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1. Introduction

A theoretical mathematical model of starting current in 
the induction motor’s stator is used in various studies that 
focus on diagnosing technical condition, identification of 
parameters for equivalent circuit, synthesis of control sys-
tems for the induction motor (IM). The analysis of induction 
motor based on its T-shaped equivalent circuit needs to be 
refined. To study dynamic modes of IM, a mathematical 
model of the induction motor in a three-phase coordinate 
system is widely employed. 

The mathematical model of a three-phase IM is de-
scribed by a nonlinear system of differential equations of 
eighth order with periodic coefficients. In a general case, it 
is impossible to solve such a system of equations analytically.

Therefore, the development of methods to solve analyti-
cally the equations of IM in a particular case of the starting 
mode will make it possible to refine existing understanding 
of characteristics of the stator starting current. Analytical 
solution to the equations of induction motor for a particular 
case of the starting mode is of independent scientific value 
with a rather wide scope of practical application. The results 
to be obtained could be used to refine methods for the iden-

tification of induction motor parameters based on data about 
starting mode.

2. Literature review and problem statement

Resolving a wide range of practical tasks related to 
the analysis of current technical condition of an induction 
motor, identification of its parameters, control over an asyn-
chronous electric drive, ultimately relies on analysis of the 
starting currents of IM stator. Authors of [1], in order to 
determine asymmetry of the rotor in induction machines, 
suggest monitoring the evolution of the right lateral range 
(RSC) in the stator starting current. 

In [2], to analyze technical condition of the stator wind-
ing, it is proposed to employ Motor Stator Current Envelope 
Analysis (MSCEA). Authors of [3] propose a method for the 
identification of active resistance of IM stator that utilizes 
a permanent integral component from starting current of 
the stator. In [4], authors consider a method for the analysis 
of technical condition of traction IM of electric locomotive 
transport, based on the analysis of stator winding current 
shape when switched on by direct voltage.
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Existing understanding of the theoretical mathemat-
ical model for the formation of IM short-circuit currents 
is based on the analysis of a T-shaped equivalent circuit of 
IM [5]; it is significantly simplified and could be refined 
when solving the IM equations analytically for the mode of 
a stationary rotor.

A range of practical application of IM is extremely 
wide. Therefore, issues on mathematical modeling of IM 
are addressed in the sources of various subjects. Authors 
of [6] examine IM models for the analysis of static prop-
erties of IM. In [7], authors considered the use of mathe-
matical models of IM in the composition of an automated 
electric drive. Authors of [8] outline an updated approach 
to the analysis of basic types of coordinate systems ap-
plied in the modeling of IM. Study [9] tackles various 
aspects of IM control. In [10], modeling of IM is used 
for the synthesis of IM scalar control system. Authors 
of [11] addressed the problem of vector control over IM 
with fuzzy regulators. In [12], authors defined variants 
of IM models in a three-phase coordinate system. Study 
[13] uses a mathematical model of IM to identify active 
resistances of IM stator and rotor. 

A variety of mathematical models of the IM is predeter-
mined by the following features:

– various techniques of power supply to an induction 
motor;

– various features of design of an induction motor;
– application of different coordinate systems for the 

mathematical description of an induction motor.
The single-phase models demonstrate more or less ac-

curate representation of IM static properties, present very 
simplified reflection of dynamic properties, and lack infor-
mation about instantaneous values of phase signals. 

The two-phase models differ from each other by the 
rotation speed of coordinate system and its orientation, as 
well as by the presence of different signals in them. Such 
models are created using the decomposition of spatial 
(generalized) vectors of phase magnitude onto orthogonal 
axes of respective coordinate systems. Two-phase models, 
compared to the three-phase models, are of less order and 
contain simpler dependences for the calculation of currents 
and moments. They, however, cannot be applied to study 
asymmetrical modes.

Three-phase models of IM in the natural phase stator 
and rotor coordinates are characterized by a higher order 
of the system of differential equations. The equations of IM 
models include harmonic coefficients, which depend on the 
angular position of the rotor. To determine the stator and 
rotor currents, it is necessary to additionally solve a system 
of linear algebraic equations. These disadvantages are com-
pensated for by the possibility to study asymmetrical modes 
of IM operation.

