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O6uucmosanvHuMu excnepumenma-
Mu docaioxncena cmilikicms dsouacmom-
HUX pedcuMie pyxy 00HomacHoi eiopoma-
WUHU 3 NPSAMOTUHIUHUM NOCMYNATLHUM
pyxom naampopmu i 6i0po36yoHuUKOM
Y 6uznadi 060KYNI06020 asmobanamncu-
pa. Oyinena mounicmo 3aKoHY pYxy cuc-
memu, pamiue 3nHaudenozo memooamu
Manozo napamempa. 3uaiidena Qynk-
Yis, AKa HAGMUICYE KPpUMU4HY WeUo-
Kicmv o6epmanns pomopa, npu nepexooi
uepe3 AKY 3HUKAE CMIlKiCMb 080X4acC-
MOMHO20 percumy pyxy

Kmouoei cnosa: inepuiiinuii 6iopo3-
Oyonux, deouwacmomni eidpauii, aemo-
Ooanancup, oonomacna eibpomawuna,
epexm 3omepdenvoa, cmitixicmo pyxy
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Borucaumenvuoimu dxcnepumenma-
MU UCCNE008AHA YCMOUMUBOCMb 08YX-
UACMOMHBIX PEHCUMOB OBUNCEHUSI 00HO-
MaccHoll eubpomMamunsvl ¢ NPAMONU-
HelHbIM NOCMYNAMESIbHbIM 0BUNCEHUEM
naam@opmot u 6ubpo6o3dyoumenem 6
6ude 0syxwapoeozo asmobdarancupa.
Ouenena mouHOCMb 3AKOHA OBUNHCEHUS
cucmemvt, pamnee HaU0eHH020 Memooa-
Mmu manozo napamempa. Haiioena pynx-
YU, NPUOIUINCAIOWAS KPUMUHECKYIO CKO-
pocmo epaujenust pomopa, npu nepexooe
uepe3 KOMoOpYIo ucuezaem ycmouueocmo
06YXUACMOMHO020 pexcuma 08UICEHU

Kmoueevte cnoea: unepuyuonmotii 6uo-
P0B036Yyoumens, 08yxuacmomivte 6UOPa-
yuu, asmoodanamcup, 00HOMACCHAR BUG-
pomawuna, appexm 3ommepdenvoa, yc-
MmotMU80Cms 08UNHCEHUSL
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1. Introduction

Among such vibratory machines as screeners, vibratory
tables, vibratory conveyers, vibratory mills, etc., the pro-
mising ones are the multi-frequency-resonance machines [1].
They combine high performance of multi-frequency vibra-
tory machines [2], and the largest efficiency of resonance
vibratory machines [3].

In [4], it was proposed to excite dual-frequency reso-
nance vibrations by passive auto-balancers. In order to
design vibratory machines with the new vibration exciter, it
is required to examine their dynamics. Theoretical research
into dynamics of vibratory machines includes such stages as
a description of the model and construction of differential
equations of the vibratory machine, the search for various
possible steady motion modes and study into their stability.

At present, such a procedure is relevant in order to in-
vestigate the stability of dual-frequency motion modes of the
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single-mass vibratory machine with translational rectilinear
motion of the platform and a vibration exciter in the form of
a passive auto-balancer.

2. Literature review and problem statement

Authors of [4] proposed to apply passive auto-balancers
(aball, a roller, a pendulum) as the dual-frequency exciters
of vibrations. To do this, a special motion regime of pendu-
lums [5], balls, or rollers, is employed [6]. Under this mode,
loads are tightly pressed against each; cannot accelerate to
the rotation speed of the shaft, onto which an auto-balan-
cer is mounted; and get stuck at the resonance frequency of
platform oscillations. This induces slow resonant oscillations
of the platform. The unbalanced mass is placed on the auto-
balancer’s casing. This excites rapid oscillations of the plat-
form at the frequency of shaft rotation. Vibration parameters




are changed by altering: a shaft rotation speed, the un-
balanced mass, a total load mass. The new vibration exci-
tation technique employs the Sommerfeld effect [7].

