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1. Introduction

The vast majority of error correction codes, which are 
widely applied at present, were developed in the 50’s and 
60’s of the last century, immediately after the publication of 
the seminal paper by C. Shannon on coding theory [1]. These 
codes did not require any sophisticated algorithms for trans-
forms, which is why they were relatively easily implement-

ed. The only exception was the low-density parity-check 
(LDPC) codes: the level of development of computer tech-
nology in those years did not allow their implementation [2].

Over the following decades, the theory of error correc-
tion coding evolved and developed without much innova-
tion. The next significant achievement was the invention 
of turbo codes [3]. The key innovation to these codes was 
the idea of iterative decoding, which, in a slightly different 
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form, had been employed in LDPC codes. The improved ca-
pabilities of digital technology have made it possible to fully 
implement the principles of LDPC encoding. 

Since the mid 90-ies of the past century and up until our 
time, turbo codes and LDPC codes have been widely using 
in various data transmission systems; in fact they have prov-
en to be the leading codes.

It was only natural that these codes have attracted 
attention of specialists around the world. Detailed studies 
have shown that LDPC codes and turbo codes, in addition 
to their indisputable advantages, have numerous imperfec-
tions, which did not allow them to push aside the previously 
developed codes.

This means that the theory of error correction coding 
did not end on LDPC codes and turbo codes. Still relevant 
is the task on developing new methods for encoding and 
detection of errors, as well as their effective practical imple-
mentation in different areas of science and technology. New 
scientific results will also help known codes to eliminate 
their drawbacks.

2. Literature review and problem statement 

In the theory of error correction coding, almost any new 
idea will be definitely is compared to the current leaders of 
publications: LDPC codes and turbo codes. Therefore, we 
shall start analysis of the scientific literature with these codes. 

Almost all publications on LDPC codes and turbo codes 
necessarily contain a reminder of the main achievement of 
the specified codes: maximal proximity to the theoretical 
Shannon limit (border) (for example, [4]). The current 
record for LDPC codes is 0.0045 dB, and 0.2 dB for turbo 
codes [5]. This is unconditionally an important character-
istic of codes indicating their maximum utilization of com-
munication channel capacity. But is such an achievement a 
sufficient reason to consider that these codes are the best? 
For example, the Reed-Solomon codes are far from the Shan-
non limit, which is not an obstacle for their wide application 
in different spheres.

The fundamental laws of nature and technology have 
repeatedly demonstrated that any advantages are balanced 
by certain shortcomings. If LDPC codes and turbo codes 
have managed to approach such close to the Shannon lim-
it, at what cost was this achieved? It is known that error 
correction codes have many other characteristics that are 
important from a practical point of view. These include code 
redundancy, detecting and error-correcting capabilities, 
complexity of software and hardware implementation, code 
length, delay in obtaining the decision, the possibility of 
parallelization of computations, etc. 

That is why, as indicated in [6], “the Shannon limit is an 
interesting border from a theoretical point of view, but it is 
not a practical objective.”

In order to correctly estimate the error correction codes, 
we shall return to the origins of their theory, contained in 
the well-known theorems by C. Shannon [1]. The distinctive 
feature of these theorems is that they are based on the idea 
of random encoding. According to Shannon, the best code is 
the code that sends a message over an infinitely long time, 
forming at each point in time random bits of code words. 
An infinitely long message transmission time is equivalent 
to its very large length. It is this principle that underlies the 
creation of LDPC codes and turbo codes.

Then the first distinctive feature of the considered codes 
becomes comprehensible ‒ the use of codes with huge lengths 
(up to 107 and longer) with the weight distribution, close to 
the distribution of random variables. In practice, such great 
lengths are often not needed. For example, in the ATM 
packet transmission protocols is used the check of the head-
lines that are 5 bytes long, and the check 48 bytes of useful 
information [7]. 

In addition, there are problems related to processing 
huge arrays of encoded data, complex hardware implemen-
tation, low error correction capacity of (n, k)-codes at an 
average speed of code of k/n=0.5, a long delay in decoding. 
Each code has its own specific drawbacks too.

That is why most researchers continue to examine and 
improve classic procedures for decoding turbo codes and 
LDPC codes. In [8], authors proposed a modification of the 
bidirectional iterative Viterbi algorithm with a probabilistic 
solution (BI-SOVA) for decoding the turbo codes. Paper 
[9] estimated the effectiveness of several techniques for 
creating a sparse matrix of H of LDPC code for the probabi-
listic Sum-Product Algorithm (SPA) when transmitting by 
Gaussian channel.

However, it is the irregular structure of the H matrix 
that is responsible for most of the drawbacks in classic 
LDPC codes. The main efforts of researchers are aimed now 
at developing regular (algebraic) LDPC codes [10]. Most 
often, quasi-cyclic LDPC codes act as algebraic codes [11]. 
The main distinctive property of these codes is that the 
following code word is obtained by the m-bit cyclic shift of 
another code word, where m is an integer. This type of code 
is known as a circulant code defined by a circulant polyno-
mial. Thanks to the property of a cyclic shift, it is possible 
to use for encoding and decoding very simple shift registers 
and to accelerate the process of encoding. As a result, many 
algebraically-constructed LDPC codes were adopted as in-
dustry standards, specifically (64800, 48600)-LDPC code is 
applied in the digital TV standard DVB-S2 [12].

In contrast to the turbo-codes, it is possible to efficiently 
utilize the parallel processing for LDPC codes, which sig-
nificantly enhances their performance [13]. 

Close in its ideology to LDPC encoding and turbo 
encoding is the multithreshold decoding (MTD) based on 
the majority-logic correction procedures [14]. The advan-
tages of MTD include high-speed performance at minimum 
hardware cost. However, the application of MTD is limited 
to the codes with a low correction capability, which is why 
it is possible to apply it as a basic algorithm, for example, in 
concatenated codes.

The theory of iterative encoding based on various math-
ematical apparatus (finite fields, finite geometry, combinato-
rial methods) continues to develop intensively. [15]. Results 
obtained for binary Galois fields can be generalized for the 
nonbinary Galois fields [16]. 

Despite the noted positive properties of regular LDPC 
codes, there are also drawbacks to these codes. The most 
significant problem of algebraic (quasi-cyclic) codes that 
have high code distance is their poor iterative convergence 
[10]. That is why such codes are recommended only for small 
lengths of codes (n<350).