In order to synthesize and examine the systems of scalar 
and vector frequency control, typically used are the two-
phase models of IM in the coordinate systems that rotate 
at different speed. The studies that address modelling of IM 
consider advanced models of IM, which make it possible to 
account for such nonlinear phenomena as the saturation of 
a magnetic system [14] and displacement of currents in the 
rotor circuits [15]. Given the complexity and non-linearity 
of IM models, their study employs numerical solutions. De-
velopment of computational tools led to a reduction in the 
number of scholarly works that dealt with analytical analysis 

of research problems, specifically papers related to the opera-
tion of electric machines of alternating current.

In the general case, numerical solutions significantly 
narrow the generality of obtained results, complicate study-
ing parametric sensitivity of the solutions received. There-
fore, analytical solution to the equations of IM has a separate 
scientific value.

3. The aim and objectives of the study

The aim of present study is to solve analytically the IM 
equations in three-phase coordinates for the starting mode, 
which would make it possible to refine existing theoretical 
mathematical models of the stator starting currents.

To accomplish the aim, the following tasks have been set:
– to construct IM equations taking into consideration 

the peculiarities of the process of acceleration;
– to examine solutions to the equations of IM under a 

starting mode.

4. Equations of IM in a three-phase coordinate system 
when the rotor is stationary

A three-phase induction motor has almost a century of 
improvements and has been actively studied. The most uni-
versal method for studying an induction motor is research 
into electromagnetic fields inside the electric machine based 
on the application of Maxwell’s equations. Such an approach 
has no prospects for the analytical solution due to the com-
plex structure of initial equations, complicated geometric 
configuration of IM.

Most popular for the analysis of IM as an object of control 
are the models based on the theory of electric circuits. A sys-
tem of IM equations in a natural three-phase coordinate sys-
tem contains periodic coefficients that depend on the angular 
position of the rotor. This system of equations cannot be rep-
resented in the Cauchy form, making it impossible to solve it 
analytically in the general case. However, at the stationary ro-
tor of IM, it is possible to substantially simplify IM equations 
and there emerges a possibility to solve them analytically. 

When IM is described mathematically, electromagnetic 
processes in the stator windings are described in a fixed 
coordinate system of the stator ABC, and electromagnetic 
processes in the rotor windings ‒ in the rotor rotating co-
ordinate system abc. The system of differential equations of 
electrical equilibrium of IM windings in a 3-phase coordi-
nate system in the matrix form takes the following form [12]:

,

,

s
s s s

r
r r r

d
dt

d
dt

 = +

 = +

U R I

U R I

Ψ

Ψ
   (1)

where Us, Ur are the vectors-columns of feed voltage of the 
stator and rotor; Is, Ir are the vectors-columns of currents 
of separate windings of the stator and rotor; Rs, Rr are the 
diagonal matrices of active resistances of windings of the 
stator and rotor; Ψs, Ψr are the vectors-columns of linkage of 
the stator and rotor. 

When constructing equations, we shall use the following 
assumptions associated with the notion of idealized engine:
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– steel of the motor is not saturated;
– phase stator windings are symmetrical and evenly 

shifted in space;
– magnetomotive force (MMF) of windings and mag-

netic fields propagate sinusoidally along the circumference 
of the air gap;

– the rotor is electrically and magnetically symmetrical;
– really distributed windings of IM are replaced with 

lumped, and MMF shall be taken equal to the real winding.
Detailed equations of linkage for the stator phases:
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where γ is the angle of rotation of the IM rotor. 
A complete system of IM equations, taking into consid-

eration the equation of rotor motion, is a system of ordinary 
nonlinear differential equations of eighth order. 

The main source of the non-linearity of IM equations is the 
presence in the equations of electrical equilibrium of harmonic 
coefficients that depend on the angular position of the rotor.

Another important feature of system (1) is that it cannot 
be represented in a canonical form, and numerical solution 
to system (1) is related to solving an intermediate system of 
linear algebraic equations of sixth order. 

First of all, we shall transform system (1) to decrease its 
order. It is obvious that the system of equations has explicit 
redundancy for the case of IM operation without a zero wire. 

According to the Kirchhoff’s first law, in this case, the 
sum of phase stator and rotor currents at any point in time 
is equal to zero; these relations hold in the presence of asym-
metry of the windings.

We shall rewrite the equation of linkage, excluding from 
them a current of phase C using the Kirchhoff’s first law. 
After performing simple trigonometric transforms, we shall 
obtain the following reduced equations of linkage of the 
stator and rotor, with excluded currents of phases C of the 
stator and c of the rotor.