Authors of [8] devised generalized models of single-,
dual-, and three-mass vibratory machines with translational
motion of vibratory platforms and a vibration exciter in the
form of a ball, a roller, or a pendulum auto-balancer. They
derived differential equations for the motion of vibratory
machines. In [9], by using a small parameter method, pos-
sible frequencies at which loads get stuck and corresponding
dual-frequency motion modes for a single-mass vibratory
machine were analytically found. It was established that
depending on the system’s parameters and the rotor speed,
there are one or three possible frequencies at which loads
get stuck. In the case of three frequencies at which loads get
stuck, two frequencies are close to the natural frequency of
platform oscillations, and one frequency is close to the fre-
quency of rotor rotation. Results of study [9] (applied in this
paper) are described below in more detail.

In practice, of all possible motion modes reported in [9],
only the steady motion will be implemented. It is therefore
important to investigate stability of the dual-frequency
modes of motion. It is also important to estimate the accu-
racy of approximated formulae intended to search for the
potential frequencies at which loads get stuck and describe
the dual-frequency modes of motion.

Analytically, the stability of motions of rotor machines
with auto-balancers is explored by Lyapunov in a small, that
is, at very small deviations of the perturbed motion from the
unperturbed one.

In [10], authors studied stability of different steady
motions of the isolated system consisting of a rotating body
and two pendulums, mounted onto its longitudinal axis.
Elements of the theory of bifurcations of motions were
employed [11]. In a coordinate system that rotates syn-
chronously with a carrying body, the equations of motion
and steady motions are stationary. The authors applied, as
a bifurcation parameter, the distance from the center of
mass of the carrying body to the plane of pendulums. All
possible steady motions (positions of relative equilibrium)
were found as functions of the bifurcation parameter.
To study the stability of various steady motions, the authors
relied on that the stability of motions may change to insta-
bility (and vice versa) only when the bifurcation parameter
acquires its critical values [11]. A given method makes it
possible to explore the stability of steady motions of the
system without additional assumptions about the ratios
of smallness among parameters of the system. However,
the method is effective only when one knows all possible
established motions and all critical values of the bifurcation
parameter. It should be noted that authors of [9] accepted
as the bifurcation parameter the rotor speed. They found
characteristic velocities (special values for the bifurcation
parameter), exceeding which leads to the occurrence or
merging different modes at which loads get stuck. In this
case, not all possible (alternative to getting stuck) motion
modes have been found. It is not possible to solve the prob-
lem on stability of the established modes of getting stuck
using methods of the motion bifurcation theory.

In [6], the stability of the auto-balancing regime was
studied in the framework of a flat model of rotor on isotropic
supports, balanced by a multi-ball (multi-roller or multi-
mass) autobalancer. In a coordinate system that rotates
synchronously with the rotor, the equations of motion and

steady motion, corresponding to balancing), are stationary.
A characteristic equation was constructed for a system of
differential equations that describe the process of auto-
balancing. This is the eighth-degree polynomial. It is not
possible to find stability conditions in a general case by
using known criteria or by searching for (exact) polynomial
roots. Therefore, to study the stability, roots were searched
for approximately, by decomposing in a truncated series for
powers of a small parameter [12]. The method holds only for
the case of isotropic supports. To study stability in the wider
area of change in the system’s parameters, it is necessary to
repeatedly decompose the roots of a polynomial at different
ratios of smallness among parameters [12].

In [13—19], motion stability, corresponding to the pen-
dulums or the balls getting stuck, is investigated analytically
by Lyapunov (in a small) in combination with methods of the
small parameter: in [13—17] — using the method of synchro-
nization of dynamical systems [13]; in [18, 19] — applying the
method of separation of motions [10].

Authors of [13—15] examined the effect of pendulums
getting stuck in vibratory machines. For a pendulum, moun-
ted on the electric motor shaft, placed on the platform of
a vibratory machine, studies were conducted for the fol-
lowing cases: a low-power electric motor [13]; an electric
motor whose rated rotation frequency slightly exceeds reso-
nance frequency of oscillations of the platform [14]. In [15],
a vibratory machine was studied, in which two low-power
electric motors are placed on the platform and the shaft of
each electric motor holds a pendulum.

