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Обчислювальними експеримента­
ми досліджена стійкість двочастот­
них режимів руху одномасної віброма­
шини з прямолінійним поступальним 
рухом платформи і віброзбудником 
у вигляді двокульового автобаланси­
ра. Оцінена точність закону руху сис­
теми, раніше знайденого методами 
малого параметра. Знайдена функ­
ція, яка наближує критичну швид­
кість обертання ротора, при переході 
через яку зникає стійкість двохчас­
тотного режиму руху

Ключові слова: інерційний віброз­
будник, двочастотні вібрації, авто­
балансир, одномасна вібромашина, 
ефект Зомерфельда, стійкість руху

Вычислительными эксперимента­
ми исследована устойчивость двух- 
частотных режимов движения одно­
массной вибромашины с прямоли­
нейным поступательным движением  
платформы и вибровозбудителем в 
виде двухшарового автобалансира. 
Оценена точность закона движения 
системы, ранее найденного метода­
ми малого параметра. Найдена функ­
ция, приближающая критическую ско­
рость вращения ротора, при переходе 
через которую исчезает устойчивость 
двухчастотного режима движения
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1. Introduction

Among such vibratory machines as screeners, vibratory 
tables, vibratory conveyers, vibratory mills, etc., the pro
mising ones are the multi-frequency-resonance machines [1]. 
They combine high performance of multi-frequency vibra-
tory machines [2], and the largest efficiency of resonance 
vibratory machines [3]. 

In [4], it was proposed to excite dual-frequency reso
nance vibrations by passive auto-balancers. In order to 
design vibratory machines with the new vibration exciter, it 
is required to examine their dynamics. Theoretical research 
into dynamics of vibratory machines includes such stages as 
a description of the model and construction of differential 
equations of the vibratory machine, the search for various 
possible steady motion modes and study into their stability.

At present, such a procedure is relevant in order to in-
vestigate the stability of dual-frequency motion modes of the 

single-mass vibratory machine with translational rectilinear 
motion of the platform and a vibration exciter in the form of 
a passive auto-balancer.

2. Literature review and problem statement

Authors of [4] proposed to apply passive auto-balancers 
(a ball, a roller, a pendulum) as the dual-frequency exciters 
of vibrations. To do this, a special motion regime of pendu-
lums  [5], balls, or rollers, is employed [6]. Under this mode, 
loads are tightly pressed against each; cannot accelerate to 
the rotation speed of the shaft, onto which an auto-balan
cer is mounted; and get stuck at the resonance frequency of 
platform oscillations. This induces slow resonant oscillations 
of the platform. The unbalanced mass is placed on the auto- 
balancer’s casing. This excites rapid oscillations of the plat-
form at the frequency of shaft rotation. Vibration parameters  
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are changed by altering: a shaft rotation speed, the un
balanced mass, a total load mass. The new vibration exci-
tation technique employs the Sommerfeld effect [7].

Authors of [8] devised generalized models of single-, 
dual-, and three-mass vibratory machines with translational 
motion of vibratory platforms and a vibration exciter in the 
form of a ball, a roller, or a pendulum auto-balancer. They 
derived differential equations for the motion of vibratory 
machines. In [9], by using a small parameter method, pos
sible frequencies at which loads get stuck and corresponding 
dual-frequency motion modes for a single-mass vibratory 
machine were analytically found. It was established that 
depending on the system’s parameters and the rotor speed, 
there are one or three possible frequencies at which loads 
get stuck. In the case of three frequencies at which loads get 
stuck, two frequencies are close to the natural frequency of 
platform oscillations, and one frequency is close to the fre-
quency of rotor rotation. Results of study [9] (applied in this 
paper) are described below in more detail.

In practice, of all possible motion modes reported in [9], 
only the steady motion will be implemented. It is therefore 
important to investigate stability of the dual-frequency 
modes of motion. It is also important to estimate the accu-
racy of approximated formulae intended to search for the 
potential frequencies at which loads get stuck and describe 
the dual-frequency modes of motion. 

Analytically, the stability of motions of rotor machines 
with auto-balancers is explored by Lyapunov in a small, that 
is, at very small deviations of the perturbed motion from the 
unperturbed one.