 Continuing a research in this in direction it is possible 
to do a conclusion about the appropriateness of using classic 
cyclic codes in iterative decoding. Indeed, such codes have 
been investigated in recent years. But the paradox is that 
traditional iterative approaches to finding errors are applied 
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to the cyclic codes. For example, soft decisions for Hamming 
codes [17], improvement of irregular LDPC decoder using 
CRC codes [18], two-step algorithms with majority logic for 
cyclic codes with the finite geometry [19]. 

In the end, most of the earlier identified drawbacks of 
these codes are still there: high functional complexity (at 
soft decoding), low code rate, low correcting capability, the 
“error floor” effect.

It is obvious that the very ideology of LDPC codes and 
turbo codes imposes restrictions on those code characteris-
tics that are important for practical application. Therefore, 
it is necessary to apply other algorithms of code transforms 
for cyclic codes while remaining on the platform of iterative 
(multistage) decoding.

3. The aim and objectives of the study 

The aim of present work is the development of determin-
istic iterative decoding of block (cyclic) codes with high per-
formance efficiency and minimal hardware costs based on 
the mathematical apparatus of linear finite-state machines 
(LFSM).

To accomplish the set aim, the following tasks must be 
solved:

– to explore the essence of iterative decoding of LDPC 
codes and turbo codes and show the possibility of alternative 
iteratively decodable code; 

– to show the possibility of iterative decoding of cyclic 
codes based on hard decisions and the theory of LFSM;

– to develop a generalized iterative decoding algorithm of 
cyclic codes and estimate its time and resource complexity;

– to propose means that would be effective for practical 
implementation of the iterative decoding of cyclic codes.

4. Substantiation of trends in the development of error 
correction codes

The Shannon theorems warrant the existence, under cer-
tain conditions, of such a encoding procedure, which enables 
data transfer at an arbitrarily small error probability. At the 
same time, the theorems do not specify the methods to build 
specific codes to ensure such a perfect data transfer. The 
theorems only help calculate a mathematical code efficiency 
criterion by the following principle: the closer a code to the 
Shannon border (limit), the better the code.

First error correction codes were far from the assigned 
ideal. An opinion that had gradually formed implied that 
should such a perfect code exist in theory, it could not be 
implemented in practice. 

The first significant breakthrough from this situation 
was the idea of concatenation, that is, combined application 
of several, typically two, codes. Concatenated codes [20] 
have made it possible to obtain very long codes, with a rela-
tively high correcting capability. However, in this case, the 
compromise meant a code rate reduction and a larger com-
plexity of the decoding process. 

The second, very important, innovation in error-correct-
ing coding theory was the iterative (multistage) decoding. 
This encoding technique simplified computations, however, 
at the expense of a substantial delay of decoding procedure. 

The idea of iterative decoding is complex for practical 
implementation. That is why the first iteratively decodable 

codes (LDPC codes) had been postponed for three decades 
before they attracted attention of engineers. The iterative 
approach as it is was initially applied only to convolutional 
codes (Viterbi algorithm), or at separate stages of decoding 
of block codes (for example, Berlekamp-Massey algorithm in 
the  procedure of algebraic decoding of cyclic codes).

A logical result of the further development of error cor-
rection codes was the union of iterative decoding and con-
catenation in the new class of codes, known as “turbo-codes”. 
Quite unexpectedly, the turbo-codes had proven to be very 
close to the desired Shannon limit.

The LDPC codes had been almost immediately recalled; 
the progress of microelectronics has allowed their practical 
implementation. These codes became several orders of mag-
nitude closer to the Shannon limit. 

However, every step towards this border contributed to 
increasing the time of encoding-decoding and to complicat-
ing the structure of encoder and decoder.

That is why, since the mid-1990s, intensive research were 
began for resolving this problems. The first problem is relat-
ed to the complexity of computations: LDPC codes involve 
complex encoding, turbo codes ‒ complex decoding. 

Note that there are many error correction codes with 
theoretically substantiated methods that accurately detect 
and correct the errors. However, the number of errors which 
corrected by the precise methods of correction (that is, 
using the hard  decision) is very limited. According to [21], 
the correction of more than six errors in a single code word 
of the Reed-Solomon code at a speed of 40 Mbps is almost 
unrealize in practice.

That was the reason for the emergence of probabilistic 
models and soft computing. Soft computing makes it possible 
to improve the accuracy of decoding, but under condition of 
the availability of statistical characteristics of the commu-
nication channel. Probabilistic data processing is associated 
with the use of real variables which require complex proces-
sor calculations. This is the main reason for the complexity 
of computations in LDPC codes and turbo codes. 

Soft computing uses an additional (non-mathematical) 
“prompt” on the state of the transmitted code word. Such 
a “prompt” can be information from a demodulator on the 
reliability of decoding of separate symbols of the code 
word. The implementation of such a technique for decoding 
is based on the most important principle of classic theory 
of error correction coding, the concept of Maximum Like-
lihood.

A strategy of maximum likelihood decoder is to produce 
a list of possible codewords and selecting the most “likeli-
hood able”, that is, at a minimum code distance from the 
transmitted code word (Chase Algorithm [5]). However, 
this choice is performed only by using soft computing. 

The Chase algorithm, as well as similar methods, make 
use in one form or another of the assumption that random 
errors with less multiplicity are more likely, “likelihood able”, 
than the errors with greater multiplicity. However, this  ar-
gument is correct for very simple models of channels only.

During early development of error correcting coding 
theory when both hardware and temporal resources were 
limited, the concept of Maximum Likelihood was optimal. 
When resources became available,  and it is necessary to 
reduce the number of incorrect decoder decisions, then it is 
possible to “allow” it to check more variants before making a 
final decision. This is where additional iterations may come 
in handy.
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Two types of errors most often occur in code words. 
“Random” errors are evenly distributed along at full length 
of a word and are statistically independent from each other. 
“Burst errors” are concentrated in one region and are statis-
tically dependent. Only random errors were initially con-
sideration, those can be placed at full length of a code word, 
while burst errors  considerated only as a set of random 
errors. Such a model of errors was typical for the satellite 
communication in 50s and 60s of the 20th century. 

These positions underlie the creation of the error correct-
ing coding theory, beginning from the Shannon theorems 
and the concept of minimum code distance.

