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1. Introduction

Integer factorization is one of the oldest problems in 
mathematics. However, major breakthroughs have occurred 
over the past 30 years, especially after the introduction of 
public-key cryptography, and in particular, the RSA crypto-
system. We can say that if factorization is solved effectively, 
the RSA cryptosystem will be extremely vulnerable. That 
is why the RSA Security company funded a factorization 
contest called “RSA challenge”. It is interesting that latest 
introductions of factorization algorithms are closely related 
to the RSA challenge.

The authors carried out the studies [1, 2] of methods of 
cryptographic analysis of the RSA algorithm. However, [3] 
shows that known examples of compromise of the RSA al-
gorithm work only for specific implementations, and usually 
are not more effective than the factorization problem. In 
1994, factorization of the RSA-129 number was performed 
by means of the quadratic sieve algorithm (QS) [4].

This fact was perceived as a great surprise, since it 
was believed that the RSA-129 number is very difficult to 
factorize.

The quadratic sieve method (QS) is inferior to the gen-
eral number field sieve method. However, for numbers up to 
100 decimal digits, it is still the best [5, 6].

Modification of the quadratic sieve algorithm will allow 
reducing the running time of the algorithm and increasing 
the limit value of the factorized number for which the algo-
rithm of the quadratic sieve method is the best.

Therefore, the study of new ways to reduce its computing 
complexity is relevant.

2. Literature review and problem statement

At the moment, there are several factorization methods 
and their modifications, basic of which have been considered 
in [7]. These methods are characterized by exponential and 
subexponential computing complexity.

In the quadratic sieve method, for the factorized N num-
ber, integers x are tried to be found such that

2( )y x x N= − 		 	 	 	 (1)

can be decomposed into small prime factors – factor base 
elements, i. e., the numbers p=2 and other smallest primes p, 
for which N is the quadratic residue modulo p. Such values of 
y are called B-smooth [8].

The number La of the factor base elements in the basic 
version of the QS method is recommended [2, 4, 6] to be 
equal to

( ) ( )
2/4 2/4ln( )lnln( ) 2/4,N NaL e L N L= = =    (2)

where the maximum prime number in the factor base B is 
called smoothness boundary.

The purpose of the algorithm is to find a set of B-smooth 
numbers, on the basis of which [9] it is possible to obtain the 
value of X such that

2 2( ) (mod ),Y X X N≡     (3)

where Y(X) is the product of a number y(x), determined as 
in (1).
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The algorithm of the QS method works in two stages: the 
stage of forming a set of at least La+2 B-smooth numbers, on 
the basis of which one can obtain equal squares modulo N, 
and the data processing stage, where all collected informa-
tion is placed in a matrix, the processing of which results in 
a solution [10–13].

At the first stage, the sieving interval is selected, the 
factor base is constructed and the sieving procedure is im-
plemented. The most time-consuming part of the quadratic 
sieve algorithm is the sieving process when looking for 
B-smooth numbers based on the selection of x values in (1). 
In the general case (according to [14]), the size of the sieving 
interval can be obtained by the formula:

( ) ( )
3 2/4 3 2/4ln( )lnln( ) 3 2/4.n nbL e L n L= = =   (4)

The factor base size is one of the key parameters that de-
termine the efficiency of the sieving algorithm. Too large fac-
tor base requires the search for a large number of B-smooth 
numbers, which increases the total execution time of the 
algorithm [1, 5, 13]. When the size is less than necessary, 
it will not be possible to find enough B-smooth numbers. 
The ratio (2) is the recommended number of the factor base 
elements, obtained on the basis of numerical experiments. 
Then the algorithm of the QS method searches B-smooth 
numbers in the quantity not less than 2.aL +  If enough 
B-smooth numbers are not found on the sieving interval, it 
is possible to increase both the size of the factor base and the 
sieving interval, which leads to a significant increase in the 
algorithm execution time.

For the quadratic sieve algorithm, a number of modifica-
tions related to the acceleration of the sieving process and 
solution of the matrix have been proposed.

To increase the number of possible B-smooth numbers, 
[12] proposes to memorize y(x)=y1(x)y2(x) such that y1(x) 
is a smooth number and В<y2(x)<В2. In the presence of two 
such numbers у with the same y2, their product becomes 
B-smooth. In [15], it is suggested to check whether y2(x) is 
an integer square. There is no need to look for a pair for such 
numbers as in the previous modification, they are called 
conditionally B-smooth and referred to a set of B-smooth.