The effect of balls getting stuck in the auto-balancer was
investigated within the spatial model of the rotor, statically
balanced by a two-ball auto-balancer [16]; the flat rotor mo-
del, statically balanced by a two-ball auto-balancer [17]. The
effect of pendulums getting stuck in the auto-balancer was
examined within the framework of a spatial model of the rotor
balanced by: statically, by a two-pendulum auto-balancer [18];
dynamically, by two two-pendulum auto-balancers [19].

The studies reported in [13—19] established that the balls
or pendulums get stuck at one of the natural frequencies
of oscillations of the rotor or the platform. Comparison of
these results with the results of paper [9] reveals that the
combination of Lyapunov method with methods of the small
parameter failed to detect such phenomena as:

— splitting one frequency at which loads get stuck into
two in the vicinity of the natural oscillation frequency of the
platform (rotor);

— dependence of the magnitude and quantity of possible
frequencies at which loads get stuck on the rotor speed and
other system’s parameters.

This is because these phenomena are not discoverable
based on the solutions found at zero (and sometimes first)
approximation for a small parameter. In this case, the search
for solutions in higher approximations is a complex and la-
bor-intensive mathematical problem.

The vibratory machine, considered in present work, has
an asymmetry in supports and its dynamics is affected by
a large number of dimensionless parameters. Given this, its
stability is investigated numerically. Research results are in-
terpreted applying the theory of motion bifurcation. In addi-
tion, by employing a computational experiment, one searches
for a function of dimensionless parameters of the system,
bringing closer the critical speed. When a rotor exceeds this
speed, dual-frequency motion modes of the vibratory ma-
chine become unstable.



3. The aim and tasks of the study

The aim of present study is to examine stability of dual-
frequency modes of motion of the platform of a single-mass
vibratory machine with translational rectilinear motion of
the platform and a vibration exciter in the form of a passive
auto-balancer. The results to be obtained would make it
possible to design such vibratory machines with a steady
dual-frequency motion mode of the platform.

To accomplish the aim, the following tasks have been set:

— to estimate the ranges of change in the dimensionless
parameters influencing the dynamics of a vibratory machine;

— to investigate stability, by a computational experiment,
using the methods, previously defined, for a small parameter
of dual-frequency motion modes of the platform;

—to estimate accuracy of the approximated laws that
govern the motion of a vibratory platform;

—to estimate, employing a computational experiment,
the effect of dimensionless parameters on critical speed,
above which a dual-frequency mode loses stability;

—to derive, applying a computational experiment, an
analytical function for the approximate calculation of this
critical speed.

4. Research methods

4. 1. Description of the generalized model of a vibra-
tory machine

A vibratory machine (Fig. 1) is composed of the platform,
mass M, and a vibration exciter in the form of a ball, a roller,
or a pendulum auto-balancer [8]. The platform can move
only translationally rectilinearly (Fig. 1, @). Direction of the
platform motion creates angle o, to the vertical. The platform
rests against an elastic-viscous support with a rigidity coeffi-
cient & and a viscosity coefficient b. Position of the platform
is defined by the y coordinate, equal to zero in the state of
static equilibrium of the platform.

a b

Fig. 1. Model of a single-mass vibratory machine with
translational rectilinear motion of the platform [8]:

a — kinematics of the platform motion; 6 — kinematics
of the motion of the unbalanced mass and a load

The casing of an auto-balancer revolves around a shaft —
point K with a constant angular velocity o (Fig. 1, b). The
unbalanced mass  is rigidly coupled to the casing of the
auto-balancer. It is located at distance P from point K.
Position of the unbalanced mass is defined by angle wt,
where ¢ is the time.

The auto-balancer consists of N identical loads. Mass
of one load is m. Center of the masses of load can move in

a circle with radius R centered at point K (Fig. 1, b). Position
of load No.j is defined by angle ¢;, /j=1,N /. Motion of the
load relative to the casing of the auto-balancer is prevented
by the force of viscous resistance. Its modulus:

F = bwv_(;‘r) =byR| - L /i= LW/,

where by is the coefficient of the viscous resistance force,
0" =R|¢’~ ol is the modulus of motion speed of the center
of massed of load No.j relative to the casing of the auto-
balancer; bar after the magnitude denotes time derivative ¢.