When different error correction codes emerged, there 
was a need to compare their capabilities. The most popular 
criterion for estimating codes was the magnitude of distance 
to the Shannon limit (Eb/N0=–1.6 dB) on the BER (bit er-
ror rate) curves that show dependences of the probability Pb 
of the emergence of an erroneous bit in a code word on the 
ratio of bit energy Eb to the Noise Spectral Density ratio N0:  
Eb/N0 (Fig. 1). This characteristic is rather good for com-
paring error-correcting capabilities of codes, but only for the 
class of random errors: the more of such errors corrected, the 
closer the code’s curve to the Shannon limit.

Very typical is the situation with the Fire cyclic codes 
at BER curve. Fig. 1 shows curves only for three Fire codes, 
though one could show them for all other codes for a given 
class, but the overall pattern would remain unchanged: 
all curves merge almost in one line. Each Fire (n, k)-code 
at a growth of parameters n and k corrects an increasing 
number of erroneous bits of a code word, but it does not 
affect the decreasing distance to the Shannon limit. The 
explanation to this phenomenon is simple: in the Fire codes 
only the length of corrected burst errors increases while 
the number of corrected random errors is limited only by 
single errors [22].

Fig. 1. Decoding error probability for the Fire codes

This is the essence of the strategy for correcting of errors 
by Shannon ‒ to eliminate burst errors and reduce various 
distortions only to the statistically independent (random) 
errors. It is for this purpose interleavers often employ in the 
error correcting coding. LDPC codes are also based on the 
statistically independent (random) errors.

However, the burst errors should not be avoided, at least 
for two reasons.

First, burst errors are not the compact grouping of sev-
eral erroneous bits of a code word only. The paradox is that 
such type of errors are much easier to detect and correct 
than separate erroneous bits far locate from each other. The 
exception is only very long burst errors (with a length great-
er than n‒k). 

Second, burst errors are the most accurate mathematical 
model of distortions, characteristic of wireless and mobile 
communications [6]. 

Thus, the reasons for most of the problems related to 
LDPC codes and turbo codes are that these codes are largely 
oriented towards the features of the development of the com-
munication of the middle of the mid-20th century.

Therefore, it is necessary to develop the new approaches 
to error correction decoding that would improve perfor-
mance and error-correcting capabilities at minimal hard-
ware costs. Solving these tasks is possible on the platform 
of the iterative decoding of concatenated codes, which has 
proven its indisputable advantages.

5. Theoretical fundamentals of cyclic code decoding 
based on the automaton models

A key provision of the Shannon communication theory is 
the use of random codes, the probabilistic mode of encoding 
and decoding. This approach requires considerable time and 
hardware costs. 

It is possible to eliminate these problems based on inte-
ger arithmetic, that is, by employing hard computing in the 
Galois fields. We shall confine ourselves to the binary Galois 
fields, yet the results obtained are easily generalized to the 
nonbinary Galois fields as well.

Computation in such fields immediately eliminates the 
problem on performance and hardware costs: shift registers 
in cyclic codes have long been proven to be effective. Also 
resolved is the requirement for super large lengths of codes: 
work results are therefore produced faster.

We shall apply as a mathematical model of cyclic codes 
the automaton model [23], which is based on the theory 
of linear finite-state machine (LFSM). According to [24], 
LFSM is a linear automaton with l inputs, m outputs and r 
memory cells, which is determined by the state (transition) 
function

+ = × + ×( 1) ( ) ( ),S t A S t B U t  (2)GF  (1)

and by the output function

= × + ×( ) ( ) ( ),Y t C S t D U t  (2),GF

where 

×
= ,ij r r

A a  
×

= ,ij r l
B b  

×
= ij m r

C c  

and 

×
= ij m l

D d  

are the characteristic matrices of LFSM; 

=( ) i r
S t s

is the word of state; 
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=( ) i l
U t u  

is the input word; 

=( ) i m
Y t y

is the output word. 
We shall subsequently apply the following matrices as 

characteristic matrices of LFSM in (1):

−

=





    

0

1

2

1

0 0 0

1 0 0

0 1 0A ,

0 0 0 1 r

g

g

g

g  

=


1

0

B ,0

0

= C 0 0 1 ,  =D 0 .  (2)

The entries of the last column of matrix A in (2) repre-
sent coefficients of the generator polynomial of a cyclic code:

−
−= + + + + +2 1

0 1 2 1( ) ,r r
r rg x g g x g x g x g x  (2).GF  (3)

Selection of characteristic matrices of the r-dimensional 
LFSM is performed based on requirement for r-controllabili-
ty of LFSM. As proven in [24], LFSM will become r-control-
lable if the rank of r×r-matrix

− − = × × × 1 2, , , ,r r
rL A B A B A B B  (4)

will be equal to r. For matrices (2), the Lr matrix contains “1” 
only in the secondary diagonal:

 
 
 
 =
 
 
  




    



0 0 0 1

0 0 1 0

L .

0 1 0 0

1 0 0 0

r  (5)

We shall distinguish between the analytical and the 
graph models of the automaton model. 

The automaton-analytical model is based on the charac-
teristic matrices of LFSM. Based on it, it is possible to give 
a new definition for a cyclic code. 

Definition 1. A set of all binary sequences M of length n, 
which transform LFSM from any initial state Sbeg(t) back to 
state Sbeg(t) creates a cyclic (n, k)-code Ω over Galois field 
GF(2). Each such sequence M is a code word Z of the cyclic 
(n, k)-code. 

One can choose, as an automaton-graphical model of a 
cyclic code, the state transition diagram GFA of LFSM.

Definition 2. Sequence M of n unidirectional edges in the 
GFA graph, in which the i-th edge corresponds to bit zi of code 
word Z over field GF(2), is termed the code path η of graph 
GFA ( ∈ ,iz Z = ÷1i n). 

Definition 3. A set of all code paths η of length n, 
which originate and end in the initial vertex v0 of the GFA 
graph, generates a cyclic (n, k)-code Ω over Galois field  
GF(2). 

We shall consider the essence of operations of systematic 
encoding and  syndrome decoding of cyclic codes based on 
the automaton models. 

From the perspective of systematic encoding, n-bit code 
word Z contains in k  high position an information word I, 
and in r (r=n–k) low position ‒ a check word Ψ:

= Ι Ψ = ι ι ι ψ ψ ψ =  1 2 1 2 1 2 .k r nZ z z z  (6)

When data are transmitted over a communications 
channel, various disturbances may lead to the distortion of 
τ positions of code word Z, and then a code word Zerr may be 
obtained with a multiplicity error τ. 

