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Ompumano cucmemy pisHAHL ACUHXPOHHO-
20 dsueyna 6 mpudpasniii cucmemi xKoopounam
npu HepyxomMomy pomopi, Ompumano amasi-
muune piluenns PiHAHb ACUHXPOHHO020 06U-
2yna 0as 0amnozo pexcumy podomu. Ymounena
meopemuuna MamemMamuuna mMooeab nYcKkoeo-
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eyna i 6uod tozo nepexionoi xapaxmepucmuru
3anexncamv 6i0 NOUAMK06020 KYMoeoz0 Noi0-
JHCeHHs pomopa

Knouoei cnosa: acunxponnuii 0susyn, mpu-
¢asna cucmema xoopounam, memoo npocmopy
cmanie, xapaxmepucmuume pieHAHHA, MAMPU-
us nepedasanvnux QyHxuii
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Honyuena cucmema ypasnenuii acunxpom-
HO20 Jeuzamens 6 mpexpaznoii cucmeme Koop-
ounam npu HenooeuUNCHOM pPomope, NOJYHEHO
ananumuseckoe peuenue YypasHeHuil aCUHXpOH-
1020 0éuzames 01 0aHH020 pexcuma padomol.
Ymounena meopemuueckas mamemamunecxkas
MoOesib NYCKOB020 MOKA CMAMOPA ACUHXPOH-
HO20 deuzamens. Ycmamnoejnewno, umo xapak-
mep KopHell XapaKmepucmuneckKozo YypasHenus
ACUNXPONN020 O8uzameNsl U 6UO €20 Nepexoo-
HOU Xapaxmepucmuxu 3asucsam om HAUaIbH020
Y2J106020 NONOJNCEHUSL POMOPA

Knioueevte cnosa: acunxponnwiii 0suzamen,
mpexgasnas cucmema Koopounam, memoo npo-
cmpancmea cocmosHuil, xapaxmepucmusecxkoe
ypasnenue, mampuua nepeoamoutvlx QynKuuil
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1. Introduction

A theoretical mathematical model of starting current in
the induction motor’s stator is used in various studies that
focus on diagnosing technical condition, identification of
parameters for equivalent circuit, synthesis of control sys-
tems for the induction motor (IM). The analysis of induction
motor based on its T-shaped equivalent circuit needs to be
refined. To study dynamic modes of 1M, a mathematical
model of the induction motor in a three-phase coordinate
system is widely employed.

The mathematical model of a three-phase IM is de-
scribed by a nonlinear system of differential equations of
eighth order with periodic coefficients. In a general case, it
is impossible to solve such a system of equations analytically.

Therefore, the development of methods to solve analyti-
cally the equations of IM in a particular case of the starting
mode will make it possible to refine existing understanding
of characteristics of the stator starting current. Analytical
solution to the equations of induction motor for a particular
case of the starting mode is of independent scientific value
with a rather wide scope of practical application. The results
to be obtained could be used to refine methods for the iden-
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tification of induction motor parameters based on data about
starting mode.

2. Literature review and problem statement

Resolving a wide range of practical tasks related to
the analysis of current technical condition of an induction
motor, identification of its parameters, control over an asyn-
chronous electric drive, ultimately relies on analysis of the
starting currents of IM stator. Authors of [1], in order to
determine asymmetry of the rotor in induction machines,
suggest monitoring the evolution of the right lateral range
(RSC) in the stator starting current.

In [2], to analyze technical condition of the stator wind-
ing, it is proposed to employ Motor Stator Current Envelope
Analysis (MSCEA). Authors of [3] propose a method for the
identification of active resistance of IM stator that utilizes
a permanent integral component from starting current of
the stator. In [4], authors consider a method for the analysis
of technical condition of traction IM of electric locomotive
transport, based on the analysis of stator winding current
shape when switched on by direct voltage.




Existing understanding of the theoretical mathemat-
ical model for the formation of IM short-circuit currents
is based on the analysis of a T-shaped equivalent circuit of
IM [5]; it is significantly simplified and could be refined
when solving the IM equations analytically for the mode of
a stationary rotor.