In [10], authors studied stability of different steady 
motions of the isolated system consisting of a rotating body 
and two pendulums, mounted onto its longitudinal axis. 
Elements of the theory of bifurcations of motions were 
employed [11]. In a coordinate system that rotates syn-
chronously with a carrying body, the equations of motion 
and steady motions are stationary. The authors applied, as  
a bifurcation parameter, the distance from the center of 
mass of the carrying body to the plane of pendulums. All 
possible steady motions (positions of relative equilibrium) 
were found as functions of the bifurcation parameter.  
To study the stability of various steady motions, the authors 
relied on that the stability of motions may change to insta-
bility (and vice versa) only when the bifurcation parameter 
acquires its critical values [11]. A given method makes it 
possible to explore the stability of steady motions of the 
system without additional assumptions about the ratios 
of smallness among parameters of the system. However, 
the method is effective only when one knows all possible 
established motions and all critical values of the bifurcation 
parameter. It should be noted that authors of [9] accepted 
as the bifurcation parameter the rotor speed. They found 
characteristic velocities (special values for the bifurcation 
parameter), exceeding which leads to the occurrence or 
merging different modes at which loads get stuck. In this 
case, not all possible (alternative to getting stuck) motion 
modes have been found. It is not possible to solve the prob-
lem on stability of the established modes of getting stuck 
using methods of the motion bifurcation theory.

In [6], the stability of the auto-balancing regime was 
studied in the framework of a flat model of rotor on isotropic 
supports, balanced by a multi-ball (multi-roller or multi-
mass) autobalancer. In a coordinate system that rotates 
synchronously with the rotor, the equations of motion and 

steady motion, corresponding to balancing), are stationary. 
A characteristic equation was constructed for a system of 
differential equations that describe the process of auto- 
balancing. This is the eighth-degree polynomial. It is not 
possible to find stability conditions in a general case by 
using known criteria or by searching for (exact) polynomial 
roots. Therefore, to study the stability, roots were searched 
for approximately, by decomposing in a truncated series for 
powers of a small parameter [12]. The method holds only for 
the case of isotropic supports. To study stability in the wider 
area of change in the system’s parameters, it is necessary to 
repeatedly decompose the roots of a polynomial at different 
ratios of smallness among parameters [12].

In [13–19], motion stability, corresponding to the pen-
dulums or the balls getting stuck, is investigated analytically 
by Lyapunov (in a small) in combination with methods of the 
small parameter: in [13–17] – using the method of synchro-
nization of dynamical systems [13]; in [18, 19] – applying the 
method of separation of motions [10]. 

Authors of [13–15] examined the effect of pendulums 
getting stuck in vibratory machines. For a pendulum, moun
ted on the electric motor shaft, placed on the platform of  
a vibratory machine, studies were conducted for the fol
lowing cases: a low-power electric motor [13]; an electric 
motor whose rated rotation frequency slightly exceeds reso-
nance frequency of oscillations of the platform [14]. In [15], 
a vibratory machine was studied, in which two low-power 
electric motors are placed on the platform and the shaft of 
each electric motor holds a pendulum.

The effect of balls getting stuck in the auto-balancer was 
investigated within the spatial model of the rotor, statically 
balanced by a two-ball auto-balancer [16]; the flat rotor mo
del, statically balanced by a two-ball auto-balancer [17]. The 
effect of pendulums getting stuck in the auto-balancer was 
examined within the framework of a spatial model of the rotor 
balanced by: statically, by a two-pendulum auto-balancer [18];  
dynamically, by two two-pendulum auto-balancers [19]. 

The studies reported in [13–19] established that the balls 
or pendulums get stuck at one of the natural frequencies 
of oscillations of the rotor or the platform. Comparison of 
these results with the results of paper [9] reveals that the 
combination of Lyapunov method with methods of the small 
parameter failed to detect such phenomena as:

– splitting one frequency at which loads get stuck into 
two in the vicinity of the natural oscillation frequency of the 
platform (rotor);

– dependence of the magnitude and quantity of possible 
frequencies at which loads get stuck on the rotor speed and 
other system’s parameters.