In [5], the method of paralleling of the sieving process, 
known as MPQS (multiple polynomial quadratic sieve), has 
been proposed. It has been noted that the step of matrix 
solution cannot be parallelized, so steps have been taken to 
accelerate it [13].

In [16], it has been described that the number of units in 
the power matrix is much smaller than the number of zeros. 
For large numbers of 10100 or more, the ratio of the number 
of zeros to the number of units only grows. Most of the mem-
ory allocated for storing the matrix is used to store zeros. 
Therefore, instead of storing a two-dimensional matrix, it is 
proposed to store only units digit positions.

In all provided publications, it was considered that the 
stage of matrix solving requires a mandatory finding of the 
quantity of B-smooth numbers, not less than 2.aL +  In [17], 
a modification of the quadratic sieve algorithm has been pro-
posed, in which, based on the current analysis of B-smooth 
numbers, the highest sequence number of the factor base 
element р(і) is determined for each i-th B-smooth number, 
for which the exponent in the decomposition of B-smooth 
will be odd. If during obtaining a set of B-smooth it turns 
out that Lmax+2 B-smooth numbers are found, for which  
р(і)≤Lmax, then a matrix with the number of the factor base 

elements of Lmax≤La can be formed. That is, both the size 
of the sieving interval and the size of the matrix can be 
reduced.

In the modified algorithm presented in [17], it is possible 
to achieve a decrease in the size of the sieving interval and 
the matrix only when in the set of Lmax+2 B-smooth num-
bers all odd powers of factors are assigned to the sequence 
numbers of the factor base elements, which do not exceed 
Lmax≤La. However, there are cases when the solution of the 
factorization problem is possible with a much smaller num-
ber of B-smooth numbers, where the factor base elements 
used in them can be placed randomly, not only among the 
smallest values. The option of y(x) value, which is an integer 
square, is possible. Then the factorization problem is solved 
by the Fermat’s method [1, 6, 7]. In other cases, methods of 
identification of such a subset of the factor base elements 
were not found in the scientific literature, as well as means 
of early identification of a set of B-smooth, for which the vec-
tors, formed on the basis of odd exponents of the factor base 
elements, generate a linearly dependent subsystem. In this 
study, for the early identification of such a set of B-smooth 
numbers, it is proposed to use the online matrix diagonaliza-
tion, when diagonalization continues with each occurrence 
of a new B-smooth and ends upon receipt of a zero vector.

3. The aim and objectives of the study

The studies were aimed at evaluating the efficiency of the 
modified quadratic sieve algorithm, which simultaneously 
implements the process of sieving and finding B-smooth 
numbers and the process of finding a zero vector in the diag-
onalization of the power vector matrix.

To achieve this aim, the following objectives were ac-
complished:

– to construct an algorithm for the online matrix solving 
in the quadratic sieve method;

– to analyze the influence of the online matrix solving on 
the speed and the result of factorization;

– to conduct a comparative estimation of complexity 
and time of implementation of the modified quadratic sieve 
method with the basic quadratic sieve and general number 
field sieve method.

4. Method of the online matrix solving of B-smooth 
numbers

In this study, we consider the problem of finding the sizes 
of the sieving interval and the factor base, where the factor 
base contains Lа elements, to be solved.

In the proposed algorithm that implements the online 
matrix solving, the additional vector Vs[La+1] is used.

The search for a zero vector of the power matrix is pre-
sented below by the following steps:

1. Upon the occurrence of a new B-smooth number, the 
power vector Vnew, which corresponds to it, is introduced 
in the matrix.

2. We perform analysis of vector Vnew:
a. The position k0 of the first non-zero value of the vector 

Vnew and the position of the vector itself in the matrix kv  
are calculated.

b. If the zero value of the vector Vnew is absent, then the 
zero vector is found. Go to step 4.
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3. The element of the vector Vs 
with the number that is equal to the 
first non-zero value of the added vector 
Vnew–k0 is checked.

a. If the element is empty, then the 
position of the added vector Vnew–kv: 
Vs[k0]=kv is introduced in this element. 
Go to step 1.

b. If this element is not empty, then a 
row that needs to be added to the vector 
Vnew is found using the value in this 
element. Go to step 2.

4. It is clarified whether the root value obtained is equal 
to N. If not, the factorization problem is solved, otherwise 
go to step 5.