A range of practical application of IM is extremely
wide. Therefore, issues on mathematical modeling of IM
are addressed in the sources of various subjects. Authors
of [6] examine IM models for the analysis of static prop-
erties of IM. In [7], authors considered the use of mathe-
matical models of IM in the composition of an automated
electric drive. Authors of [8] outline an updated approach
to the analysis of basic types of coordinate systems ap-
plied in the modeling of IM. Study [9] tackles various
aspects of IM control. In [10], modeling of IM is used
for the synthesis of IM scalar control system. Authors
of [11] addressed the problem of vector control over IM
with fuzzy regulators. In [12], authors defined variants
of IM models in a three-phase coordinate system. Study
[13] uses a mathematical model of IM to identify active
resistances of IM stator and rotor.

A variety of mathematical models of the IM is predeter-
mined by the following features:

— various techniques of power supply to an induction
motor;

— various features of design of an induction motor;

— application of different coordinate systems for the
mathematical description of an induction motor.

The single-phase models demonstrate more or less ac-
curate representation of IM static properties, present very
simplified reflection of dynamic properties, and lack infor-
mation about instantaneous values of phase signals.

The two-phase models differ from each other by the
rotation speed of coordinate system and its orientation, as
well as by the presence of different signals in them. Such
models are created using the decomposition of spatial
(generalized) vectors of phase magnitude onto orthogonal
axes of respective coordinate systems. Two-phase models,
compared to the three-phase models, are of less order and
contain simpler dependences for the calculation of currents
and moments. They, however, cannot be applied to study
asymmetrical modes.

Three-phase models of IM in the natural phase stator
and rotor coordinates are characterized by a higher order
of the system of differential equations. The equations of IM
models include harmonic coefficients, which depend on the
angular position of the rotor. To determine the stator and
rotor currents, it is necessary to additionally solve a system
of linear algebraic equations. These disadvantages are com-
pensated for by the possibility to study asymmetrical modes
of IM operation.

In order to synthesize and examine the systems of scalar
and vector frequency control, typically used are the two-
phase models of IM in the coordinate systems that rotate
at different speed. The studies that address modelling of IM
consider advanced models of IM, which make it possible to
account for such nonlinear phenomena as the saturation of
a magnetic system [14] and displacement of currents in the
rotor circuits [15]. Given the complexity and non-linearity
of IM models, their study employs numerical solutions. De-
velopment of computational tools led to a reduction in the
number of scholarly works that dealt with analytical analysis

of research problems, specifically papers related to the opera-
tion of electric machines of alternating current.

In the general case, numerical solutions significantly
narrow the generality of obtained results, complicate study-
ing parametric sensitivity of the solutions received. There-
fore, analytical solution to the equations of IM has a separate
scientific value.

3. The aim and objectives of the study

The aim of present study is to solve analytically the IM
equations in three-phase coordinates for the starting mode,
which would make it possible to refine existing theoretical
mathematical models of the stator starting currents.

To accomplish the aim, the following tasks have been set:

—to construct IM equations taking into consideration
the peculiarities of the process of acceleration;

— to examine solutions to the equations of IM under a
starting mode.

4. Equations of IM in a three-phase coordinate system
when the rotor is stationary

A three-phase induction motor has almost a century of
improvements and has been actively studied. The most uni-
versal method for studying an induction motor is research
into electromagnetic fields inside the electric machine based
on the application of Maxwell’s equations. Such an approach
has no prospects for the analytical solution due to the com-
plex structure of initial equations, complicated geometric
configuration of IM.

Most popular for the analysis of IM as an object of control
are the models based on the theory of electric circuits. A sys-
tem of IM equations in a natural three-phase coordinate sys-
tem contains periodic coefficients that depend on the angular
position of the rotor. This system of equations cannot be rep-
resented in the Cauchy form, making it impossible to solve it
analytically in the general case. However, at the stationary ro-
tor of IM, it is possible to substantially simplify IM equations
and there emerges a possibility to solve them analytically.