This is because these phenomena are not discoverable 
based on the solutions found at zero (and sometimes first) 
approximation for a small parameter. In this case, the search 
for solutions in higher approximations is a complex and la-
bor-intensive mathematical problem. 

The vibratory machine, considered in present work, has 
an asymmetry in supports and its dynamics is affected by 
a  large number of dimensionless parameters. Given this, its 
stability is investigated numerically. Research results are in-
terpreted applying the theory of motion bifurcation. In addi-
tion, by employing a computational experiment, one searches 
for a function of dimensionless parameters of the system, 
bringing closer the critical speed. When a rotor exceeds this 
speed, dual-frequency motion modes of the vibratory ma-
chine become unstable.
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3. The aim and tasks of the study

The aim of present study is to examine stability of dual- 
frequency modes of motion of the platform of a single-mass 
vibratory machine with translational rectilinear motion of 
the platform and a vibration exciter in the form of a passive 
auto-balancer. The results to be obtained would make it 
possible to design such vibratory machines with a steady 
dual-frequency motion mode of the platform.

To accomplish the aim, the following tasks have been set:
– to estimate the ranges of change in the dimensionless 

parameters influencing the dynamics of a vibratory machine;
– to investigate stability, by a computational experiment, 

using the methods, previously defined, for a small parameter 
of dual-frequency motion modes of the platform;

– to estimate accuracy of the approximated laws that 
govern the motion of a vibratory platform;

– to estimate, employing a computational experiment, 
the effect of dimensionless parameters on critical speed, 
above which a dual-frequency mode loses stability;

– to derive, applying a computational experiment, an 
analytical function for the approximate calculation of this 
critical speed.

4. Research methods

4. 1. Description of the generalized model of a vibra-
tory machine

A vibratory machine (Fig. 1) is composed of the platform, 
mass M, and a vibration exciter in the form of a ball, a roller, 
or a pendulum auto-balancer [8]. The platform can move 
only translationally rectilinearly (Fig. 1, a). Direction of the 
platform motion creates angle a to the vertical. The platform 
rests against an elastic-viscous support with a rigidity coeffi-
cient k and a viscosity coefficient b. Position of the platform 
is defined by the y coordinate, equal to zero in the state of 
static equilibrium of the platform.

a b

Fig. 1. Model of a single-mass vibratory machine with 
translational rectilinear motion of the platform [8]: 	

a – kinematics of the platform motion; b – kinematics 	
of the motion of the unbalanced mass and a load

The casing of an auto-balancer revolves around a shaft – 
point K with a constant angular velocity w (Fig. 1, b). The 
unbalanced mass m is rigidly coupled to the casing of the 
auto-balancer. It is located at distance P from point K.  
Position of the unbalanced mass is defined by angle wt,  
where t is the time. 

The auto-balancer consists of N identical loads. Mass 
of one load is m. Center of the masses of load can move in  

a circle with radius R centered at point K (Fig. 1, b). Position 
of load No. j is defined by angle j j, / , / .j N= 1  Motion of the 
load relative to the casing of the auto-balancer is prevented 
by the force of viscous resistance. Its modulus:

F b v b Rj W j
r

W j= = ¢−( ) | |,j w  / , /,j N= 1

where bW is the coefficient of the viscous resistance force, 
v Rj

r
j

( ) | |= ¢−j w  is the modulus of motion speed of the center 
of massed of load No. j relative to the casing of the auto- 
balancer; bar after the magnitude denotes time derivative t.

4. 2. Differential equations of motion in a dimension-
less form

Differential equations of motion in the dimensionless 
form [8]:

  v hv v s n ny+ + + =2 2δ tsin ,

  j εb j σ j α ε jj j j jn v+ − + − + =( ) cos( ) cos ,0

/ , /,j N= 1 	 (1)

where:
– dimensionless variable and time:

v y y t= = , ;t w 	 (2)

– dimensionless parameters:

h
b

M
=

2 S w
,  δ

m
=

P
NmR

,  n =
w
w

,

ε
k

=
Nm
MS

,  b
w

=
b M
Nm

W S
2


,  σ
k w

=
g

R  2 ; 	 (3)

– dimensionless projection of the imbalance created by 
corrective loads:

s
Nx j

j

N

=
=

∑1

1

cos ,j  s
Ny j

j

N

=
=

∑1

1

sin .j 	 (4)

In turn, in formulae (2), (3):
– characteristic scales:

y
NmR
M

=
S

,  w =
k

MS

; 	 (5)

– mass of the entire system:

M M NmS = + + m; 	 (6)

– for a ball, a roll, a pendulum, respectively:

k =
7
5

,  k =
3
2

,  k = +1 2J mRC / ( ), 	 (7)

where JC is the principal central axial pendulum’s moment 
of inertia; g = 9 81, m/s2  is the free fall acceleration. Note 
that w  is the natural (resonance) oscillation frequency of 
the platform.