A decoder must sequentially perform two tasks:
– to establish the absence or presence of errors in the 

accepted code word (decoding task);
– in case there are errors, to identify distorted positions 

of the code word and perform the appropriate correction 
(error correction task).

Both tasks will be implemented based on the analysis of 
syndromes [25]. A syndrome in the automaton-analytical 
model refers to the state that will be reached by LFSM 
from the initial state (we shall accept it being equal to zero 
S(0)) under the influence of the code word of a cyclic code. 
Computing the syndrome is performed during n cycles 
according to formula (1), in which the code word acts as 
input word U(t). 

If state S(n) turns out to be zero (S(n)=S(0)), this would 
indicate the absence of errors in the accepted code word 
within the code’s correcting capability. If the decoder input 
receives a distorted code word Zerr then the n-th state of 
LFSM will be the syndrome of occurred error (S(n)=Serr(n)).

We shall introduce the concept of check window as a 
continuous cyclic sequence of r  positions of the code word 
(6) (Fig. 2). We shall denote the check window as X(i) if its 
rightmost position is the i-th position of code word Z:

− + −= ( )
1 1 ,i

i r i iX z z z  ∈ ,jz Z  

= ÷ − +( 1)mod ,j i i r n  = ÷1 .i n

Fig. 2. Check window X(i) of code word (v=i–r+1)

Similarly, we shall denote the check window as ( ),i
errX  if 

its rightmost position is the i-th position of code word Zerr 
and there may occur errors in some positions:

− + −= ( )
1 1, , ,i

err i r i iX z z z  ∈ ,j errz Z  

= ÷ − +( 1)mod ,j i i r n  = ÷1 .i n

The task on error correction in code word Zerr will be 
considered in two variants: error correction within one Zerr 
r-bit check window, and error correction within the entire 
code word. 

We shall prove the following theorems.
Theorem 1. If codeword Zerr contains errors within check 

window ( ),n
errX  then in order to correct such errors and ob-

tain check window X(n,) it is necessary to perform a bitwise 
operation

= + −( ) ( ) ( ( )),n n
err errX X S n  (2),GF  (7)

)i(X

2z izvz nz3z1z  . . .  . . . . . . 
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where the sign (−) means inverting the word Serr(n), that is, 
mutual permutation of its positions in line with rule:

−= ,i r is s  ∈ ( ),i errs S n  = ÷1 .i r

Proof. As shown in [23], under systematic encoding, 
LFSM from the initial zero state under the influence of word 
I passes at the k-th step into intermediate state

= × + ×( ) (0) ,k
kS k A S L I  (2),GF

then, under the influence of word Ψ, passes into final state

= × + × Ψ( ) ( ) ,r
rS n A S k L  (2).GF  (8)

If there are no errors, the state S(n) is equal to zero 
(S(n)=S(0)), and equality (8) can be written in the follow- 
ing form

× = × Ψ( ) ,r
rA S k L  (2).GF  (9)

Assume there are errors in some positions of the check 
word: we shall denote this word as Ψerr. Then, at the n-th step, 
one obtains a non-zero error syndrome, that is, S(n)≠S(0),  
and equality (8) takes another form

= = × + × Ψ( ) ( ) ( ) ,r
err r errS n S n A S k L  (2).GF  (10)

After substituting in (10) the value of Ar×S(k) from (9), 
we obtain equality:

= × Ψ + × Ψ = Ψ + Ψ( ) ( ),err r r err r errS n L L L  (2).GF

One can record with respect to matrix Lr:

− = Ψ + Ψ( ) ,err errS n  (2).GF  (11)

Because the r-bit check words Ψ and Ψerr occupy posi-
tions from zn-r+1 to zn in code words Z and Zerr, respectively, 
hence they are located in check windows X(n) and ( ).n

errX  
Hence, the desired equality (7) follows from equality (11). 

Consider a general case when a check window of length r 
can be located in any place of a code word. 

Theorem 2. If code word Zerr contains errors within check 
window ( ),i

errX  then, in order to correct such errors and ob-
tain check window X(i), it is necessary to perform a bitwise 
operation

= + − +( ) ( ) ( ( )),i i
err errX X S n i  (2).GF  (12)

Proof. 
The proof of Theorem 2 is continuation of the proof to 

Theorem 1. 
Multiply all terms of equation (11) by the i-th degree 

(i=1÷n) of matrix A:

× − = × Ψ + × Ψ( ( )) ,i i i
err errA S n A A  (2).GF  (13)

Multiplier Ai×(–Serr(n)) denotes condition –Serr(n+i), 
which LFSM will transit from state –Serr(n) after i zeros 
will be entered to its inputs. Multiplier Ai×Ψ denotes a 
cyclic subword, which occupies positions from zv to zi in 
code word Zerr, that is, it is in check window X(i) (v=(i–r+1)
modn). Multiplier Ai×Ψerr denotes a check window ( )i

errX  in 

the same positions, but some of the positions may contain 
an error. 

Then equation (13) can be written in the following form

− + = +( ) ( )( ) ,i i
err errS n i X X  (2)GF

hence, the desired equality (12).

6. Permutation decoding of cyclic codes

The main idea of the decoding method, considered in the 
previous chapter, is to find in the check window a configura-
tion of error that matches the syndrome of this error. Such an 
algorithm is also termed an “error-trapping” algorithm [26]. 
A given algorithm is easy to implement in practice, however, 
it is only applicable for codes of small length and low multi-
plicity of errors. Such codes are called in [23] the easily de-
codable codes, and the syndromes of an error that match the 
configuration of the error − the regular states. In a general 
case, a cyclic code contains both regular and irregular states 
of an error; the latter in much larger quantity.

A simple and effective technique for finding a match be-
tween syndrome Serr(n) and the erroneous bits of code word 
Zerr is the power permutation decoding. 

It is known [27] that for any integer ν cyclic codes are 
invariant relative to the permutations of symbols of form

→ + υ( )mod ,i i n  ( ),mGF q  (14) 

υ→ (2 )mod ,i i n  ( ).mGF q  (15)

In other words, if a generator polynomial g(x) of the 
cyclic code divides code polynomial f(x), then it will also 
divide the polynomial f(xq) whose symbols are rearranged in 
accordance with rule i→qi. Therefore, polynomial f(xq) will 
also be a code polynomial, and, if no errors occur, as a result 
of dividing f(xq) by g(x), we shall obtain a zero syndrome. 
But in the case when there are errors, the result of dividing 
f(x) by g(x) will yield a single configuration of erroneous 
positions of the code word, and the result of dividing f(xq) by 
g(x) is a completely different configuration. In [28], such a 
technique for permutations is referred to as the “decimation”.

