
Eastern-European Journal of Enterprise Technologies ISSN 1729-3774	 2/4 ( 92 ) 2018

46

 O. Stelia, L. Potapenko, I. Sirenko, 2018

1. Introduction 

Interpolation and approximation of numerical sets of 
data is a relevant task in applied mathematics because of a 
widespread application in various fields of science and tech-
nology. Among the various areas of research, there are two 
that stand out ‒ the interpolation using polynomial splines, 
which solves a problem on the construction of curves that 
pass through the set points, and methods for constructing 
Bezier curves for which set points are the control points. It 
is understood in the sense that a curve does not pass through 
these points but approaches them, changing in so doing its 
shape depending on their location. At present, researchers 
chose to combine these two approaches. That makes it pos-
sible to obtain rather smooth curves and efficient algorithms 
for their construction with the possibility of interactive con-
trol over the shape of the curves using control points.

2. Literature review and problem statement

A method for constructing curves, which are called the 
Bezier curves, was developed independently by engineers 
Pierre Bézier, who worked for the automotive company 
Renault (Headquarters in the city of Boulogne-Billancourt, 
France), and Paul de Castillo, who was an employee of 
the automobile company Citroën (Headquarters in Paris, 
France) [1]. They proposed to apply these curves to design 
automobile bodies. A widespread use of Bezier curves for the 
problems on approximation is associated with convenience 
in both the analytical description and the visual geometri-
cal construction. Employing the Bezier curves in computer 
graphics systems allows the user to move control points us-
ing a cursor on the screen to interactively change the shape 
of the curve [2]. This is a handy tool used in various areas of 
technical design.
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The basis of the Bezier curves is equivalent to the basis 
formed by the Bernstein polynomials [3]. In this case, the 
order of a polynomial is one unity less than the number of 
control points. Given the global character of the Bernstein 
basis, a change in the location of control points results in a 
change of the entire curve. 

A detailed description of Bezier curves with many exam-
ples is given in paper [4]. Article [5] proposes a new approach 
to building the Bezier curves with a preset smoothness. To 
overcome these constraints, the B-splines are employed [6]. 
The built curve resides inside the convex shell of the defining 
polygon.

The combination of Bezier curves with a procedure 
for building a spline yielded significant possibilities to the 
development of spline curves. A comparison between the 
Bezier curve and methods for interpolation using the Her-
mitian splines is given in paper [7]. Manipulating control 
points makes it possible to customize the interpolation spline 
to the shape of the curve selected by a designer. Paper [8] 
studied the criteria for choosing the “best” spline to achieve 
a G2-smoothness of the entire curve. The structure of spline 
is introduced with additional parameters for retaining the 
universality and good approximating properties of splines in 
terms of engineering applications.

Paper [9] presented techniques for obtaining piece-
wise-quadratic polynomial curves with four control points 
for each segment of the curve and local parameters of the 
shape. Introducing additional parameters to the basis is a 
convenient way to adjust shape of the curves. Numerical 
and geometrical effects caused by a change in the shape 
parameters are investigated in [10]. [11] shows the way the 
shape of the curve changes locally depending on values for 
the parameters of the shape, which are included in the basis.

In order to represent conical curves, as well as certain 
transcendental curves, it is more appropriate to use trig-
onometric functions as the basis functions of the B-spline 
curve. In this case, the introduction of parameters to basis 
functions also provides additional possibilities to adjust the 
shape of the curve. Authors of [12] employ a trigonometric 
basis that contains parameters of the shape to represent an 
ellipse. Article [13] reported building a new type of splines, 
which are called quadratic irregular algebraic trigonometric 
B-splines with several shape parameters, and which make it 
possible to globally or locally adjust the shape of the curves. 
Paper [14] studied the dependence of geometrical properties 
of the proposed cubic trigonometric curves and the Bezi-
er surfaces on the shape parameters. Authors of [15] also 
considered cubic trigonometric basis functions of a spline 
with a local parameter of the shape. Thus, the introduction 
of parameters makes it possible to build a class of functions 
among which one can choose the one that is most suitable for 
a given data set.

At the same time, the inclusion of shape parameters into 
a basis, although allows a local change in the shape of the 
curve, however, has its drawbacks. The popularity of the idea 
of Bezier curves is explained by that using control points the 
user can interactively choose the shape of the curve, while 
introduction of parameters to the basis does not provide for 
such an opportunity. The smoothness of the curve can also 
depend on the values of parameters. Thus, for example, au-
thors in [11] achieve, at the points where individual segments 
of the curve are joined, in the general case, only a smoothness 
of G1, while a smoothness of С1 is displayed by the curve only 
when parameters accept zero values.