4. 3. Dual-frequency modes of motion
A dual-frequency motion mode of the platform derived in 

the zero approximation (e = 0) takes the form [9]:
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The values for constant parameters A, g0 are not defined, 
and the frequency at which corrective loads get stuck W is  
the root of polynomial:

P n h

a a a a a a

( ) [( ) ]Ω Ω Ω Ω Ω
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= − −( ) − + =

= + + + + + =

χ 5 2 2 2 2

0
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1
4

2
3

3
2

4 5

1 4

00, 	 (9)

where

χ b= Ah ,  a0 1= + χ,  a n1 = − ,  a h2
22 1 2= − −( ),

a n h3
22 1 2= −( ),  a4 1= ,  a n5 = − . 	 (10)

Corrective loads move in line with laws:

j t yj j= +Ω ,  / , /,j N= 1 	 (11)

where yj are the undefined constants, in this case:
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Dual-frequency vibratory machines will be the more 
energy efficient the smaller the forces of viscous resistance 
are (in supports, and forces that prevent the motion of balls 
relative to the casing of the auto-balancer). Based on the 
results of paper [9], in this case, there are three characteristic 
rotor speeds:

n1
31

3
4

4» + χ,  n
h

A
h2 21

4
1

4
= + = +

χ
b

,

n
h

h3 2
2

4
1

9
16

3
2

1
27
32

» + + + +



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χ
χ χ . 	 (13)

When they passed, the number or properties of possible 
frequencies at which loads get stuck are change. 

In this case, 1 1 2 3< <� � � � �n n n n and at rotor speeds:
– lower than n1 ( ),0 1< <n n  there is only one frequency at 

which loads get stuck W1, and 0 < W1 < 1;
– exceeding n1,  but lower than n2 ( ), n n n1 2< <  there 

are three frequencies at which loads get stuck W1,2,3, so that 
0 < W1 < 1 < W2 < W3 < n;

– exceeding n2, but lower than n3 ( ), n n n2 3< <  there 
are three frequencies at which loads get stuck W1,2,3, so that 
1 < W1 < W2 << W3 < n;

– exceeding n3  ( ),n n> 3  there is only one frequency at 
which loads get stuck W1, so that 1 << W1 < n.

4. 4. Procedure for determining the onset of a dual-fre-
quency motion mode and estimating the accuracy of the 
approximated formulas

Procedure for determining the onset of a dual-frequen­
cy motion mode.

The onset of a dual-frequency motion mode is determined 
by the angular speeds of rotation of the centers of masses of 
loads. Under a dual-frequency motion mode these speeds 
should be nearly identical magnitudes that are lower than 
the rotor speed. 

In addition, a dual-frequency mode is determined from 
the characteristic shape of the chart for a vibratory accelera-
tion of the platform.

Procedure for estimating the accuracy of approxima­
ted formulae. 

The «precise» laws of motion of loads and the platform 
are understood here as the laws, derived by integrating the 
differential equations of motion (1). Precise and approxima
ted laws of motion are compared at a certain time interval. In 
this interval, the system is in steady motion with the platform 
performing several (3)–(5) slow oscillations. 

Procedure for estimating stability of the dual-frequen­
cy modes of motion. 

Dimensionless parameters of the system are fixed. We 
search, with an accuracy to 0.05, for the largest value of the 
dimensionless rotor speed ncr, at which a dual-frequency 
motion mode is still steady. If it exceeds 0.05, a given mode 
loses stability.

Procedure for searching for a function that brings closer  
the critical speed. 