We shall apply a cyclic power permutation of the form 
i→(2vi)modn (or i→(2-vi)modn), which is equivalent to 
multiplying the corresponding exponent by 2v or 2-v. In 
the simplest variant, power permutation implies that first 
one records the odd  positions of code word Z, and then the 
even-numbered (it is possible to start with the even posi-
tions). As a result, we obtain the new code word Zv (Fig. 3). 

The essence of the method for correcting multiple errors 
employing a method of power permutation is to build, at 
each step, the new variant of permutation of the form (14) or 
(15), to compute the new syndrome, and to detect errors in 
check windows. Upon error correction in the code word with 
permutation, it is necessary to perform the inverse power 
permutation of the word to produce the original code word.

Because a given computation process is repeated many 
times, in fact we observe here iterative decoding: each itera-
tion has its own variant of permutations. 

It is not difficult to realize the meaning of cyclic power 
permutation. First, the central bits of a code word are shifted 
towards the edges, and the extreme positions − towards the 
center. Next, the motion direction changes. Except for the 
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first position (or two extreme positions at even n) only, all 
other positions are mixed. As a result, the distorted positions 
of word Zerr are caught during one of the iterations in the 
check window and are detected.

Fig. 3. Power permutation of code word Z (at odd-number n )

Such an operation can also be called the interleaving. In 
contrast to traditional interleaving when positions of one code 
word are redistributed by several code words, here the inter-
leaving occurs within a single code word. This allows saving 
the time for the preparation of transmitted data, since the data 
transmission party is not involved in the interleaving. 

The task of an interleaver in a traditional iterative code 
(for example, turbo-code) is to replace burst errors with ran-
dom errors. In the proposed interleaver, the opposite task is 
performed − random errors are grouped into packets (burst 
error) in order to get into a decoding window at one of the 
interleaving steps.

Another important distinguishing feature implies that 
there is no difference between random and burst errors, since 
at each iteration of interleaving their role changes with all of 
them processed by one algorithm.

7. Generalized algorithm for iterative decoding of  
cyclic codes

Source data for the generalized algorithm for iterative 
decoding are the accepted n-bit code word Zf, consisting of 
k-bit information word If and r-bit check word Ψf, and refer-
ence checksum Σref. If the check word is intended to correct 
errors, the checksum is used to establish the presence or 
absence of errors.

Two different LFSM are used on the sender and the re-
ceiver sides. The first (master) LFSM is applied for encoding 
and decoding (with error correction) a code word. The sec-
ond (slave) LFSM acts to confirm the presence or absence of 
an error. Accordingly, the master and slave cyclic codes are 
used with two different generator polynomials (3).

The essence of the generalized algorithm is an iterative 
forming, using master LFSM, of all possible variants of code 
words, and in searching for an error-free word among them 
by employing slave LFSM. 

Stage 1. The actual checksum is computed as the state 
S(k) to which slave LFSM passes from the initial zero state 
S(0) when a word If enters its input. According to (1), the 
following actions must be performed for i=1,… ,k:

+ = × + ×2 2( 1) ( ) ( ),S i A S i B z i  (2),GF  Î( ) ,fz i I

where A2 and B2 are the characteristic matrices of slave 
LFSM. 

Then Σf =S(k).
A match between the actual checksum Σf and the ref-

erence checksum Σref can be regarded as a sufficient basis 
to confirm the absence of errors in word If and termination 
of the algorithm. Otherwise, the data are prepared to begin 

an iterative error search: the iteration number is set as w=1, 
permutation power as v=0, and code word Zf is accepted as 
the current code word ( )w

curZ :

=( ) .w
cur fZ Z

Stage 2. The actual error syndrome Serr(n) is computed 
as the state S(n), which master LFSM enters from the initial 
zero state S(0) when the current code word ( ).w

curZ  enters its 
input. According to (1), the following actions must be per-
formed for i=1,…, n:

+ = × + ×1 1( 1) ( ) ( ),S i A S i B z i  (2),GF  Î ( )( ) ,w
curz i Z

where A1 and B1 are the characteristic matrices of master 
LFSM. 

Then Serr(n)=S(n). If there are errors in ( ),w
curZ  state  

Serr(n) would be nonzero.
Stage 3. The error words µ…( ) ( )

1 , ,w wE E  are formed for μ 
possible configuration of errors at multiplicity from 1 to r. 
The following computations are performed for this purpose

=′′(0) ( ),errS S n

+ = × + -′′ ′′1( ) ( 1),S n i A S n i  (2),GF  = -1,..., 1.i n  (16)

Word ( )w
jE  is equal to the sum of the n-bit zero word O 

and r-bit state ′′( )S j  of LFSM, which should be located, 
relative to word O, in a cyclic interval from the i-th position 
to the ((i–r+1)modn)-th position:

= + ′′( ) ( ),w
jE O S j  (2),GF  = µ1,..., .j

One more condition: word ′′( )S j  must contain “1” in the 
same position as the matrix B, then word ( )w

jE  will contain 
“1” in the i-th (i=1÷n)  position (which is easy to check). 
Such conditions are fulfilled by μ=(n+1)/2 error words if we 
choose a primitive polynomial as the generator polynomial 
of the master code. 

Stage 4. μ variants of the current word correction ( )w
curZ  

are computed:

= +( ) ( ) ( ),w w w
j cur jZ Z E  (2),GF  = µ1... .j  (17)

Stage 5. If we have previously completed power permuta-
tion 2v>1 of code word ( ),w

curZ  then a reverse power permuta-
tion 2-v is performed for all corrected code words from (17). 

Stage 6. The correctness of correction of code words 
from (17) is checked by computing a checksum Σ( )w

j  for 
each word ( ).w

jZ
Stage 7. If for one value of j the checksum Σ( )w

j  coincided 
with reference value Σref, then word ( )w

jZ  is the correct value 
(within the correcting capability of a cyclic code) of the ac-
cepted code word Σf. This completes the algorithm. 

Otherwise, if one has not exhausted the limit of power 
permutation quantity for a given code, the iteration number 
is increased (w=w+1), as well as the power of permutation 
(v=v+1), and a new current code word ( )w

curZ is created:

-
-=( ) ( 1)

, 1,w w
cur cur vZ Z

where -
-

( 1)
, 1

w
cur vZ  is the power permutation 2v of word -( 1)w

curZ  at 
the (w-1)-th iteration. Next, one returns to stage 2.