Paper [16] outlines methods that are used in computer 
graphics. Specifically, it describes the OpenGL software 
package, which is widely applied currently in most computer 
systems. The package has features that make it possible to 
work effectively with the Bezier splines, B-splines, and other 
spline curves. [17] deals with the use of curves and surfac-
es in geometrical modeling, the algorithmic processing of 
Bezier curves and spline curves is also considered. A mathe-
matical theory of the basic methods of computer graphics is 
generalized in [18]; the authors examined the application of 
Bezier splines, B-splines, and generalized cubic splines for 
the systems of computer graphics. Methods for modeling 
curves and surfaces, used in the related fields of geometric 
modeling, computer geometric design and computer graph-
ics, are described in [19].

Thus, it is a promising task to develop efficient algo-
rithms for constructing piecewise-polynomial curves with 
smoothness С1 with an interactive possibility to change the 
shape of the curve using control points and shape parameters 
of the curve.

3. The aim and objectives of the study

The aim of present study is to develop and substantiate, 
by using piecewise-cubic polynomials, a method for con-
structing a spline curve, which would retain such important 
properties of Bezier curves as the inheritance of the shape, 
which is assigned by control points, the possibility of in-
teractive control over the shape of the curve by using these 
points and a local control over the shape of the curve apply-
ing shape parameters at total smoothness С1. This would 
make it possible to extend the functional toolset of computer 
graphics systems in terms of interactive influence, including 
local, on the shape of the curve.

To accomplish the aim, the following tasks have been set:
– to build a system of equations to calculate coefficients 

of the curve with preset properties; 
– to find conditions for the existence and uniqueness of 

the curve to be built;
– to illustrate, drawing examples, the approximating 

properties of the built curve and the possibility for a local 
change in its shape depending on parameters.

4. Method for constructing a curve and conditions for its 
existence and uniqueness

In order to develop a method for constructing a spline 
curve with preset properties, we shall employ the approach 
that was developed for the construction of a parabolic spline 
[20] and further developed for non-uniform grids [21]. 

Let us consider a certain interval [a, b] in which we de-
termine partitioning 

τ∆ = τ < τ < < τ =1 2: ... .Na b

In knots τi, we set the value Fi (control points). Along 
with partitioning Δτ, we introduce partitioning

+∆ τ = < < < = τ1 1 2 1: ... ,x N Nx x x

where τi-1<xi<τi , i=2,..., N. Values of a certain function at 
points xi are denoted by fi. 
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We introduce notation hi=τi–τi-1, μi=τi–xi.
Then xi–τi-1=hi–μi. With respect to these notations, we 

obtain:

[ ]− − µ + µ
= 1( )

,i i i i i
i

i

F h F
f

h  

−−′ = 1( )
.i i

i
i

F F
f

h

We shall build a spline curve of third degree S(x), 
a≤x≤b, for which points τi will be the knots of the spline, 
while points xi will be multiple knots of the interpolation. 
We shall construct a cubic spline of defect 2 in the inter-
val [a, b] that meets the following conditions

=( ) ,i iS x f 		  (1)

′=′( ) ,i iS x f  = 2, .i N 		  (2)

Denote through ϕi, i=1,... , N the unknown values of the 
function in the knots of spline τi. 

To construct the spline, we record the Hermitian in-
terpolation polynomial [22] of third degree in each of the 
intervals [τi–1, τi], i=2,..., N–1, 
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for τi≤xi≤τi+1. 
It is obvious from equalities (3), (4) that condition (1) is met. 

To determine magnitudes Q1 and Q2, we shall employ condition 
(2), that is, the following relationships must be performed:
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Consider by analogy 
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Determine the derivatives, found above, at points xi 
and xi+1.
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Using the above notations for steps hi and μi, we ob-
tain:
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In equation (9), we increase the index by 1 and find an 
expression for Q2.
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To ensure the smoothness of the obtained curve, that is 
the continuity of the first derivative, we demand that rela-
tionship −
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Equating expressions (13) and (14) and substituting 
values Q1 and Q2, we obtain a system of linear algebraic 
equations with a three-diagonal matrix for determin- 
ing ϕi:
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Record expression (15) in the form:
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To close the system of equations, we add conditions:

φ = φ =1 1, .N Nf f 		  (19) 

It is obvious that values of Ai, Bi
(1), Bi

(2), Ci are positive 
and 0<αi<1, where αi=μi/hi. If Bi

(1)>Ai and Bi
(2)>Ci, system 

(16) will have a diagonal advantage. 
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solution to which is αi<2/3.
Similarly, if condition Bi
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the solution to which is αi+1>1/3.
If αi=1/3 then Bi

(1)>Ai and Bi
(2)=Ci. If αi=2/3, then 

Bi
(1)=Ai and Bi

(2)>Ci, hence, Bi
(1)+Bi

(2)=>Ai+Ci.