5. Information about the B-smooth number with zero 
values of the transformed matrix elements is removed. Go 
to step 1.

5. Examples of application of the online matrix solving 
algorithm

Consider the efficiency of the proposed modification on 
the examples.

Example 1. We choose p=401 and q=103. These prime 
numbers form the number for factorization p*q=N=41303. We 
calculate the size of the factor base A=6 by the formula (2).  
Using the formula (4), we obtain the sieving interval M= 
=203. The initial value Х0=xx= N =204.

After sieving of y(x) options through the factor base, 
we obtain B-smooth numbers. These numbers are shown in 
Table 1.

Table 1

Results of sieving of y(x) options

Power vector of B-smooth numbers
B-smooth

Number sign 2 11 19 23 29 37

1 1 1 0 0 2 0 –18502

1 0 1 0 0 0 2 –15059
1 1 0 0 1 0 1 –1702
0 1 0 2 0 0 0 722

0 0 0 0 2 1 0 15341

0 1 1 0 1 0 1 18722

For the basic quadratic sieve algorithm, these numbers 
are not enough to form a matrix and obtain a solution.

Note that the vectors in bold in Table 1 form a zero 
vector.

The method for the online matrix solving managed to 
find a zero vector with the current number of B-smooth 
numbers and factorize N.

Example 2. Let p=7624217, q=98269, N=749224180373, 
the factor base size: La=29, sieving interval: Lb=24052, ini-
tial value Х0=xx= N =865578.

The factor base elements: 2, 7, 11, 19, 23, 31, 37, 41, 43, 
61, 67, 71, 101, 127, 131, 157, 163, 167, 173, 179, 181, 191, 193, 
211, 223, 227, 229, 241, 263.

The basic quadratic sieve method needed to check 5535 x 
options to get 30 B-smooth and factorize the number.

As can be seen from Table 2, the modified method has 
checked 194 x options, having obtained only 3 B-smooth.

This turned out to be enough to obtain a zero vector.
The modified algorithm obtained a solution thirty times 

faster than the basic algorithm.
Table 3 gives examples of the obtained acceleration factors 

of the modified algorithm with an approximate step of 20. 
Acceleration is calculated by the ratio of the number of X 
sieved by the basic method to the number of X sieved by the 
modified method.

The method of the online matrix solving in some cases 
allows forming a zero vector of already obtained vectors for 
B-smooth numbers even if the basic method failed to obtain 
enough B-smooth to form a matrix. So for one of the numer-
ical experiments, 200 prime numbers in the interval from 
23663 to 152065567 with a floating step were selected and 
ten thousand N for factorization were generated. The basic 
algorithm failed factorization in 686 cases of 10000. The 
modified algorithm reduced this figure to 503 cases. The 
time of factorization of all successful cases also decreased 
from 3941 seconds to 3301 seconds, which is 16 percent.

Factorization of one number of 2210 in size by the basic 
quadratic sieve method may take up to 2 minutes, so the 
studies for a large number of much larger numbers were not 
conducted because this requires substantial computing re-
sources. For the efficiency analysis, control ranges for N close 
to 12 ( 2)

10log ,kN + +  where k=0, 1,.., 5 were chosen. 

Table 2

Results of sieving of x options

X Y Factor base elements

865615 65147852 0 2 2 2 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

865533 –76806284 1 2 0 0 1 0 0 0 1 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 1

865481 –166819012 1 2 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 1

Table 3

Comparative analysis of the modified quadratic sieve method with the basic quadratic sieve method.

P Q

Number of 
X sieved by 
the modified 

method

Number of X 
sieved by the 
basic method

La

Number of 
B-smooth obtained 

by the modified 
method

Number of 
B-smooth 

obtained by the 
basic method

Acceleration, 
times

152065567 21386557 7739 7739 54 59 59 1

24359 75511 62 655 18 7 19 10.5 

170537 47087 37 769 20 4 21 20.8

44351 60343 33 1125 18 3 19 34.0

111121 41381 20 1377 19 3 20 68.8

853529 333367 226 19025 27 3 22 84.1

51749 32609 3 305 18 2 19 101.6



Eastern-European Journal of Enterprise Technologies ISSN 1729-3774 2/4 ( 92 ) 2018

36

For each k, 10000 options of N were formed. p and q were 
chosen according to the formula 

10log*10 200* ,N jp i f±= +  

where 

1,2,...,9;i =  0,...,5;j =  0,1,...,200.f =  

On the basis of the obtained results, their extrapolation 
on the numbers of the order up to 10130 was performed.