When IM is described mathematically, electromagnetic
processes in the stator windings are described in a fixed
coordinate system of the stator ABC, and electromagnetic
processes in the rotor windings — in the rotor rotating co-
ordinate system abc. The system of differential equations of
electrical equilibrium of IM windings in a 3-phase coordi-
nate system in the matrix form takes the following form [12]:

US_:RX_I\_+d‘P"’,
U=R1 +—*,
r rer dt

where Uy, U, are the vectors-columns of feed voltage of the
stator and rotor; I, I, are the vectors-columns of currents
of separate windings of the stator and rotor; Ry, R, are the
diagonal matrices of active resistances of windings of the
stator and rotor; ¥, ¥, are the vectors-columns of linkage of
the stator and rotor.

When constructing equations, we shall use the following
assumptions associated with the notion of idealized engine:



— steel of the motor is not saturated;

— phase stator windings are symmetrical and evenly
shifted in space;

— magnetomotive force (MMF) of windings and mag-
netic fields propagate sinusoidally along the circumference
of the air gap;

— the rotor is electrically and magnetically symmetrical;

—really distributed windings of IM are replaced with
lumped, and MMF shall be taken equal to the real winding.

Detailed equations of linkage for the stator phases:

v, =L-I,+M-,-cos(y)+

+M -, ~COS(Y+2§)+M~LC -cos(y—%t),

\|IB=L1~IB+M~lavCOS(’Y—2?TC)+

+M -1, -cos(y)+M 1, ~cos(y+2?n),

\|;C=L1-IC+M~1a~cos(y+2?n)+

+M~1b~cos(y—2§)+M-lc~COS(Y), 2

where v is the angle of rotation of the IM rotor.

A complete system of IM equations, taking into consid-
eration the equation of rotor motion, is a system of ordinary
nonlinear differential equations of eighth order.

The main source of the non-linearity of IM equations is the
presence in the equations of electrical equilibrium of harmonic
coefficients that depend on the angular position of the rotor.

Another important feature of system (1) is that it cannot
be represented in a canonical form, and numerical solution
to system (1) is related to solving an intermediate system of
linear algebraic equations of sixth order.

First of all, we shall transform system (1) to decrease its
order. It is obvious that the system of equations has explicit
redundancy for the case of IM operation without a zero wire.

According to the Kirchhoff’s first law, in this case, the
sum of phase stator and rotor currents at any point in time
is equal to zero; these relations hold in the presence of asym-
metry of the windings.

We shall rewrite the equation of linkage, excluding from
them a current of phase C using the Kirchhoff’s first law.
After performing simple trigonometric transforms, we shall
obtain the following reduced equations of linkage of the
stator and rotor, with excluded currents of phases C of the
stator and ¢ of the rotor.

v, =L-1,-M-~3-,-sin| y— ) M /31, -sin(y),

W,=L-I,+M-/31,- ,

sin(y)+M-/3-,- sm( +g

v, =L,-i,+M-\/3-1,-

sin| y+ )+M\/—L -sin(y),

~MB-1,-sin(y)-M3 1, sm(y—g)

W, =L,

Further simplification of equations (3) is possible only
by limiting the considered operating modes of IM. We
shall consider IM operation under a starting mode. At the
initial stage of the start, driving moment 7,, generated
by the electric motor, remains less than the moment of
resistance of the working machine (WM) T;. Because
the moment of resistance of WM is typically created by
the forces of friction, the moment of resistance T; can be
considered Coulomb while the rotor of the started engine
remains stationary. The issues of formation of the WM
moment of resistance T} for different types of WM with
complicated starting conditions are described in detail
in [9]. It is shown that the moment of resistance T, when
starting an IM can substantially exceed its value in the
established operation mode.

Thus, in the process of starting, IM operated under a
short circuit mode, its angular speed is zero, and the angle
of rotor rotation does not change and remains equal to its
initial value y.

This assumption considerably simplifies the structure
of equations, both for a drive motor and for the equation
of motion in general, thereby creating preconditions
for obtaining elements of analytical solution to these
equations.

We shall simplify IM equations in phase coordinates for
the starting mode, assuming that the angular speed of IM
remains zero.