( )

( )

( )

( )

1

1

2

2

3 sin 3 sin ,
3

3 sin 3 sin ,
3

3 sin 3 sin ,
3

3 sin 3 sin .
3

A A a b

B B a b

a a A B

b b A B

L I M M

L I M M

L i M I M L

L i M I M I
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π ψ = ⋅ − ⋅ ⋅ ⋅ γ − ⋅ ⋅ ⋅ γ −   

 (3)

Further simplification of equations (3) is possible only 
by limiting the considered operating modes of IM. We 
shall consider IM operation under a starting mode. At the 
initial stage of the start, driving moment Te, generated 
by the electric motor, remains less than the moment of 
resistance of the working machine (WM) TL . Because 
the moment of resistance of WM is typically created by 
the forces of friction, the moment of resistance TL can be 
considered Coulomb while the rotor of the started engine 
remains stationary. The issues of formation of the WM 
moment of resistance TL for different types of WM with 
complicated starting conditions are described in detail 
in [9]. It is shown that the moment of resistance TL when 
starting an IM can substantially exceed its value in the 
established operation mode.

Thus, in the process of starting, IM operated under a 
short circuit mode, its angular speed is zero, and the angle 
of rotor rotation does not change and remains equal to its 
initial value γ0. 

This assumption considerably simplifies the structure 
of equations, both for a drive motor and for the equation 
of motion in general, thereby creating preconditions 
for obtaining elements of analytical solution to these  
equations. 

We shall simplify IM equations in phase coordinates for 
the starting mode, assuming that the angular speed of IM 
remains zero. 

We shall introduce the following notation:

; ;

; ;

3 sin( 3); 3 sin( );

A a

B b

dI di
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dt dt
dI di

y n
dt dt

M M

 = =

 = =
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 (4)

Linkage equation (3), taking into consideration notation 
(4), will take the form

1
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   (5)

and the equation of electrical equilibrium of the reduced 
system of IM equations can be written as:

1 1

1 1

2 2
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,

,

,

( ) .

A A

B B

a

b

L x m n U I R

L y m n U I R
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x y L n i R

⋅ − a ⋅ − b⋅ = − ⋅
 ⋅ + b⋅ + a ⋅ = − ⋅
a ⋅ + b⋅ + ⋅ = − ⋅
− b⋅ + a ⋅ + ⋅ = − ⋅

   (6)

Assuming the constancy of IM rotor rotation angle α, 
numerical coefficients α and β become constants, and a sys-
tem of equations (6) acquires a linear character. 

To solve a given system of differential equations, it is 
necessary to represent it in a canonical form. 

Applying the procedures of consistent exclusion of vari-
ables to system (6), after the reduction of similar and inverse 
substitution of variables from (4), we shall obtain
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(7)

where the following notation is accepted

22

2
1

.L
L

− bas = +

The system of IM equations for a starting mode (7) 
is given in a canonical form and can be solved analyti- 
cally.

5. Solution to IM equations when the rotor is  
stationary

To solve the IM equations when the rotor is stationary 
(7), we shall represent this system of equations in the classi-
cal form of a state space, [16]

,
d
dt

= ⋅ + ⋅
x

A x B u

,= ⋅ + ⋅y C x D u     (8)

where A is the functional matrix of the system state with 
a dimensionality of n×n; B is the functional control matrix 
(input) with a dimensionality of n×r; C is the functional 
matrix of output by state with a dimensionality of m×n; D 
is the functional matrix of output by control with a dimen-
sionality of m×r. 

IM state vector includes the currents of stator and rotor:

[ ]T
( ) (t) ( ) (t) .A B a bx I t I i t i=    (9)

IM control vector includes phase voltages of stator 
and rotor:

[ ]T
.A Bu U U=     (10)

IM output vector by state determines the phase currents 
of stator:

[ ]T
.A By I I=      (11)

Given the system of equations (7), matrix coefficients 
A, B, C of the vector-matrix model of IM can be computed 
from expressions
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    (12)

Matrix D in (8) is zero. Characteristic equation of the 
system will be defined by state matrix A, (12), from the fol-
lowing expression, [10]:

( ) ( )det ,s sI Aj = −     (13)

where I is the square unit matrix whose dimensionality coin-
cides with the dimensionality of the matrix of system state A. 

Substituting in (19) expressions (18) for the matrix of 
system state A and the identity matrix I, we obtain the char-
acteristic equation of IM under a starting mode
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After computing the determinant, we obtain
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The roots of the characteristic equation can be cal-
culated as the eigenvalues of the matrix of system state 
A. By using the online-service wolframalpha.com for 
analytical computations, we shall obtain the following 
expressions for the eigenvalues of the matrix of system  
state A.