4. 2. Differential equations of motion in a dimension-
less form

Differential equations of motion in the dimensionless
form [8]:

0+2h0+0+5, =&n’sinn,
@, +ef(¢, —n)+ocos(e, —a)+eicosp; =0,
/i=LN/, (1

where:
— dimensionless variable and time:

v=yly, 1=0t; (2)

— dimensionless parameters:

h = b ~ ) 6 = uP ’ = g?
2M;® NmR ®
Nm by M, g

e= , B= = 0=—"; 3
kM B Nm’® KR®* ®)

— dimensionless projection of the imbalance created by
corrective loads:

1 5
sx:ﬁ;costpj, sy:ﬁZsm(pj. (4)

=1

In turn, in formulae (2), (3):
— characteristic scales:

Z;:iv 0= [—; (5)

— mass of the entire system:
M, =M+ Nm+p, (6)

— for a ball, a roll, a pendulum, respectively:

K:g, K:%, K:1+Jc/(mR2), @)

where J¢ is the principal central axial pendulum’s moment
of inertia; g=9,81 m/s® is the free fall acceleration. Note
that @ is the natural (resonance) oscillation frequency of
the platform.

4. 3. Dual-frequency modes of motion
A dual-frequency motion mode of the platform derived in
the zero approximation (¢=0) takes the form [9]:
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The values for constant parameters A, Yo are not defined,
and the frequency at which corrective loads get stuck Q is
the root of polynomial:

P(Q)=xQ" - (n-Q)[(1-Q*)’ +4h°Q%] =

=a, Q" +a Q" +a,Q’ +a,Q’ +a,Q+a, =0, 9)
where

x=AhB, a,=1+y, a,=-n, a,=-2(1-2h%),

a, =2n(1-2h%), a,=1, a,=-n. (10)
Corrective loads move in line with laws:
¢, =Qt+y,, /j=1N/, (11)
where yj are the undefined constants, in this case:
1Y . 1.
Acosy, :ﬁ;cosww Asiny, :ﬁ;smwj,
. 1 N 2 N 2
A =— [ Ycosy, | +| Dsiny, | |,
N = =

N N
tgyO:ZSin\uj/ZCoswj. (12)

= j=1

Dual-frequency vibratory machines will be the more
energy efficient the smaller the forces of viscous resistance
are (in supports, and forces that prevent the motion of balls
relative to the casing of the auto-balancer). Based on the
results of paper [9], in this case, there are three characteristic
rotor speeds:

- 3 - A
n1 z1+z%/&, 7’l2 =1+4Lh2=1+m,

i, L+1+3x+§(1+§xjh2. (13)

YT GEY)

When they passed, the number or properties of possible
frequencies at which loads get stuck are change.

In this case, 1<, <7, <7, <n and at rotor speeds:

— lower than 7, (0 <n<7,), there is only one frequency at
which loads get stuck Qy, and 0<Q <1,

—exceeding 7,, but lower than 7, (%, <n<f,), there
are three frequencies at which loads get stuck 53, so that
0<Q<1<Qy<Q3<m;

— exceeding fi,, but lower than 7, (i, <n<fy,), there
are three frequencies at which loads get stuck Qj 53, so that
1<Q<Qy<<Q3<n;

—exceeding 71, (n>1,), there is only one frequency at
which loads get stuck Qy, so that 1 <<Q<n.

4. 4. Procedure for determining the onset of a dual-fre-
quency motion mode and estimating the accuracy of the
approximated formulas

Procedure for determining the onset of a dual-frequen-
cy motion mode.

The onset of a dual-frequency motion mode is determined
by the angular speeds of rotation of the centers of masses of
loads. Under a dual-frequency motion mode these speeds
should be nearly identical magnitudes that are lower than
the rotor speed.

In addition, a dual-frequency mode is determined from
the characteristic shape of the chart for a vibratory accelera-
tion of the platform.

Procedure for estimating the accuracy of approxima-
ted formulae.