The form of a function is determined based on the results 
of examining the influence of various parameters on critical 
speed. Coefficients in the function are derived by the least 
squares method.

5. Research results

5. 1. Reducing the equations of motion to a normal form
We shall introduce new variables:

z v0 = ,  z v z1 0= =  ,

z2 1= j ,  z z z j j3 1 2 2= = =� � …j j, , ,

z z zj j j N N2 1 2 2+ = = =� � …j j, , ,  z zN N N2 1 2+ = = j . 	 (14)

Introduce a matrix and a vector:
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Then a system of equations (1) in the normal form will 
take the following form:

z z0 1= ,  z zj j2 2 1= + ,  / , /,j N= 1

( , , , ) .� � … �z z z A BN1 3 2 1
1

+
−=T 	 (16)

A system of equations (16) with coefficients from (3), 
(5)–(7) will be employed in order to conduct computational 
experiments.

Computational experiments will be conducted for the 
case of 2 loads in the absence of the force of gravity (s = 0).

5. 2. Estimation of the magnitudes of dimensionless 
parameters

A vibratory table is calculated.
Data on the platform and its supports:
M0 = 36 kg – mass of the platform and the parts connec

ted to it;
M = 90 kg – mass of the loaded platform and the parts 

connected to it;
k = 145.083⋅103 N/m – a support rigidity coefficient;
b = 150 N⋅s/m – a support viscosity coefficient.
Data on the auto-balancer and the unbalanced mass:
N = 2, k = 7/5 – a two-ball auto-balancer;
Db = 0.043 m – a ball diameter;

m
Db= 





= ⋅ ⋅ ⋅
⋅





=
−4

3 2
4
3

3 142 7800
43 10

2
0 325

3 3 3

pρ . .  kg – 

mass of a steel ball;
Dr = 0.19 m – diameter of the ball running track;
R D Dr b= ⋅ − = ⋅ − =0 5 0 5 0 19 0 043 0 0735. ( ) . ( . . ) .  m – distan

ce from the longitudinal axis of the rotor to the center of 
masses of the ball;

bw = 0.03 N⋅s/m – coefficient of forces of viscous resis-
tance to the motion of the ball;

m = 0.1 kg – unbalanced mass;
P = 0.105 m – distance from the longitudinal axis of the 

rotor to the unbalanced mass.
Dimensional parameters and magnitudes:
MS0 = M0+N⋅m+m = 36.75 kg – mass of the system without 

a load;
y = ⋅ −1 3 10 3.  m – characteristic scale for the displacement 

of the system without a load;
MS = M+N⋅m+m = 90.75 kg – mass of the loaded system;
y = ⋅ −0 5264 10 3.  m – characteristic scale for the displace-

ment of a loaded system;

n k M0 0

1
2

10max = =
p S  Hz – resonance frequency of plat-

form oscillations;

n k M0

1
2

6 36min .= =
p S  Hz – resonance frequency of the 

loaded platform oscillations.
Dimensionless parameters:
e = 0.0051¸0.0126; b = 0.138¸0.537;
d = 0.22; h = 0.021¸0.032.
Hereafter we accepted the following intervals of change 

in the dimensionless parameters:
e = 0.005¸0.05; b = 0.1¸0.6;
d = 0¸1; h = 0.01¸0.07.
These intervals correspond to the required specifications 

of the designed machine. On the other hand, they make it 
possible to change characteristics of dual-frequency vibra-
tions of the platform in a wide range.

5. 3. Stability of dual-frequency modes of motion of the 
system and the estimation of accuracy of the approxima
ted laws of motion

196 computational experiments were conducted at diffe
rent values of the dimensionless parameters from the exami
ned range of their change. These experiments were performed 
to study both the stability of dual-frequency modes of motion 
and the influence of system’s parameters on critical speed. 

Results of a typical experiment conducted for the fol-
lowing values of dimensionless parameters: e = 0.01; b = 0.4; 
d = 0.25; h = 0.03.

For these values, the characteristic critical speeds:

n1 1 808» . ,  n2 21 833» . ,  n3 21 877» . .