The end.

nz1nz 

nz

2z 3z 4z

3z 2z1z

1z

4z

 . . . 

 . . .  . . . 

Z

Z 1nz 
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8. Example of iterative decoding

We shall employ as an example of iterative decoding 
the master cyclic (15,11)-code by Hamming with generator 
polynomial g2(x)=1+x+x4, and a slave cyclic (31,26)-code 
by Hamming with generator polynomial g1(x)=1+x3+x5. 
These polynomials are matched with master LFSM with 
matrices

 
 
 =
 
 
 

1

0 0 0 1

1 0 0 1
A ,

0 1 0 0

0 0 1 0

 

 
 
 =
 
 
 

1

1

0
B ,

0

0

and slave LFSM with matrices

 
 
 
 =
 
 
  

2

0 0 0 0 1

1 0 0 0 0

A ,0 1 0 0 0

0 0 1 0 1

0 0 0 1 0

 

 
 
 
 =
 
 
  

2

1

0

B .0

0

0

Assume that the encoder on the sender side formed 
a code word Z. Due to interference in the communica-
tion channel, the receiver received codeword Zf with  
errors:

Zf=z1z2z…z15=100000101001110.   (18)

The receiver also received the reference checksum which 
computed for 11 correct information bits (bits z1z2z3…z11) of 
code word Z using slave LFSM:

 
 
 
 Σ =
 
 
  

0

1

.0

0

0

ref  (19)

Starting with word (18) and further the starting erro-
neous positions and their displacements in the execution of 
the generalized algorithm are shown in red.The decoder, of 
course, is “not aware” of this fact.

According to the generalized algorithm, first the actual 
checksum Σf  is computed. This check parameter is equal to 
state S(11) of slave LFSM when information bits z1z2z3 … z11 
from (18) enter to its inputs.

 
 
 
 =
 
 
  

0

0

S(0) ;0

0

0

[ ]

   
   
   
   = × + × = × + × =
   
   
     

…



2 2 1 2 2

0 1

0 0

S(1) A S(0) B A B 10 0

0 0

.

0 0

 z

As a result, we obtain the actual checksum

 
 
 
 Σ = =
 
 
  

1

1

S(11) ,1

0

0

f

which does not match the referen ce checksum (19). There-
fore a transition to the procedure of error correction in the 
code word (18) is carried out. 

At the second stage of the error correction procedure, 
an error syndrome Serr(15) is computed as the value of state 
S(15) of master LFSM when a 15-bit code word (18) enters 
to its inputs. The result is the following error syndrome:

 
 
 = =
 
 
 

0

1
S (15) S(15) .

1

1

err

At stage 3 of the algorithm, the following computations 
are performed (16):

τ

 
 
 = =′′
 
 
 

( )

0

1
S (15) S (15) ;

1

1

err  

 
 
 = × =′′ ′′
 
 
 

1

1

1
S (16) A S (15) .

1

1

...

All computed words of states ( )S i′′  and the error words 
that correspond to them are given in Table 1 (blue color de-
notes check windows). To decoding it will suffice to use only 
those error words that contain  “1” in the i-th bit. Remaining 
error words (denoted as E0) are not involved in further calcu-
lations because they are the shifted copy of other error words.

At stage 4, it is necessary to compute 8 variants of the 
corrected current word (1)

curZ  according to (17). Results of 
computations are given in Table 2. Table 2 shows that the erro-
neous position did not appear in any of eight check windows. 
Therefore, the decoder could not correct them, moreover, it 
introduced more errors after correction (shown in green).
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Table 1

Calculated error words at iteration 1

State 
words

Numeri-
cal value

Error words

i =0E 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

(15)S ′′ 0 1 1 1 =0E 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0

′′(16)S 1 1 1 1 =(1)
1E 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1

′′(17)S 1 0 1 1 =(1)
2E 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1

′′(18)S 1 0 0 1 =(1)
3E 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1

′′(19)S 1 0 0 0 =(1)
4E 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

′′(20)S 0 1 0 0 =0E 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

′′(21)S 0 0 1 0 =0E 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

′′(22)S 0 0 0 1 =0E 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

′′(23)S 1 1 0 0 =(1)
5E 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0

′′(24)S 0 1 1 0 =0E 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0

′′(25)S 0 0 1 1 =0E 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0

′′(26)S 1 1 0 1 =(1)
6E 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0

′′(27)S 1 0 1 0 =(1)
7E 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0

′′(28)S 0 1 0 1 =0E 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0

′′(29)S 1 1 1 0 =(1)
8E 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0

Next, it is necessary to check correctness of the per-
formed corrections by computing the checksum similar to 
the procedure for computing an error syndrome. In this case, 
the checksum Σ(1)

j  is equal to the state in which slave LFSM 
transitions from the initial zero state S(0) when words (1)

jZ  
from Table 2 enter to its inputs.

Table 2

Variants of the corrected code words at iteration 1

Error words Corrected code words
(1)
1E =(1)

1Z 0 0 0 0 0 0 1 0 1 0 0 1 0 0 1
(1)
2E =(1)

2Z 1 1 0 0 0 0 1 0 1 0 0 1 1 0 1
(1)
3E =(1)

3Z 1 0 1 0 0 0 1 0 1 0 0 1 1 1 1
(1)
4E =(1)

4Z 1 0 0 1 0 0 1 0 1 0 0 1 1 1 0
(1)
5E =(1)

5Z 1 0 0 0 0 0 0 1 1 0 0 1 1 1 0
(1)
6E =(1)

6Z 1 0 0 0 0 0 1 1 1 1 1 1 1 1 0
(1)
7E =(1)

7Z 1 0 0 0 0 0 1 0 1 1 0 0 1 1 0
(1)
8E =(1)

8Z 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0

Computations reveal that none of the calculated check-
sums matches the assigned reference value (19). This con-
firms incorrect corrections of the code word (18). The 
decoder takes note of this fact and proceeds to the second 
iteration of decoding. 

For the second iteration, one performs power permuta-
tion 21 of the obtained code word Zf. As a result, the code 
word will be obtained and will be declared to be the current 
code word (2)

curZ  for the second iteration:

(2)
curZ =100110100000011.  (20) 

Next, all steps of the algorithm, starting at stage 2, are 
repeated, but for the code word (20). One can see from (20) 
that all erroneous positions are placed in a 4-bit check win-
dow. It only remains to shift this window and correct the 
code words, as shown in Table 3. 

