 1.

Table 1 

Examples of polygons and their skeletons

No. of 
experi-
ment

Polygon Skeleton

Polygon of 
region 1

Polygon of 
region 2

Skeleton of 
region 1

Skeleton of 
region 2

1

2

3

4

5

6

Values of the Hausdorff distance between polygons are 
given in Table 2.

Values for the Fréchet distance for skeletons are given 
in Table 3.

Table 2

Values of the Hausdorff distance between polygons

No.
Polygon of 

region 1
Polygon of 

region 2
The Hausdorff 
distance, pixels

1 34.48

2 40.01

3 36.12

4 53.93

5 93.19

6 71.58

Table 3

Values for the Fréchet distance for skeletons

No.
Skeleton of 

region 1
Skeleton of 

region 2
The Fréchet 

distance, pixels

1 34.48

2 41.0

3 36.87

4 54.20

5 94.0

6 72.42
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Time for finding the distance between polygons and skel-
etons is shown in Fig. 5.

 

 
Fig. 5. Time for finding the Hausdorff distance between 
polygons and the Fréchet distance between skeletons

The values of relative error for the Hausdorff distance 
between polygons and the Fréchet distance between skele-
tons are shown in Fig. 6.

 Fig. 6. Values of relative error for the Hausdorff distance 
between polygons and the Fréchet distance between skeletons

Computer experiments that we performed show that the 
deviation in the value of the Hausdorff distance between 
polygons and the Fréchet distance between skeletons is 
within 2–3 %.

7. Discussion of results of comparing  
the non-convex regions of images based on  

the Fréchet metric between trees

Modern algorithms for computing the Hausdorff dis-
tance between regions with low computational complexity 
exist only for the convex regions. Using the Hausdorff met-
ric to calculate distances between the non-convex regions 
is computationally complicated. In this case, non-convex 
regions need to be converted into convex regions. This re-
quires additional computational costs. 

A characteristic of any region is the skeleton, which is a 
tree. That is why finding a distance between regions is re-
placed by finding a distance between skeletons. We proposed 
a new mathematical structure – the Fréchet metric between 
trees, which allowed us to solve the problem on computing 
distances between the non-convex regions.

The advantage of the Fréchet metric between trees is the 
possibility to calculate distances between the non-convex 
regions. This benefit is achieved by replacing the calculation 
of distances between regions with the computation of dis-
tances between skeletons of the regions. The method devised 
and the algorithms constructed have lower computational 

complexity compared to known algorithms for calculating 
the Hausdorff distance between the non-convex regions. 
Numerical simulation of the algorithms that we performed 
showed that the error in finding a distance based on the 
Hausdorff metric and on the Fréchet metric between trees 
lies within 2–3 %. In this case, however, the time for finding 
distances between regions when using the Fréchet metric 
between trees is significantly reduced, compared to the 
Hausdorff metric.

The first constraint for the application of the Fréchet 
metric between trees is the necessity to find skeletons of the 
regions. However, modern algorithms for finding skeletons 
possess low computational complexity. That is why finding 
the skeletons of regions is not a difficult task. 

The second limitation is the need to separate the roots 
of skeletons. This limitation is caused by the fact that the 
introduced Fréchet metric between trees holds only to the 
root trees. This constraint can be eliminated by developing 
the Fréchet metric between the non-root trees. This is not 
a fundamental limitation. That is why the next steps in the 
research imply development of the Fréchet metric Fréchet for 
the non-root trees.

Results of the present study could be used not only for 
testing known and new segmentation algorithms, but also 
for image recognition, as well as image search in databases. 
This significantly expands the scope of application of the 
constructed metric.

8. Conclusions

1. It was found that the proposed Fréchet distance 
between trees is a metric. To establish it, we have prov-
en axioms of identity, symmetry, and the triangle. The 
Fréchet metric between trees is based on the Fréchet 
metric and makes it possible to find distances between 
skeletons of images.

2. Based on the Fréchet metric between trees, we con-
structed a method for comparing the non-convex regions of 
images. The method is based on the algorithm of selection of 
image skeletons and on the algorithm for finding a distance 
between skeletons based on the Fréchet metric between 
trees. By employing the devised method, it has become pos-
sible to find distances between the non-convex regions.

3. Based on the method of comparison of the non-convex 
regions, we built algorithms for calculating a distance be-
tween the non-convex regions. These algorithms have lower 
computational complexity than the algorithms for comput-
ing the Hausdorff distance between the non-convex regions.

4. Computer experiments that we performed have shown 
that the error in calculating the distances, found by algo-
rithms based on the Hausdorff metric and based on the 
Fréchet metric between trees, is within 2–3 %. In this case, 
the time for calculating the Fréchet distance between skel-
etons is on average 2 times less than the time for computing 
the Hausdorff distance between polygons.
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Розглянута задача формування вибірко-
вих оцінок кореляційної матриці спостере-
жень за критерієм «обчислювальна стій-
кість – спроможність» та проаналізована 
спроможність стійких оцінок при статичній 
регуляризації. Виявлена проблема задачі регу-
ляризації оцінок, для вирішення якої запро-
поновано альтернативний метод динамічної 
регуляризації. Отримана оптимальна функ-
ція динамічної регуляризації вибіркових оцінок 
в умовах апріорної невизначеності та надані 
чисельні результати

Ключові слова: статична регуляризація, 
динамічна регуляризація, стійкість, збіж-
ність, спроможність оцінок, кореляційна 
матриця

Рассмотрена задача формирования выбо-
рочных оценок корреляционной матрицы 
наблюдений по критерию «вычислительная 
устойчивость – состоятельность» и проа-
нализирована состоятельность устойчи-
вых оценок при статической регуляризации. 
Выявлена проблема задачи регуляризации 
оценок, для решения которой предложен аль-
тернативный метод динамической регуляри-
зации. Получена оптимальная функция дина-
мической регуляризации выборочных оценок в 
условиях априорной неопределенности и пред-
ставлены численные результаты

Ключевые слова: статическая регуляриза-
ция, динамическая регуляризация, устойчи-
вость, сходимость, состоятельность оценок, 
корреляционная матрица
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