Fig. 2 shows charts of frequencies at which balls may get 
stuck (the real roots of a polynomial (9)).

a

 

b

Fig. 2. Frequencies (Hz) at which balls may get stuck: 	
a – emergence of second and third frequencies; b – merger 

of first and second frequencies

In the range of dimensionless rotor speeds (0, ncr], where 
ncr » 7.0, only the dual-frequency mode of motion is stable, at 
which balls get stuck at a pre-resonant frequency W1.

The balls under this mode: 
– create the greatest imbalance;
– rotate synchronously ( ( ) ( ))j t j t1 2=  as a whole.
At the rotor speeds that exceed critical speed ncr, there 

may occur, depending on the magnitudes of dimensionless 
parameters:

– auto-balancing;
– a stable dual-frequency motion mode with a frequency 

at which loads get stuck W3;
– a chaotic motion of the system. 
These modes of motion are not explored in detail, since 

operation of the designed single-mass vibratory machines is 
based on using only the first mode of motion.

The charts that describe a dual-frequency motion mode 
of the system at n = 5 are shown in Fig. 3.
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a

b

c

 

Fig. 3. Charts of change in the dimensionless: 	
a – rotation speeds of the centers of balls; 	

b – displacement (yi), velocity (vi), and acceleration (ai) 	
of the platform; c – differences between the approximated 

and actual displacements, velocities, and accelerations 	
of the platform

The charts demonstrate the number of slow oscillations 
of the platform on the horizontal axis. Possible frequen-
cies at which balls get stuck (the roots of equation (9)) 
are W1 » 0.9465, W2 » 1.0732, W3 » 4.61875. The frequency at 
which a ball gets stuck, derived from averaging the angular 
velocity of rotation of the ball center:

Ω
D D

1

1
0 9469= =

−
∫t

j t t
t t

t



j ( ) . ,
max

max

d  / , /,j = 1 2 	 (17)

where tmax is the experiment du-
ration, Dt is the time interval at 
which the averaging is performed. 
Difference between W1 and Ω1 is 
0.04 %. The differences between the 
approximated and the actual mo-
tions, velocities and accelerations of 
the platform do not exceed 1.105 %.

Similar results were obtained 
when performing other computa-
tional experiments. The experiments 
have proved that for any values of 

dimensionless parameters of the system in the examined 
range there is a critical rotor speed ncr, such that:

– in the range of rotor speeds (0, ncr], only the first mode 
at which balls get stuck is stable;

– upon exceeding this critical speed, the first mode loses 
stability.

5. 4. Estimation of influence of various parameters on 
critical speed

5. 4. 1. Influence of the small parameter e on critical 
speed

Fig. 4 shows dependence charts of critical speed on pa-
rameter e at different d and b = 0.4, h = 0.03.

a

b

 

 

Fig. 4. Dependence of critical speed on parameter e 	
at different d and b = 0.4, h  = 0.03: a – throughout 	

the interval (0, 0.1]; b – in the vicinity of e = 0

Fig. 4 shows that:
– at a decrease in parameter e critical speed approaches  

a characteristic speed n2  at A=1;
– at a zero approximation for e, critical speed coincides 

with n2;
–  n2  cannot be used to calculate the critical speed ncr 

because even at a slight increase in e critical speed rapidly 
deviates from the characteristic speed.

5. 4. 2. Influence of parameters b, d, h on critical speed
Fig. 5, 6 show dependences of critical speed on parame-

ters h, b, d.

a b
  

Fig. 5. Dependence of critical speed on parameter: 	
a – h (at different e and b = 0.4, d = 0.25); b – b (at different h and e = 0.005, d = 0.25)
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Fig. 6. Dependence of critical speed on parameter d: 	
a – at different h and e = 0.01, b = 0.4; b – at different e 	

and b = 0.4, h = 0.03

Charts in Fig. 5, 6 show that in the examined range of 
change in the parameters critical speed considerably depends 
on dimensionless parameters of the system; in this case:

– ncr monotonically increases for parameter d;
– ncr monotonically decreases for parameters e, b, h;
– dependence on parameter h is close to linear;
– dependences on parameters e, b, d are essentially 

non-linear.