( ) ( )2
1

1
4 ,

2
a b ce cf de df a bs  = − − + − + − + + 

( ) ( )2
2

1
4 ,

2
a b ce cf de df a bs  = − + − + − + + 

( ) ( )2
3

1
4 ,

2
a b ce cf de df a bs  = − − + + − − + + 

( ) ( )2
4

1
4 .

2
a b ce cf de df a bs  = − + + − − + +   (16)

By employing formulae (12), it is easy to show that the 
following identities hold: s1≡s3; s2≡s4.

We shall define equivalent matrix of transfer functions, 
which connects state vectors and control vectors by the ex-
pression given in [14]:

( ) ( ) ( )1
.H s adj s

s
= ⋅ ⋅ − ⋅

j
I A B    (17)

Matrix (sI–A) and characteristic equation φ(s) can be 
determined from (14). 

An equivalent matrix of transfer functions
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   (18)

Applying the rules of matrix multiplication, it is easy 
to obtain expressions for individual elements of the equiv-
alent matrix of transfer functions. We give the expression 
for transfer function ( )11 sH  along the channel “phase A 
voltage ‒ phase A current”. By employing a notation from 
(12), we obtain:

( )

( ) ( )( )
( ) ( )( )( )

( ) ( )( )
( )

2
11

2 2
31

2 2
32

11 .

b s bs ce df a s bs b

e c s b s ac d b

f ad s b d bs dfc s b
sH

s

 − − + + − + − +
 
 + − − − − +
 
 + + − − − + 

=
j

 (19)

Thus, the IM transfer function along the channel 
“phase A voltage ‒ phase A current” is a fractional ra-
tional function with the numerator of third order and 
the denominator of fourth order. Coefficients of this 
transfer function, as well as the roots of the characteristic 
equation, depend on the initial angular position of the  
rotor.

6. Verification of results and mathematical  
modeling

To test the adequacy of analytical transformations 
performed, we have carried out experimental study into 
the starting of IM based on the mathematical model. We 
used in the mathematical model the induction motor of 
type 4A100 4SY5 with a power of 15 kW with a rotation 
speed of 1,500 rpm. Parameters for the T-shaped equiv-
alent circuit of the motor 4A100 4SY5: inductance of 
the stator winding scattering is 0.002645 H, reduced in-
ductance rotor winding scattering is 0.004017 H, circuit 
inductance magnetization is 0.0546 H, active resistance of 
the stator is 0.462 Ohm, reduced active resistance of the 
rotor is 0.312 Ohm.

Realization of the IM mathematical model for the 
starting mode in a state space based on the above expres-
sions (12) was implemented in the MATLAB/Simulink 
software; the developed structural diagram is shown  
in Fig. 1.

 
 
 
a 
 
 
 
 
 
 
b 

Fig. 1. Mathematical modeling of IM in a state space for 
the starting mode: a – block diagram of the vector-matrix 
model; b – charts of phase currents of the stator under a 

starting mode

The shape of starting currents coincides with a gen-
eral theoretical understanding of the start of IM and the 
values ‒ with specification data on the pilot IM, which 
confirms correctness of the conducted transforms and 
obtained equations. 

The obtained expressions (14), (16), (19) allow us to 
analytically determine the values of roots of the IM charac-
teristic equation and IM transfer function coefficients when 
the rotor is stationary. This makes it possible to build transi-
tional characteristics of IM for different values of the initial 
angular position of the rotor. 

Calculations for the induction motor 4A100 4SY5 were 
performed using the MATLAB software; the results ob-
tained are shown in Fig. 2.

A change in the initial angular position of the rotor 
from 0 to π leads to a change in the character of roots of 
the characteristic equation. For the values of initial rotor 
rotation angle in the neighborhood of 0 and π, the roots of 
the IM characteristic equation are complex conjugated. At 
the initial rotor angle values in the neighborhood of π/2, 
the roots of the IM characteristic equation have a valid 
character. 