Next, one performs reverse power permutation 2-1 for all 
corrected code words, as shown in Table 4. In conclusion, 
correctness of the correction of code words is checked by 
computing checksum Σ( )w

j  for each word ( )w
jZ  from Table 4. 

The check is successfully finished for code word (2)
5, ,fZ  which 

is the correct code word Z.

Table 3

Variants of corrected code words at iteration 2

Error words Corrected code words
(2)
1E =(2)

1Z 0 1 0 1 1 0 1 0 0 0 0 0 0 0 1
(2)
2E =(2)

2Z 0 0 1 1 1 0 1 0 0 0 0 0 0 1 1
(2)
3E =(2)

3Z 1 0 1 0 0 0 1 0 0 0 0 0 0 1 1
(2)
4E =(2)

4Z 1 0 0 0 0 1 0 0 0 0 0 0 0 1 1
(2)
5E =(2)

5Z 1 0 0 1 0 1 1 1 0 0 0 0 0 1 1
(2)
6E =(2)

6Z 1 0 0 1 1 1 1 0 1 0 0 0 0 1 1
(2)
7E =(2)

7Z 1 0 0 1 1 0 1 0 0 1 0 0 0 1 1
(2)
8E =(2)

8Z 1 0 0 1 1 0 1 0 0 0 0 0 1 0 1

Table 4

Variants of restored code words at iteration 2

Corrected code 
words

Restored and corrected code words

(2)
1Z =(2)

1,corZ 0 0 1 0 0 0 1 0 1 0 0 0 1 1 0
(2)
2Z =(2)

2,corZ 0 0 0 0 1 0 1 0 1 0 0 1 1 1 0
(2)
3Z =(2)

3,corZ 1 0 0 0 1 0 0 0 0 0 0 1 1 1 0
(2)
4Z =(2)

4,corZ 1 0 0 0 0 0 0 0 0 0 1 1 0 1 0
(2)
5Z =(2)

5,corZ 1 0 0 0 0 0 1 0 0 0 1 1 1 1 1
(2)
6Z =(2)

6,corZ 1 1 0 0 0 0 1 0 1 0 1 1 1 1 0
(2)
7Z =(2)

7,corZ 1 0 0 1 0 0 1 0 1 0 0 1 1 1 0

Note that by using the considered algorithm we were able 
to detect and correct the error of multiplicity τ=3 applying 
two Hamming codes. To this task, it took two of the four 
possible iterations for the Hamming (15,11)-code. 

9. Discussion of the algorithm for iterative decoding

We shall consider main distinctive features of the pro-
posed algorithm for iterative decoding.

1. First, we shall analyze the obtained coding gain Ga as a 
result of iterative decoding of cyclic codes. For this purpose, 
it is possible to employ either known BER curves from the 
mathematical software MATLAB, or approximate analyti-
cal estimate [21]:

[ ]= +10 lg ( 1) ,aG R t
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where R=k/n is code rate of (n, k)-code; t is the number of 
corrected errors. 

In both cases, the magnitude of coding gain Ga will 
increase in proportion to an increase in the number of itera-
tions and the number of corrected errors, which is equivalent 
to approaching the Shannon limit (it is inherent for iterative 
decoding of any codes). And although the proposed iterative 
code under actual conditions will not be very close to the 
Shannon limit, it has a code rate, which, with an increase in 
the length of code, approaches one. This makes it possible to 
increase by almost two-fold the volume of transmitted useful 
data per time unit, and requires an insignificant improve-
ment in bandwidth. We remind that turbo codes and LDPC 
codes have code rate R≈0.5 which requires either a two-fold 
bandwidth expansion or double transmission rate [6].

2. The length of the proposed code can be arbitrary: both 
small and large. This significantly extends the scope of its 
application.

3. In contrast to the decoding algorithm of turbo codes 
and LDPC codes which use the soft decisions, the proposed 
algorithm is based only on hard decisions. The advantages of 
a given approach is the high speed and simple hardware-soft-
ware implementation of encoder and decoder.

4. Instead of “likelihood able” assumptions about the 
error positions in code word within the minimum code dis-
tance, the generalized algorithm checks all possible variants 
of the errors with a multiplicity (n−k) of the cyclic (n, k)-code 
and finds exact solutions.

5. Power permutation performs interleaving inside  sin-
gle code word only, and this operation is carried out on the 
side of the receiver only.

6. For the objectively compare the proposed and the 
known iterative decoding algorithms, we shall estimate com-
plexity of these algorithms regarding  time and hardware 
implementation.

First, we shall consider the hardware implementation of 
encoder for the proposed algorithm (Fig. 4). An encoder of 
the generalized algorithm consists of two elementary encod-
ers (LFSM 1 and LFSM 2), which are implemented as linear 
feedback shift registers (LFSR) based on generator poly-
nomials, respectively, g1(x) and g2(x). First, we send by the 
channel a k-bit information word I, then a r2-bit checksum Σ 
and, finally, a r1-bit check word Ψ (Fig. 4). The total number 
of encoding cycles is n:

n=k+2r1, if r1≥r2, or n=k+r2+r1, if r1<r2.

Thus, the time complexity of encoding for the proposed 
method is linear, that is t =( ) ( ).cf n O n  Since the bit capacity 
of LFSM 1 and LFSM 2 with an increasing of code length 
grows very slowly, the complexity of hardware implementa-
tion of the encoder for the proposed iterative algorithm is 
constant: =( ) (1).h

cf n O  The complexity of hardware imple-
mentation of the decoder is more complex − quadratic, that 
is = 2( ) ( ).h

df n O n
It is widely accepted that known iterative codes have 

similar mathematical functions of complexity: from linear 
to quadratic. This does not mean, however, that all three 
analyzed iterative codes have circuit implementation of the 
same complexity. For example, to represent a single code 
bit in the proposed method, we use one bit of shift register, 
while LDPC codes employ a processor element. Accordingly, 
known codes require increased physical time of decoding, 
the need for large capacity of main memory grows, there are 

problems in circuit implementation. For example, a decoder 
of LDPC code is hardly possible to execute based on modern 
FPGA as they lack hardware units for computing of stan-
dard mathematical functions [29].