5. 5. Approximation of critical speed using an analytic 
function

Based on the results from chapters 5. 3 and 5. 4, critical 
speed depends on all dimensionless parameters of the system: 
n n hcr cr= ( , , , ).b ε δ

The search for this critical speed by a combination of Lya-
punov method and the methods of a small parameter requires 
consideration of higher approximations for a small parameter. 
Therefore, it is a complex and labor-intensive mathematical 
problem. 

On the other hand, at e = 0:

n h n
hcr A

( , , , ) .b δ
b

0 1
1

42 1
= = +

=


Hence, it follows that critical speed is appropriate to  
be searched for in the form:

n h
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where f gi i, , / , , /i = 1 2 3  are the analytical functions; in this 
case, fi ( ) .ε ε→ →0 0

We tested different powers from e as functions fi. We 
tested as functions gi: linear and quadratic forms; fractions 
of linear forms; exponents of linear and quadratic forms. The 
best result was demonstrated by the function of form (18), 
in which:
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The following parameter values were derived by the 
least-squares method:

a1 26 5235= − . ,  a2 16 7424= − . ,  a3 30 1288= − . ,

b0 0 2537= − . ,  b1 0 8080= − . ,  

b2 3 9439= − . ,  b3 0 6984= . ,

c1 1 7134= . ,  c2 8 2055= . ,  c3 28 7751= − . ,

d0 0 3455= − . ,  d1 0 5673= − . ,

d2 4 3034= . ,  d3 8 2679= . ,

e1 9 2714= − . ,  e2 229 7664= . ,  e3 43 5133= . ,

f0 0 0992= − . ,  f1 2 4911= . ,

f2 35 3149= . ,  f3 0 1019= − . . 	 (20)

Coefficients (20) were determined based on the results of 
all 196 conducted computational experiments. 

Function (20) produces an error not exceeding 6 %. The 
function makes it possible to calculate approximately the 
critical speed, assuming that dimensionless parameters of the 
system lie in the considered region. The function was derived 
formally; its form cannot be used for the interpretation of 
physical processes. 

The accuracy of calculation of critical speed can be 
improved by the introduction of new components and coef-
ficients to function (18). In this case, the application of the 
function in practice will be complicated. 

We shall find, at e ~ 0, critical rotor speed in a dimensional 
form. At e ~ 0: n ncr » 2. On the other hand, ncr cr= w w  and, 
therefore, at e ~ 0:
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Hence, we find a dimensional critical speed at e ~ 0:
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. 	 (21)

It follows from (21) that in order to increase the region 
of stability for a dual-frequency mode of motion (wcr), it is 
required to:

– increase the mass of load (m) or the total mass of  
loads (Nm);

– reduce the force of viscous resistance that prevents the 
motion of load (bw);
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– reduce the force of viscous resistance that prevents the 
motion of platform (b);

– increase the frequency of natural oscillations of the 
platform ( ).w

6. Discussion of results of studying the stability  
of dual-frequency modes of motion of the single-mass 

vibratory machine

The examined dual-frequency vibratory machines will 
be the more energy-efficient the smaller the forces of viscous 
resistance (in supports, and forces that prevent the motion of 
balls relative to the casing of the auto-balancer). In addition, 
in actual machines, the ratio of the mass of loads to the mass 
of the entire machine is small. These conditions make it pos-
sible to estimate the region of change in the dimensionless 
parameters in actual energy efficient machines. 

In accordance with the computational experiments, when 
accelerating the rotor, a dual-frequency motion mode sets 
in eventually at which balls get stuck at a pre-resonant fre-
quency W1. This mode is stable at speeds lower than a certain 
critical speed ncr, lesser than n2.

Despite the strong asymmetry of supports, an auto- 
balancer excites almost perfect dual-frequency vibrations. 
Deviations of the precise solution (derived by integration) 
from the approximated solution (previously found by the 
method of the small parameter) are equivalent to the ratio 
of the mass of balls to the mass of the entire machine. Thus, 
for actual machines, it does not exceed 2 %. Hence, it follows 
that when calculating the considered vibratory machines, the 
law of dual-frequency vibrations of the platform, established 
previously in [9], is applicable, as well as the corresponding 
frequency at which loads get stuck W1.