The «precise» laws of motion of loads and the platform
are understood here as the laws, derived by integrating the
differential equations of motion (1). Precise and approxima-
ted laws of motion are compared at a certain time interval. In
this interval, the system is in steady motion with the platform
performing several (3)—(5) slow oscillations.

Procedure for estimating stability of the dual-frequen-
cy modes of motion.

Dimensionless parameters of the system are fixed. We
search, with an accuracy to 0.05, for the largest value of the
dimensionless rotor speed 7., at which a dual-frequency
motion mode is still steady. If it exceeds 0.05, a given mode
loses stability.

Procedure for searching for a function that brings closer
the critical speed.

The form of a function is determined based on the results
of examining the influence of various parameters on critical
speed. Coefficients in the function are derived by the least
squares method.

5. Research results

3. 1. Reducing the equations of motion to a normal form
We shall introduce new variables:

Z,=0, z,=0=2%,
=Py 370172542, =9,

(14)

20t T Q= 2y 2y T PNy Zyn TPy = 2y

Introduce a matrix and a vector:

1 NCOSZ, MNCOSZ, =+ MNCOSZyy , NCOSZ,yy
€C0S 2, 1 0o - 0 0
£C0SZ, 0 T - 0 0
A= : : s : : '
€c0sz,,, O 0 0
£C0OSZ,y 0 0 0 0 1
N
—2hz,—zy+ MY 2}, CO8 2, +n” cosnt
=
B= —eB(z,~n) (15)
—€P(25. = 1)




Then a system of equations (1) in the normal form will
take the following form:

Z, =12, 22;‘ = Zyjstr /i=LN/,

Gy 2py) = A7B.

(16)

A system of equations (16) with coefficients from (3),
(5)—(7) will be employed in order to conduct computational
experiments.

Computational experiments will be conducted for the
case of 2 loads in the absence of the force of gravity (6=0).

5. 2. Estimation of the magnitudes of dimensionless
parameters

A vibratory table is calculated.

Data on the platform and its supports:

My=36 kg — mass of the platform and the parts connec-
ted to it;

M=90 kg — mass of the loaded platform and the parts
connected to it;

k=145.083-10° N/m — a support rigidity coefficient;

b=150 N-s/m — a support viscosity coefficient.

Data on the auto-balancer and the unbalanced mass:

N=2,x=7/5 — a two-ball auto-balancer;

Dy=0.043 m — a ball diameter;

3 30\3
m:énp(&) :§~3.142~7800~(43 210 } =0.325kg —

2

mass of a steel ball;

D,=0.19 m — diameter of the ball running track;

R=05-(D,—D,)=0.5-(0.19-0.043)=0.0735 m — distan-
ce from the longitudinal axis of the rotor to the center of
masses of the ball;

b»=0.03N-s/m — coefficient of forces of viscous resis-
tance to the motion of the ball;

u=0.1 kg — unbalanced mass;

P=0.105m — distance from the longitudinal axis of the
rotor to the unbalanced mass.

Dimensional parameters and magnitudes:

Msy= My+N-m+u=36.75 kg — mass of the system without
a load;

#=1.3-10" m — characteristic scale for the displacement
of the system without a load,;

Ms= M+N-m+p=90.75 kg — mass of the loaded system;

7=0.5264-10° m — characteristic scale for the displace-
ment of a loaded system;

nO max

= ZL k/M,, =10 Hz — resonance frequency of plat-
T

form oscillations;

= %Jk/ME =6.36 Hz — resonance frequency of the
T

nO min

loaded platform oscillations.

Dimensionless parameters:

€=0.0051+0.0126; $=0.138+0.537;

6=0.22; h=0.021+0.032.

Hereafter we accepted the following intervals of change
in the dimensionless parameters:

€=0.005+0.05; B=0.1+0.6;

8=0+1; h=0.01+0.07.

These intervals correspond to the required specifications
of the designed machine. On the other hand, they make it
possible to change characteristics of dual-frequency vibra-
tions of the platform in a wide range.