We shall introduce the following notation:

dIA =x: dla =m:

de 7’ de

di, di,

A prant 4)

o=M-3-sin(y-m/3); B=M-/3-sin(y);

Linkage equation (3), taking into consideration notation
(4), will take the form

v, =L-1,-1,0-1,p,
V=L I+, B+y,
V,=L,-i,+1,-0+1-B,
i,—1,-B—1, 0,

®)

and the equation of electrical equilibrium of the reduced
system of IM equations can be written as:

L-x—o-m-B-n=U,-1,-R,
~I,-R,
o-x+B-y+L,-m=—i R,

-B-x+o-y)+L,-n=—i,-R,.

L-y+Bp-m+o-n=U,

©6)

Assuming the constancy of IM rotor rotation angle a,
numerical coefficients a and B become constants, and a sys-
tem of equations (6) acquires a linear character.

To solve a given system of differential equations, it is
necessary to represent it in a canonical form.

Applying the procedures of consistent exclusion of vari-
ables to system (6), after the reduction of similar and inverse
substitution of variables from (4), we shall obtain
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where the following notation is accepted

The system of IM equations for a starting mode (7)
is given in a canonical form and can be solved analyti-
cally.

3. Solution to IM equations when the rotor is
stationary

To solve the IM equations when the rotor is stationary
(7), we shall represent this system of equations in the classi-
cal form of a state space, [16]

ézAvx+B-u,
dt

y=C-x+D-u, (8)
where A is the functional matrix of the system state with
a dimensionality of nxn; B is the functional control matrix
(input) with a dimensionality of nxr; C is the functional
matrix of output by state with a dimensionality of mxn; D
is the functional matrix of output by control with a dimen-
sionality of mxr.
IM state vector includes the currents of stator and rotor:
. . T
c=[L@) Lo Lo o] ©
IM control vector includes phase voltages of stator
and rotor:
T
u=[U, U,]. (10)
IM output vector by state determines the phase currents
of stator:
T
yz[IA IB] . 1)
Given the system of equations (7), matrix coefficients

A, B, C of the vector-matrix model of IM can be computed
from expressions

(=) )R 0 R, _BR,
c-L . c-L, oL
0 (OLZ_ 2) & BR, oR,
A= c-L L oL oL |
o-R, B'R1 R, 0
c-L c-L c
_BR, o- R 0 R,
L oL oL c |
a 0 ¢ d
Az 0 a -d _C,
e f b 0
-f —e 0 b
[ o — B2 0 1
(o) )t
oL L
ol —B2
B (i B IR PR
0 G'Ll L1 b
B= = o
b31 b32
- - B _b32_b31
c-L c-L
B o
c-L c-L ]
[1 0 0 0
C= . 12)
01 0 0

Matrix D in (8) is zero. Characteristic equation of the
system will be defined by state matrix A, (12), from the fol-
lowing expression, [10]:

¢(s)=det(sI - A), (13)
where I is the square unit matrix whose dimensionality coin-
cides with the dimensionality of the matrix of system state A.

Substituting in (19) expressions (18) for the matrix of
system state A and the identity matrix I, we obtain the char-
acteristic equation of IM under a starting mode

s 00 0]l [a 0 ¢ d
0 s 00/ (0 a -d —c
o@)=detlo o s ol le 5 b o]
000 s||-f - 0 b
[s—a 0 - —-d
0 s—a d c
¢(s)=det e~/ s=b 0 =0. (14)
L/ e 0 s=b
After computing the determinant, we obtain
(p(s)=((a—s)(b—s)—(c+d)(e—f))><
X((a—s)(b—s)—(c—d)(e+f)). 15)



The roots of the characteristic equation can be cal-
culated as the eigenvalues of the matrix of system state
A. By using the online-service wolframalpha.com for
analytical computations, we shall obtain the following
expressions for the eigenvalues of the matrix of system
state A.