The efficiency analysis was conducted on several grounds:
1. The number of sieved X for the basic and modified 

methods.
The relative reduction of the total number of sieved X (in 

percentage) is given in Table 4.

Table 4

Percentage of acceleration of the modified quadratic 
sieve method relative to the basic quadratic sieve method, 

according to the factorized number size

lgN %

14 13.06974138

16 12.20758206

18 10.23803938

20 9.047552192

22 8.337249169

Since the procedure of sieving the test values of x is 
the most time-consuming, the estimation of the number of 
sieved x is an important component that characterizes the 
effectiveness of the algorithm, and such estimation is accu-
rate. At the same time, it is impossible to take into account 
the time for the matrix re-solving in case of wrong solutions. 
Therefore, the estimation by the number of sieved x is not 
complete.

2. The total execution time of the factorization task. The 
calculated percentage of reduction of the total execution 
time of the factorization program is given in Table 5.

Table 5

Percentage of acceleration of the modified quadratic 
sieve method relative to the basic quadratic sieve method, 

according to the factorized number size

lgN %

14 15.42857143

16 12.47148289

18 11.89327278

20 10.65345846

22 8.647172602

It should be noted that the estimation of calculation time 
is not accurate. One and the same task can be performed for 
different (close) time associated with the running of the op-
erating system task scheduler. Therefore, the data presented 
in Table 5, obtained on the basis of one calculation for each 
method are approximate. Estimation of the error of such data 
was not carried out, since each of the calculations required 
much time, which makes it impossible to conduct a statisti-
cally significant number of experiments.

According to the results from Table 4, 5, the functions 
were formed by the least squares method,

194.39
0.49

lg
T

N
= −     (5)

and

134.57
4.43

lg
T

N
= +     

respectively.
Fig. 1 shows the graph of these functions.

Fig. 1. Acceleration graph of the online matrix solving 
method

For further estimation, we will use the formula (5), 
since the comparison of execution time has errors, though 
takes into account the time to find p and q. Therefore, by 
the formula (5) we obtain that for numbers of 10100 in size, 
the modified quadratic sieve algorithm based on the online 
matrix solving has an acceleration of about 5.76 percent, and 
for numbers of 10130 in size – 5.45 percent.

6. Comparative estimation of complexity of the modified 
method of quadratic sieve with general number field sieve

To compare the relative efficiency of the QS and GNFS 
methods, we assume that

( )* 1/2( ) exp (ln ln ln ) ,QST N N N= ⋅

( )* 1/3 1/3 2/3( ) exp (64 / 9) (ln ) (ln ln ) ,GNFST N N N= ⋅

* *( ) * ( ),QS GNFST N K T N=

where the coefficient K is determined from the condition 
that the QS method is better than GNFS for the numbers 
10110, but for N>10129 GNFS will be better, and for some 
10110<N<10129 the relations are the same

*

*

( ) ( )
.

( ) ( )
QS QS

GNFS GNFS

T N T N

T N T N
=

We calculate * ( ),QST N  * ( )GNFST N  and 

* *( ) ( ) / ( ),K GNFS QST N T N T N=  
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the value of which will allow characterizing the coefficient 
K [18, 19].