3. 3. Stability of dual-frequency modes of motion of the
system and the estimation of accuracy of the approxima-
ted laws of motion

196 computational experiments were conducted at diffe-
rent values of the dimensionless parameters from the exami-
ned range of their change. These experiments were performed
to study both the stability of dual-frequency modes of motion
and the influence of system’s parameters on critical speed.

Results of a typical experiment conducted for the fol-
lowing values of dimensionless parameters: €=0.01; p=0.4;
6=0.25; h=0.03.

For these values, the characteristic critical speeds:

i, ~1.808, 7i,~21.833, 7, ~21.877.

Fig. 2 shows charts of frequencies at which balls may get
stuck (the real roots of a polynomial (9)).
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Fig. 2. Frequencies (Hz) at which balls may get stuck:
a — emergence of second and third frequencies; b6 — merger
of first and second frequencies

In the range of dimensionless rotor speeds (0, n,], where
ne,=1.0, only the dual-frequency mode of motion is stable, at
which balls get stuck at a pre-resonant frequency .

The balls under this mode:

— create the greatest imbalance;

— rotate synchronously (¢,(t) =¢,(1)) as a whole.

At the rotor speeds that exceed critical speed n,,, there
may occur, depending on the magnitudes of dimensionless
parameters:

— auto-balancing;

— a stable dual-frequency motion mode with a frequency
at which loads get stuck Qg;

— a chaotic motion of the system.

These modes of motion are not explored in detail, since
operation of the designed single-mass vibratory machines is
based on using only the first mode of motion.

The charts that describe a dual-frequency motion mode
of the system at n=>5 are shown in Fig. 3.
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Fig. 3. Charts of change in the dimensionless:
a — rotation speeds of the centers of balls;

b — displacement (y;), velocity (v;), and acceleration (a;)
of the platform; ¢ — differences between the approximated
and actual displacements, velocities, and accelerations
of the platform

The charts demonstrate the number of slow oscillations
of the platform on the horizontal axis. Possible frequen-
cies at which balls get stuck (the roots of equation (9))
are Q1=0.9465, Qy=1.0732, Q3=4.61875. The frequency at
which a ball gets stuck, derived from averaging the angular
velocity of rotation of the ball center:

| ¢,(dt=09469, /j=12/,
AT

‘max

o =L

= (17)

where T,.c is the experiment du-

dimensionless parameters of the system in the examined
range there is a critical rotor speed 7, such that:

— in the range of rotor speeds (0, 7], only the first mode
at which balls get stuck is stable;

— upon exceeding this critical speed, the first mode loses
stability.

3. 4. Estimation of influence of various parameters on
critical speed

5. 4. 1. Influence of the small parameter € on critical
speed

Fig. 4 shows dependence charts of critical speed on pa-
rameter € at different 8 and f=0.4, #=0.03.
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Fig. 4. Dependence of critical speed on parameter €
at different 6 and $=0.4, h=0.03: a — throughout
the interval (0, 0.1]; 6 — in the vicinity of e=0

Fig. 4 shows that:

—at a decrease in parameter € critical speed approaches
a characteristic speed 7, at A=1;

— at a zero approximation for €, critical speed coincides
with 7i,;

— 7, cannot be used to calculate the critical speed n,
because even at a slight increase in € critical speed rapidly
deviates from the characteristic speed.

5. 4. 2. Influence of parameters B, 8, & on critical speed
Fig. 5, 6 show dependences of critical speed on parame-
ters h, B, d.
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. . . 80 h=u.1 |
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Similar results were obtained
when performing other computa-
tional experiments. The experiments
have proved that for any values of

a

b

Fig. 5. Dependence of critical speed on parameter:
a— h(at different € and B=0.4, 6=0.25); b — B (at different ~hand €=0.005, 6=0.25)
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Charts in Fig. 5, 6 show that in the examined range of
change in the parameters critical speed considerably depends
on dimensionless parameters of the system; in this case:

— n, monotonically increases for parameter §;

— n,, monotonically decreases for parameters e, B, %;

— dependence on parameter £ is close to linear;

— dependences on parameters €, B, & are essentially
non-linear.