I\J\»—

(\/a b) +4(ce of +de— df)+a+b)

1\/a b) +4(ce—cf +de— df)+a+b)

A
(\/a b) ‘14 (ce+cf —de— df)+a+b)

34:%(\/(a—b)2+4(ce+cf—de—df)+a+b). (16)
By employing formulae (12), it is easy to show that the
following identities hold: s{=s3; s9=s4.
We shall define equivalent matrix of transfer functions,
which connects state vectors and control vectors by the ex-
pression given in [14]:

H(s)=—— (17)

(P(S)ﬂdj(s‘I—A)B

Matrix (sI-A) and characteristic equation @(s) can be
determined from (14).
An equivalent matrix of transfer functions

14(s)  I.(s)
Ua(s) Usls)
0
Uals) Usls
H(s)— ia(S) ia(S) . 18)
Ua(s) Us(s)
in(s) in(s)
LUA(s) Us(s) ]

Applying the rules of matrix multiplication, it is easy
to obtain expressions for individual elements of the equiv-
alent matrix of transfer functions. We give the expression
for transfer function ff,,(s) along the channel “phase A
voltage — phase A current”. By employing a notation from
(12), we obtain:

(b-s5)(=s*+bs+ce—df +a(s—b))by,+
+(e(c*-a?)=c(s=b)(s—a))bu+
+(fc*+ad(s—b)~d(s*~bs+df )by,
o(s)

Thus, the IM transfer function along the channel
“phase A voltage — phase A current” is a fractional ra-
tional function with the numerator of third order and
the denominator of fourth order. Coefficients of this
transfer function, as well as the roots of the characteristic
equation, depend on the initial angular position of the
rotor.

Hu(s)= (19)

6. Verification of results and mathematical
modeling

To test the adequacy of analytical transformations
performed, we have carried out experimental study into
the starting of IM based on the mathematical model. We
used in the mathematical model the induction motor of
type 4A100 4SY5 with a power of 15 kW with a rotation
speed of 1,500 rpm. Parameters for the T-shaped equiv-
alent circuit of the motor 4A100 4SY5: inductance of
the stator winding scattering is 0.002645 H, reduced in-
ductance rotor winding scattering is 0.004017 H, circuit
inductance magnetization is 0.0546 H, active resistance of
the stator is 0.462 Ohm, reduced active resistance of the
rotor is 0.312 Ohm.

Realization of the IM mathematical model for the
starting mode in a state space based on the above expres-
sions (12) was implemented in the MATLAB/Simulink
software; the developed structural diagram is shown

in Fig. 1.
{: ]
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Fig. 1. Mathematical modeling of IM in a state space for
the starting mode: @ — block diagram of the vector-matrix
model; b — charts of phase currents of the stator under a
starting mode

The shape of starting currents coincides with a gen-
eral theoretical understanding of the start of IM and the
values — with specification data on the pilot IM, which
confirms correctness of the conducted transforms and
obtained equations.

The obtained expressions (14), (16), (19) allow us to
analytically determine the values of roots of the IM charac-
teristic equation and IM transfer function coefficients when
the rotor is stationary. This makes it possible to build transi-
tional characteristics of IM for different values of the initial
angular position of the rotor.

Calculations for the induction motor 4A100 4SY5 were
performed using the MATLAB software; the results ob-
tained are shown in Fig. 2.

A change in the initial angular position of the rotor
from 0 to n leads to a change in the character of roots of
the characteristic equation. For the values of initial rotor
rotation angle in the neighborhood of 0 and =, the roots of
the IM characteristic equation are complex conjugated. At
the initial rotor angle values in the neighborhood of n/2,
the roots of the IM characteristic equation have a valid
character.

The results obtained are valid for all structural designs of
three-phase IM with stator connection to the power circuit
without a zero wire: with a short-circuited and a phase rotor,
for motors with a deep-seated rotor, etc.
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Fig. 2. Transient characteristics and roots of the
characteristic equation of IM under a starting mode for
different values of the initial angular position of the IM rotor:
a—y0=n/10; b—y0=n/2; c— vy 0=9x/10