Table 6

Comparative data for the QS and GNFS methods

lgN
* ( )QST N * ( )GNFST N * *( ) ( ) / ( )K GNFS QST N T N T N=

110 1.8209e+016 3.4122e+016 0.53365 

111 2.2252e+016 3.9907e+016 0.5576 

112 2.7172e+016 4.6635e+016 0.58266 

113 3.3154e+016 5.4452e+016 0.60887 

114 4.0422e+016 6.3527e+016 0.63629 

115 4.9245e+016 7.4056e+016 0.66498 

116 5.995e+016 8.6261e+016 0.69498 

117 7.2927e+016 1.004e+017 0.72637 

118 8.8648e+016 1.1677e+017 0.7592 

119 1.0768e+017 1.357e+017 0.79355 

120 1.3071e+017 1.5758e+017 0.82947 

121 1.5854e+017 1.8285e+017 0.86706 

122 1.9218e+017 2.1203e+017 0.90637 

123 2.3278e+017 2.4568e+017 0.9475 

124 2.8177e+017 2.8447e+017 0.99052 

125 3.4085e+017 3.2915e+017 1.0355 

126 4.1203e+017 3.8059e+017 1.0826 

127 4.9776e+017 4.3977e+017 1.1319 

128 6.0093e+017 5.0781e+017 1.1834 

129 7.2501e+017 5.8598e+017 1.2373 

130 8.7416e+017 6.7574e+017 1.2936 

From Table 6, it follows that ТK(N) grows with the 
increasing number of decimal digits N. However, the inter-
esting fact is that with increasing the number of decimal 
digits N per unit, ТK(N) increases 1.045 times for lgN=113 
and reaches the value of 1.0459 for lgN=160, with a smooth 
monotonous growth. That is, regardless of the boundary 
value lgN, at which the QS and GNFS methods have the 
same computing complexity, any option of the improved QS 
method, for which the boundary value lgN is increased by 
one, requires its computing complexity to be reduced at least 
1.045 times.

For the performed calculations, (1) 1.o =  was chosen. It is 
possible to assert with full confidence that the dynamics for 

(1) 1o ≠  will be similar to that given above.

7. Discussion of the results of the study of the efficiency 
of the modified quadratic sieve method

The speed of the quadratic sieve method depends on such 
heuristic values as the size of the factor base and the sieving 
interval.

It is shown that for the selected 10,000 numbers of 1013 in 
size, the modified algorithm managed to reduce the number 
of failed factorizations from 686 cases to 503 relative to the 
basic quadratic sieve algorithm. This became possible due to 
the fact that in the modified algorithm there is no need to ob-
tain La+2 B-smooth numbers prior to diagonalization of the 
matrix, as in the case of the basic method. A zero vector in a 
number of cases can be obtained much earlier, as illustrated 
in the examples given.

Among other important characteristics of this method, 
it should be noted that when used, the same operations as 
in the basic quadratic sieve method are performed, only 
their order is changed. That is, in the worst cases when the 
required number of B-smooth is La+2, the computing com-
plexity of the modified method will be the same as in the 
basic one.

But it can be significantly reduced if the set of B-smooth 
numbers, for which the power matrix vectors form a linearly 
dependent system, are found quickly.

The peculiarities of the proposed modification include 
the fact that while simultaneously searching for B-smooth 
and diagonalizing the matrix, problems with the required 
amount of computer memory may arise, since it is known 
that when factorizing the RSA-129 number for solving the 
matrix, a supercomputer was used, which was not required 
to obtain B-smooth numbers.

In the analysis of the relationships between the comput-
ing complexity of the quadratic sieve and general number 
field sieve (GNFS) methods, it was found that an increase 
in the factorized number N by one decimal digit decreases 
the computing complexity of GNFS compared with QS  
1.045 times (by 4.5 %) for numbers 10125–10130 and this 
value varies quite slowly. Therefore, we can assume that any 
modifications to the quadratic sieve method, which, with the 
growth of N, reduce its computing complexity a number of 
times, asymptotically close to a constant, will not be com-
petitive with GNFS with sufficiently large N.

The estimation of acceleration of the modified method 
for numbers up to 10130, which is approximately 5.45 per-
cent, shows that the proposed modified method allowed 
reducing the computing complexity of the basic QS method, 
but the value of the factorized numbers N, for which the 
method would be the best, increased only by a decimal digit.

Further improvements to the quadratic sieve method, 
which would provide a much more significant reduction in 
its computing complexity, should be related to approaches 
aimed at reducing the sieving interval and the size of the 
factor base, which in relative terms should be the greater, 
the higher N.

8. Conclusions

1. The algorithm for the online matrix solving, which ac-
celerates the basic quadratic sieve method was developed. In 
some cases, 10, 100 and more times acceleration is possible. 
The average reduction of the computing complexity of the 
modified method for numbers up to 10130, according to the 
estimates obtained, is 5.45 percent. This effect is associated 
with the possibility of obtaining a zero vector in some cases 
much earlier than La+2 B-smooth numbers are found, which 
is provided in the algorithm of the basic method and illus-
trated in the examples given.

2. On the basis of numerical experiments, it is shown 
that the online matrix solving allows the factorization of the 
number in some cases where the basic quadratic sieve algo-
rithm (standard sieving interval and size of the factor base) 
failed to form a matrix for obtaining a solution. Namely, for 
the selected 10,000 numbers of 1013 in size, the modified 
algorithm managed to reduce the number of failed factoriza-
tions from 686 cases to 503 relative to the basic quadratic 
sieve algorithm.
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