5. 3. Approximation of critical speed using an analytic
function

Based on the results from chapters 5.3 and 5. 4, critical
speed depends on all dimensionless parameters of the system:
n, =n,(hp,e0d).

The search for this critical speed by a combination of Lya-
punov method and the methods of a small parameter requires
consideration of higher approximations for a small parameter.
Therefore, it is a complex and labor-intensive mathematical
problem.

On the other hand, at e=0:

1+1

nt‘l'(hVB)075):ﬁ2‘A:1 = TBh'

Hence, it follows that critical speed is appropriate to
be searched for in the form:

n,(h,Bed)=

=1+ 1+f1(£)'g1(hvB75) , (18)
4B+ 1,(8)-q,(hB,®) ][+ f5()- &5 (h.B,8)]

where f,, g, /i=1,2,3/ are the analytical functions; in this
case, f,(¢)——=—0.

We tested different powers from € as functions f;. We
tested as functions g;: linear and quadratic forms; fractions
of linear forms; exponents of linear and quadratic forms. The
best result was demonstrated by the function of form (18),
in which:

fi(e)=¢, /i=123/,

1+ad+a,h+a,p

hpB,8)=—-"—2 3"
&= S v b e bp
1+cd+c,h+c,B
h, Y8 = - Z 3 ’
&) = d
1+ed+e,h+e
8 (h,B,8)= ! > . (19)
’ Pyt PO+ ph+pP

The following parameter values were derived by the
least-squares method:

a,=-26.5235, a,=-16.7424, a,=-30.1288,
b, =—0.2537, b, =—0.8080,

b,=-3.9439, b,=0.6984,

¢, =1.7134, ¢,=8.2055, c,=-28.7751,
d,=-0.3455, d,=-0.5673,

d,=4.3034, d,=8.2679,

,=-9.2714, e,=229.7664, e,=43.5133,
f,=-0.0992, f,=2.4911,

£,=35.3149, f,=-0.1019. (20)

Coefficients (20) were determined based on the results of
all 196 conducted computational experiments.

Function (20) produces an error not exceeding 6 %. The
function makes it possible to calculate approximately the
critical speed, assuming that dimensionless parameters of the
system lie in the considered region. The function was derived
formally; its form cannot be used for the interpretation of
physical processes.

The accuracy of calculation of critical speed can be
improved by the introduction of new components and coef-
ficients to function (18). In this case, the application of the
function in practice will be complicated.

We shall find, at €~ 0, critical rotor speed in a dimensional
form. At €~0: n, =,. On the other hand, n, =®_/® and,
therefore, at e~0:

S U S L _yy Nme”
® AR byMy b 2b,b
Nm*® 2M,®

Hence, we find a dimensional critical speed at £~ 0:
- ( Nm*®* )
o, =01+ .

2b,,b

It follows from (21) that in order to increase the region
of stability for a dual-frequency mode of motion (), it is
required to:

—increase the mass of load (m) or the total mass of
loads (Nm);

— reduce the force of viscous resistance that prevents the
motion of load (by);
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— reduce the force of viscous resistance that prevents the
motion of platform (b);

— increase the frequency of natural oscillations of the
platform (®).

6. Discussion of results of studying the stability
of dual-frequency modes of motion of the single-mass
vibratory machine

The examined dual-frequency vibratory machines will
be the more energy-efficient the smaller the forces of viscous
resistance (in supports, and forces that prevent the motion of
balls relative to the casing of the auto-balancer). In addition,
in actual machines, the ratio of the mass of loads to the mass
of the entire machine is small. These conditions make it pos-
sible to estimate the region of change in the dimensionless
parameters in actual energy efficient machines.

In accordance with the computational experiments, when
accelerating the rotor, a dual-frequency motion mode sets
in eventually at which balls get stuck at a pre-resonant fre-
quency Q4. This mode is stable at speeds lower than a certain
critical speed ny,, lesser than 7,.

Despite the strong asymmetry of supports, an auto-
balancer excites almost perfect dual-frequency vibrations.
Deviations of the precise solution (derived by integration)
from the approximated solution (previously found by the
method of the small parameter) are equivalent to the ratio
of the mass of balls to the mass of the entire machine. Thus,
for actual machines, it does not exceed 2 %. Hence, it follows
that when calculating the considered vibratory machines, the
law of dual-frequency vibrations of the platform, established
previously in [9], is applicable, as well as the corresponding
frequency at which loads get stuck Q.