Critical speed ncr is a function of all dimensionless pa-
rameters of the system n n hcr cr= ( , , , ).b ε δ  In the examined 
region of change in the dimensionless parameters, critical 
speed decreases monotonically for parameters e, b, h, and 
monotonically increased for parameter d. At a decrease in e 
(a ratio of the mass of balls to the mass of the entire system), 
ncr strives to n2.  However, characteristic speed n2  cannot be 
used for the approximate calculation of critical speed ncr due 
to rapidly growing error arising at an increase in e.

To increase the region of stability of the dual-frequency 
motion mode (dimensional critical speed wcr), it is required to:

– increase the mass of load (m) or the total mass of  
loads (Nm);

– reduce the force of viscous resistance that prevents the 
motion of load (bw);

– reduce the force of viscous resistance that prevents the 
motion of platform (b);

– increase the frequency of natural oscillations of the 
platform ( ).w

The search for a function for the approximate calculation 
of critical speed, suitable over the entire range of change in 
dimensionless parameters, using the methods of the small 
parameter, is a complicated mathematical problem. More 
effective is the method of regression analysis. The method 
makes it possible to find the appropriate function. However, 
this function is not an approximation for a small parameter. 
Therefore, it cannot be used to interpret physical processes 
occurring in the system. 

In the future, we plan to design, fabricate, and test 
a  vibratory table with translational rectilinear motion of 

the platform and a vibration exciter in the form of a ball 
auto-balancer.

7. Conclusions

1. In actual energy-efficient vibratory machines, the 
forces of external and internal resistance should be small, 
with the mass of loads much less than the mass of the 
platform. Under these conditions, dimensionless parame-
ters that determine the dynamics of a vibratory machine 
are in the intervals: e = 0.005¸0.05; b = 0.1¸0.6; d = 0¸1; 
h = 0.01¸0.07. In this case, a vibratory machine has three 
characteristic rotor speeds. These speeds exceed the reso-
nance frequency of oscillations of the platform. In this case, 
at the rotor speeds:

– lower than the first characteristic speed, there is only 
one possible frequency at which loads get stuck, it is less than 
the resonance frequency of oscillations of the platform;

– positioned between the first and second characte
ristic speeds, there are three possible frequencies at which 
loads get stuck, among which only one is a pre-resonant  
frequency;

– positioned between the second and third characteristic 
speeds, there are three possible frequencies at which loads get 
stuck; all of them are over-resonant frequencies;

– exceeding the third characteristic speed, there is only 
one possible frequency at which loads get stuck; it is an 
over-resonant frequency and it is close to the rotor speed.

2. Under a stable dual-frequency motion mode, the 
loads: create the greatest imbalance, rotate synchronously as  
a whole, get stuck at the lowest possible frequency of getting 
stuck; only if it is a pre-resonant frequency.

There is a critical speed above which a dual-frequency 
motion mode loses stability. This speed is less than the second 
characteristic speed.

3. Despite the strong asymmetry in supports, an auto- 
balancer excites almost perfect dual-frequency vibrations. 
Deviations of the precise solution (derived by integration) 
from the approximates solution (established previously by 
the method of the small parameter) are equivalent to the 
ratio of the mass of loads to the mass of the entire ma-
chine. That is why, for actual machines, deviations do not  
exceed 2 %.

4. The critical speed significantly depends on all dimen-
sionless parameters of the system. In the examined region of 
change in the dimensionless parameters, critical speed chan
ges monotonically for each parameter.

At a decrease in the ratio of the mass of balls to the mass 
of the entire system (e), critical speed tends to the second 
characteristic speed.

However, the second characteristic speed cannot be used 
to calculate the critical speed. This is because even at a slight 
increase in e the critical speed rapidly deviates from the cha
racteristic speed. 

To extend the region of stability of a dual-frequency mo-
tion mode, it is required to:

– increase the mass of load or the total mass of loads;
– reduce the force of viscous resistance that prevents the 

motion of load;
– reduce the force of viscous resistance that prevents the 

motion of platform;
– increase the frequency of natural oscillations of the 

platform.
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5. The second characteristic speed is to be effectively used 
to search for the form of a function that brings closer the critical 
speed. In this function, coefficients are determined based on the 

results of a computational experiment applying a method of 
least squares. In the examined region of change in the parame
ters the derived function produces an error not exceeding 6 %.
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