Thus, the system of equations (16)–(19) has a diagonal 
advantage, hence it follows the existence and uniqueness of 
the solution to system [23]. 

Thus, provided 1/3≤αi≤2/3, the interpolation cubic 
spline curve S(x) of defect 2 for partitions Δx, Δτ in the in-
terval [a, b], which meets conditions (1), (2), does exist and 
is unique. 

Note that when one changes parameters μi (shape pa-
rameters of the curve), we obtain different curves, among 
which one selects the most suitable variant for a practical 
application.

5. Examples of calculations

We shall illustrate computational properties of the re-
sulting curve by drawing the following examples.

5. 1. Example 1
Assume a grid function is assigned in the interval 

0≤x≤11. Values of the function are given in Table 1. Accept 
μi=1/2.

Table 1

Values of control points

τi 1 2 3 4 5 6 7 8 9 10 11

Fi 1 3 3 1 2 7 1.5 1 10 2 1.5

Fig. 1 shows results of the construction of a spline curve 
in accordance with the proposed algorithm. In Fig. 1, con-
trol points are indicated by points; in this case, the line 
connecting them is dotted. A solid line indicates the built 
spline curve.

Fig. 1. Results of the calculation of a spline curve

Fig. 2 shows the curve that is built based on the proposed 
method, and a curve from paper [11]. Values of control points 
are taken from [11] and are given in Table 2. The charts 
presented here show that the constructed curve is better in 
reproducing the shape assigned by control points. In this 
case, parameters of μi accepted the following values: μ2=μ3= 
=0.714; μ4=μ5=0.5; μ6=μ7=0.286.

Table 2

Values of control points

τi –3 –2 –1 0 1 2 3

Fi 0 0 0 1.7 0 0 0
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Fig. 2. Dotted line ‒ curve from paper [11],  
a solid line ‒ constructed curve

5. 2. Example 2
Let us consider control points that reside on the semicir-

cle, assigned by equation

= − 2 ,y x x  ≤ ≤0 1.x

Values of control points are given in Table 3.

Table 3

Values of control points

τi 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Fi 0 0.3 0.4 0.458 0.490 0.5 0.490 0.458 0.4 0.3 0

Results of the construction are shown in Fig. 3. Designa-
tions in this Figure correspond to those in Fig. 1. This exam-
ple demonstrates a good possibility for the approximation of 
the arc of a semicircle using the proposed curve.

Fig. 3. Results of the construction of a curve for a uniform 
partitioning

The estimated radii, given in Table 4, show that the built 
curve rather well approximates a semicircle. An increase in 
the error at edges of the interval is due to the different length 
of the chord.

Let us choose now a partitioning on a given semicircle 
so that the lengths of the chords are the same. We shall then 
obtain values of control points that are given in Table 5.

Results of calculations are shown in Fig. 4. The radii 
calculated (Table 6) suggest that this curve is much better 
at approximating a semicircle. In this variant, the error de-
creased, especially at the edges of the interval.

Fig. 4. Results of the calculation of a spline curve for 
irregular partitioning

5. 3. Example 3
This example demonstrates the algorithm’s capacity to 

select a strategy for changing the shape parameters in order 
to locally control the shape of the curve. Consider a fragment 
of the grid function that is set in the interval 0≤x≤12. Values 
of control points are given in Table 7.

Table 7

Values of control points (fragment)

τi 1 2 3 5 6 7

Fi 1.5 1 3 3 1 2.5

Fig. 5, a shows a fragment of the chart for the con-
structed spline curve for μi=hi/2. Fig. 5, b shows result of 
the calculation in which at section (3.0, 5.0) μ3=2/3. This 
variant demonstrates a local change in the shape of the 
curve by applying a parameter μ. Fig. 5c displays results 
of the calculation in which we added to section (3.0, 5.0) 
one more control point τ4=4, F4=3, in this case, μi=hi/2.  
Fig. 5, d demonstrates the next change in the shape of 
the curve by using a parameter μ. At section (3.0, 4.0), 
μ3=2/3, at section (4.0, 5.0), μ4=1/3.