Fig. 4. Structure of the encoder for iterative decoding of 
cyclic codes

7. The process of decoding using the proposed method 
can be easily parallelized, in this case parallelization can be 
applied at multiple levels. First, all iterations can be performed 
simultaneously. Second, stages 3−6 within each iteration can 
be carried out in a pipelined manner when at each step of the 
pipeline one processes one code word. Parallel processing is 
not only possible, but also very desirable, as it eliminates the 
need to store a large volume of intermediate data in memory.

8. The proposed method of decoding employs a new prin-
ciple for the combine of codes. In the known systems, one code 
(internal) is fully embedded into another code (external), in 
our case, both block codes are mutually independent with 
each performing its own task: first, a master code detects er-
rors, then, with the “help” of a slave code, corrects them.

We shall consider substantiation of code selection for 
such combining. 

Number of syndromes of corrected errors should be pro-
vided by the number r1 of check bits in (n1, k)-code (r1=n1–k1):

t

≥ ∑1

1
2 .r i

n
i

C  (21)

Among traditional cyclic codes, inequality (21) holds 
as the equality for a Hamming code, single errors (τ=1) and 
for all r1. 

At iterative decoding, all errors inside the check window 
( ),i
errX  must be corrected, that is τ=r1. The total number of 

error syndromes within a check window is equal to

t

≥ ∑ 1
.i

w r
i

N C

A large number of error words inside the check window 
are the shifted copy of each other; to decode, it will suffice 
to use only one of them, for example, containing a “1” in a 
high position. In case LFSM 1 uses a primitive polynomial 
as polynomial (3), then such LFSM will generate a binary 
sequence of maximum period: T=2r1–1. In this sequence, “1” 
is evenly spaced and found exactly 2r1-1 times [24].

At r1>32, when number Nw of error syndromes is large 
enough, then it is possible to limit the multiplicity of cor-
rected errors.

From the standpoint of polynomial representation of cyclic 
codes, the primitive generator polynomial has the Hamming 
code. When using a given code, at any code length, decoding 
will require only half of the error words (Table 1). Therefore, 
it is best to choose a cyclic Hamming code as the (n1, k)-code. 

Next, we shall consider substantiation for choosing 
(n2, k)-code.

            
1

2
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IZ 



   LFSM 2 

   LFSM 1 
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The purpose of this code is to check correctness of error 
correction in code word Zerr by the first code. The probabili-
ty pm that the (n2, k)-code-assistant makes the wrong choice 
is equal to pm=2-(n2-k). To reduce pm, one should choose a 
cyclic code with primitive generator polynomial g2(x) as 
the (n2, k)-code, that is, also a cyclic Hamming code. Good 
enough validation properties are demonstrated also by the 
Abrahamson code with generator polynomial (1+x)g2(x). 

Thus, both codes can be cyclic Hamming codes, but nec-
essarily with different generator polynomials (g1(x)≠g2(x)). 
Powers of polynomials g1(x) and g2(x) should be sufficiently 
large: 16, 24, 32, 64. And these parameters are characteristic 
of CRC codes. 

From the positions of CRC check, the CRC (n2, k)-code 
will act as a cyclic redundancy check, while the CRC (n1, k)-
code – as a cyclic redundancy code, possibly shortened. 
The differences between these interpretations of CRC are 
described in detail in [30]. 

Such cyclic codes can also be called the iteratively decod-
ed cyclic codes (IDCC).

10. Conclusions

1. We investigated the essence of iterative decoding of 
LDPC codes and turbo codes and demonstrated that the 

main criterion for the optimality of error correction codes 
has been over many years the degree of proximity of the de-
coding error probability to the theoretical limit (border) by 
Shannon. At an iterative (multistage)  method of decoding, 
it is really possible to come maximally close to this limit, 
however, much will have to be sacrificed: increased length of 
codes, complexity of encoders and decoders, longer decoding 
time, emergence of other problems.

2. A theoretical substantiation is given for the iterative 
decoding of cyclic codes using the automaton representation 
of these codes. Rather than traditional soft decoding of iter-
ative codes, we propose employing hard, that is exact, deci-
sions, which would make it possible to accelerate the process 
of encoding and decoding at simultaneous minimization of 
resource costs.

3. We have developed a generalized iterative decoding al-
gorithm for cyclic codes based on power permutation of bits 
in the code word, as well as the software model and circuits 
for codecs using linear feedback shift registers.

4. A new type of  combined codes is proposed – itera-
tively decoded cyclic codes (IDCC). IDCC-codes could 
be recommended for use in systems where CRC control is 
applied: it will suffice to add a CRC check word to the em-
ployed CRC checksum. As a result, it is possible, by using a 
software means, not only to detect, but also correct errors of 
large multiplicity.
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1. Introduction

One of the urgent tasks of creating and improving 
motion control systems for modern aerospace objects is 
improving the accuracy of their information subsystems in 

general and navigation equipment, in particular. The main 
direction of solving this problem is the use of redundant 
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satellite navigation signals. This explains why the issues of 
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Запропоновано і детально описано оригі-
нальну конструкцію динамічного гірокомпа-
су на оптичних гіроскопах та метод його 
використання. Розроблено алгоритм засто-
сування такого гірокомпасування у випад-
ку, коли вібропідставка лазерного гіроскопу 
відсутня. Доведено високу точність роботи 
такого гірокомпасу. В умовах його викори-
стання можна знизити рівень шуму лазерного 
гіроскопа. Завдяки обертанню значно компен-
сується вплив повільно мінливого дрейфу та 
магнітна складова дрейфу

Ключові слова: гірокомпасування, лазер-
ний гіроскоп, акселерометр, дрейф, кут курсу, 
навігаційна система, керування рухом

Предложена и детально описана ориги-
нальная конструкция динамического гироком-
паса на оптических гироскопах и метод его 
использования. Разработан алгоритм приме-
нения такого гирокомпасирования в случае, 
когда виброподставка лазерного гироскопа 
отсутствует. Доказана высокая точность 
работы такого гирокомпаса. При условиях его 
использования можно снизить уровень шума 
лазерного гироскопа. Благодаря вращению 
значительно компенсируется влияние пере-
менного дрейфа и магнитная составляющая 
дрейфа

Ключевые слова: гирокомпасирование, 
лазерный гироскоп, акселерометр, дрейф, 
угол курса, навигационная система, управле-
ние движением

UDC 531.383
DOI: 10.15587/1729-4061.2018.119735