The results obtained are valid for all structural designs of 
three-phase IM with stator connection to the power circuit 
without a zero wire: with a short-circuited and a phase rotor, 
for motors with a deep-seated rotor, etc.
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a 
 
 
 
 
 
 
 
b 
 
 
 
 
 
 
 

c  
Fig. 2. Transient characteristics and roots of the 

characteristic equation of IM under a starting mode for 
different values of the initial angular position of the IM rotor: 

a – γ 0=π/10; b – γ 0=π/2; c – γ 0=9π/10

7. Discussion of results of research into a starting current 
of the stator of an induction motor

Operation of IM is considered under a mode of the 
stationary rotor at its permanent angular position. These 
patterns make it possible to further simplify the IM equa-
tions. Based on the analysis of the system of IM equations 
in a three-phase coordinate system, it was established that 
at the stationary rotor it is possible to analytically solve 
the IM equations because periodic coefficients in the IM 
equations are transformed into constant magnitudes, which 
transfers the system of IM equations to the class of linear 
dynamic systems. Because there is no motion of the rotor 
and it has no effect on the electromagnetic processes of IM, 
the equations of rotor motion are redundant for the problem 
being solved, and can be excluded from consideration. For 
the most common connection scheme of IM without a zero 
wire, the stator and rotor currents are linked via the first 
law by Kirchhoff. Therefore, determining one of the stator 
currents and one of the rotor currents can be conducted not 
through the differential equation of electrical equilibrium of 
the respective winding, but applying the algebraic equation 
that expresses the first Kirchhoff law. This makes it possible 
to exclude from the system of IM equations two equations of 
electric equilibrium of windings, for one stator and one rotor 
winding. The main advantages of the proposed approach 
are the reduction in the order of the system of IM equations 
from the eighth to fourth order and a linear character of the 
obtained system of equations, which makes it possible to 
solve it analytically. The assumption of the switching scheme 
of IM is the most significant constraint in the application of 
the proposed solutions.

Employing algebraic transforms, a system of IM equa-
tions was represented in a canonical form, and subsequently 
in the vector-matrix form of a state space. The main advan-
tage of this approach is the existence of verified methods for 
assessing dynamic characteristics of control objects. 

Using the methods of analysis of dynamic objects in a 
state space, we derived expressions for coefficients of the 
characteristic IM equation and its roots, as well as for the 
matrix of IM transfer functions when the rotor is stationary. 
This makes it possible to eventually obtain algebraic expres-
sions for direct estimation of the influence of IM parameters 
on characteristics of its starting currents.

Correctness of the performed analytical transformations 
is confirmed by the results of examining the developed 
mathematical model of IM in the form of a state space using 
the Matlab/Simulink software. 

An analysis of the mathematical model of the expressions 
obtained allowed us to derive values for the roots of the IM 
characteristic equation, to build its transitional functions for 
different values of the initial angular position of the IM rotor.

An analysis of expressions for the roots of the charac-
teristic equation shows that the real or complex conjugate 
character of roots of the IM characteristic equation depends 
on the initial angular position of the rotor. This can be 
explained in the following way. A change in the initial an-
gular position of the rotor results in a change in the value of 
mutual inductance between separate windings of IM, which 
affects the processes of energy transfer between stator and 
rotor windings. 

With a complex-conjugate character of roots of the 
characteristic equation, the transitional characteristic of the 
rotor starting current will be oscillatory in nature.

The theoretical results obtained could be used to refine 
the results of research in the field of the identification of IM 
parameters based on the analysis of starting modes. 

In the future, it will be possible to apply the proposed 
method for transforming the IM equations when the rotor 
is stationary in order to analyze the starting current of syn-
chronous motor.

8. Conclusions

1. It was established that the system of IM equations in 
a three-phase coordinate system can be solved analytically 
under assumption of the stationary rotor. This is related 
to the fact that under such an assumption the periodic 
coefficients in the IM equations are transformed to the 
constant magnitudes. Further simplification of the system 
of IM equations implies the exclusion of motion equations, 
which is also related to the accepted assumption about the 
immobility of the rotor. For a circuit of IM connection 
without a zero wire, it is possible to apply the Kirchhoff’s 
first law and exclude from the overall system two equations 
of electrical equilibrium of windings, for one stator and on 
rotor winding.

The result of performed transformations is the simplified 
system of IM equations IM when the rotor is stationary, 
which, in contrast to the complete system, is a system of 
linear differential equations of the fourth order and is given 
in the Cauchy form.

2. Using the methods of analysis of dynamic objects in a 
state space, we obtained expressions for the coefficients of IM 
characteristic equation and its roots, as well as for the matrix 
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of IM transfer functions along the channel “power phase 
voltage ‒ stator phase currents” when the rotor is stationary.

An analysis of expressions for the roots of the charac-
teristic equation shows that the character of roots of the 
IM characteristic equation depends on the initial angular 

position of the IM rotor. This is explained by the fact that 
a change in the initial angular position of the rotor changes 
the magnitude of mutual inductance between separate wind-
ings of IM, which affects the processes of energy transfer 
between stator and rotor windings.
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