The above examples demonstrate good approximating 
properties of the proposed curve, as well as a possibility to 
locally change its shape depending on control parameters 
and shape parameters μ.

 

 

Table 4

Radius of the curve’s constructed points (τi, ϕi), (xi, fi) 

i 2 3 4 5 6 7 8 9 10

Rτ 0.4879 0.4947 0.4967 0.4973 0.4974 0.4973 0.4967 0.4947 0.4879

Rx 0.4743 0.4950 0.4966 0.4972 0.4975 0.4975 0.4972 0.4966 0.4950

Table 5

Values of control points 

τi 0 0.0245 0.0955 0.2061 0.3455 0.5 0.6545 0.7939 0.9045 0.9755 1

Fi 0 0.1545 0.2939 0.4045 0.4755 0.5 0.4755 0.4045 0.2939 0.1545 0

 

Table 6

Radius of the curve’s constructed points (τi, ϕi), (xi, fi)

i 2 3 4 5 6 7 8 9 10

Rτ 0.4952 0.4937 0.4937 0.4938 0.4938 0.4938 0.4937 0.4937 0.4952

Rx 0.4938 0.4938 0.4938 0.4938 0.4938 0.4938 0.4938 0.4938 0.4938
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a                                                  b 

 
 
 
 
 
 
 
 
 
 
 

c                                                   d  
Fig. 5. A change in the shape of a spline curve at a change in 

parameter μ and control points

6. Discussion of results of developing a method for  
the construction of a spline curve

In the framework of present research, we have proposed 
and substantiated a new method for constructing a spline 
curve of third degree. A given curve differs from other curves 
of this type in that the sections of straight lines that connect 
control points are tangent to it. Location of the touch points, 
as well as control points, can be assigned interactively and 
lead to a change in the shape of the curve. This makes it pos-
sible to flexibly set the shape of the curve by the user, which 
was confirmed using the examples of calculations.

Conditions for the assigned partition were found in the 
form of inequalities, which parameters μi, must meet, at 
which the curve does exists and it is unique. These condi-
tions follow from the requirement for a diagonal advantage of 
the matrix of the system for determining coefficients of the 
curve. The curve itself possesses a smoothness of С1 and re-
tains the third degree for any number of control points. Note 
that the classic cubic spline has smoothness С2 and requires 
assigning additional boundary conditions at the ends of the 

section. The constructed curve employs, as the boundary 
conditions, values of extreme control points. Finding the co-
efficients of polynomials that make up the curve comes down 
to solving a system of linear equations with a three-diagonal 
matrix. To solve the system, a sweep method is used. The 
disadvantages include the smoothness of C1 only; for most 
practical applications, however, this smoothness is sufficient.

Similar to the Bezier curves, the proposed curve could 
be used in computer graphics systems and computer systems 
for technical design. Thus, algorithmic innovations in this 
field are very important in order to develop the functionality 
of the specified systems for the graphical interpretation of 
experiment results, the creation of fonts, patterns, drawings 
of technical products, specifically parts and elements of 
transportation vehicles’ bodies, etc. 

The idea of applying additional points, as well as condi-
tions for the fulfillment of continuity of the first derivatives 
of the curve in them, was proposed in [20, 21] to build and 
substantiate the new parabolic spline. Possible continuation 
of the work might include the application of the proposed ap-
proach in order to represent parametric curves and surfaces. 
The limitations of the proposed method include the presence 
of conditions for the shape parameters, which must be met 
when constructing the curve.

7. Conclusions

1. We have proposed a method for constructing a piece-
wise-cubic spline curve, which possesses properties of both 
the spline and the Bezier curve. The resulting curve has a 
smoothness of С1 and retains third degree for any number of 
control points. A search for coefficients of the curve comes 
down to solving a system of linear equations.

2. Conditions were found in the form of inequalities, 
which parameters μi, must meet, at which the curve does 
exists and it is unique. These conditions follow from the 
requirement for a diagonal advantage of the matrix of the 
system for determining coefficients of the curve.

A series of computational experiments were performed, 
which showed that the curve effectively inherits the shape 
assigned by control points (Example 1). A comparison to the 
results of other studies revealed that the proposed curve is 
better at reproducing the shape set by control points (Ex-
ample 1). The curve is good at approximating a semicircle, 
which is quite a challenging task in the theory of approxima-
tions (Example 2). By using the curve’s shape parameters, 
it is possible to locally control its shape and obtain different 
curves, among which one selects the variant that is best suit-
ed for practical application (Example 3).
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