7. Discussion of results of research into a starting current
of the stator of an induction motor

Operation of IM is considered under a mode of the
stationary rotor at its permanent angular position. These
patterns make it possible to further simplify the IM equa-
tions. Based on the analysis of the system of IM equations
in a three-phase coordinate system, it was established that
at the stationary rotor it is possible to analytically solve
the IM equations because periodic coefficients in the IM
equations are transformed into constant magnitudes, which
transfers the system of IM equations to the class of linear
dynamic systems. Because there is no motion of the rotor
and it has no effect on the electromagnetic processes of IM,
the equations of rotor motion are redundant for the problem
being solved, and can be excluded from consideration. For
the most common connection scheme of IM without a zero
wire, the stator and rotor currents are linked via the first
law by Kirchhoff. Therefore, determining one of the stator
currents and one of the rotor currents can be conducted not
through the differential equation of electrical equilibrium of
the respective winding, but applying the algebraic equation
that expresses the first Kirchhoff law. This makes it possible
to exclude from the system of IM equations two equations of
electric equilibrium of windings, for one stator and one rotor
winding. The main advantages of the proposed approach
are the reduction in the order of the system of IM equations
from the eighth to fourth order and a linear character of the
obtained system of equations, which makes it possible to
solve it analytically. The assumption of the switching scheme
of IM is the most significant constraint in the application of
the proposed solutions.

Employing algebraic transforms, a system of IM equa-
tions was represented in a canonical form, and subsequently
in the vector-matrix form of a state space. The main advan-
tage of this approach is the existence of verified methods for
assessing dynamic characteristics of control objects.

Using the methods of analysis of dynamic objects in a
state space, we derived expressions for coefficients of the
characteristic IM equation and its roots, as well as for the
matrix of IM transfer functions when the rotor is stationary.
This makes it possible to eventually obtain algebraic expres-
sions for direct estimation of the influence of IM parameters
on characteristics of its starting currents.

Correctness of the performed analytical transformations
is confirmed by the results of examining the developed
mathematical model of IM in the form of a state space using
the Matlab/Simulink software.

An analysis of the mathematical model of the expressions
obtained allowed us to derive values for the roots of the IM
characteristic equation, to build its transitional functions for
different values of the initial angular position of the IM rotor.

An analysis of expressions for the roots of the charac-
teristic equation shows that the real or complex conjugate
character of roots of the IM characteristic equation depends
on the initial angular position of the rotor. This can be
explained in the following way. A change in the initial an-
gular position of the rotor results in a change in the value of
mutual inductance between separate windings of IM, which
affects the processes of energy transfer between stator and
rotor windings.

With a complex-conjugate character of roots of the
characteristic equation, the transitional characteristic of the
rotor starting current will be oscillatory in nature.

The theoretical results obtained could be used to refine
the results of research in the field of the identification of IM
parameters based on the analysis of starting modes.

In the future, it will be possible to apply the proposed
method for transforming the IM equations when the rotor
is stationary in order to analyze the starting current of syn-
chronous motor.

8. Conclusions

1. It was established that the system of IM equations in
a three-phase coordinate system can be solved analytically
under assumption of the stationary rotor. This is related
to the fact that under such an assumption the periodic
coefficients in the IM equations are transformed to the
constant magnitudes. Further simplification of the system
of IM equations implies the exclusion of motion equations,
which is also related to the accepted assumption about the
immobility of the rotor. For a circuit of IM connection
without a zero wire, it is possible to apply the Kirchhoff’s
first law and exclude from the overall system two equations
of electrical equilibrium of windings, for one stator and on
rotor winding.

The result of performed transformations is the simplified
system of IM equations IM when the rotor is stationary,
which, in contrast to the complete system, is a system of
linear differential equations of the fourth order and is given
in the Cauchy form.

2. Using the methods of analysis of dynamic objects in a
state space, we obtained expressions for the coefficients of IM
characteristic equation and its roots, as well as for the matrix



of IM transfer functions along the channel “power phase  position of the IM rotor. This is explained by the fact that
voltage — stator phase currents” when the rotor is stationary. a change in the initial angular position of the rotor changes

An analysis of expressions for the roots of the charac-  the magnitude of mutual inductance between separate wind-
teristic equation shows that the character of roots of the ings of IM, which affects the processes of energy transfer
IM characteristic equation depends on the initial angular ~ between stator and rotor windings.
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