Critical speed #n,, is a function of all dimensionless pa-
rameters of the system n, =n_,(/4B,€38). In the examined
region of change in the dimensionless parameters, critical
speed decreases monotonically for parameters €, B, &, and
monotonically increased for parameter 8. At a decrease in €
(a ratio of the mass of balls to the mass of the entire system),
ne strives to 7,. However, characteristic speed 7, cannot be
used for the approximate calculation of critical speed 7., due
to rapidly growing error arising at an increase in €.

To increase the region of stability of the dual-frequency
motion mode (dimensional critical speed ®,,), it is required to:

— increase the mass of load (m) or the total mass of
loads (Nm);

— reduce the force of viscous resistance that prevents the
motion of load (b,);

— reduce the force of viscous resistance that prevents the
motion of platform (b);

—increase the frequency of natural oscillations of the
platform (®).

The search for a function for the approximate calculation
of critical speed, suitable over the entire range of change in
dimensionless parameters, using the methods of the small
parameter, is a complicated mathematical problem. More
effective is the method of regression analysis. The method
makes it possible to find the appropriate function. However,
this function is not an approximation for a small parameter.
Therefore, it cannot be used to interpret physical processes
occurring in the system.

In the future, we plan to design, fabricate, and test
a vibratory table with translational rectilinear motion of

the platform and a vibration exciter in the form of a ball
auto-balancer.

7. Conclusions

1. In actual energy-efficient vibratory machines, the
forces of external and internal resistance should be small,
with the mass of loads much less than the mass of the
platform. Under these conditions, dimensionless parame-
ters that determine the dynamics of a vibratory machine
are in the intervals: €=0.005+0.05; f=0.1+0.6; 8=0+1;
h=0.01+0.07. In this case, a vibratory machine has three
characteristic rotor speeds. These speeds exceed the reso-
nance frequency of oscillations of the platform. In this case,
at the rotor speeds:

— lower than the first characteristic speed, there is only
one possible frequency at which loads get stuck, it is less than
the resonance frequency of oscillations of the platform;

— positioned between the first and second characte-
ristic speeds, there are three possible frequencies at which
loads get stuck, among which only one is a pre-resonant
frequency;

— positioned between the second and third characteristic
speeds, there are three possible frequencies at which loads get
stuck; all of them are over-resonant frequencies;

— exceeding the third characteristic speed, there is only
one possible frequency at which loads get stuck; it is an
over-resonant frequency and it is close to the rotor speed.

2. Under a stable dual-frequency motion mode, the
loads: create the greatest imbalance, rotate synchronously as
a whole, get stuck at the lowest possible frequency of getting
stuck; only if it is a pre-resonant frequency.

There is a critical speed above which a dual-frequency
motion mode loses stability. This speed is less than the second
characteristic speed.

3. Despite the strong asymmetry in supports, an auto-
balancer excites almost perfect dual-frequency vibrations.
Deviations of the precise solution (derived by integration)
from the approximates solution (established previously by
the method of the small parameter) are equivalent to the
ratio of the mass of loads to the mass of the entire ma-
chine. That is why, for actual machines, deviations do not
exceed 2 %.

4. The critical speed significantly depends on all dimen-
sionless parameters of the system. In the examined region of
change in the dimensionless parameters, critical speed chan-
ges monotonically for each parameter.

At a decrease in the ratio of the mass of balls to the mass
of the entire system (¢), critical speed tends to the second
characteristic speed.

However, the second characteristic speed cannot be used
to calculate the critical speed. This is because even at a slight
increase in € the critical speed rapidly deviates from the cha-
racteristic speed.

To extend the region of stability of a dual-frequency mo-
tion mode, it is required to:

— increase the mass of load or the total mass of loads;

— reduce the force of viscous resistance that prevents the
motion of load;

— reduce the force of viscous resistance that prevents the
motion of platform;

—increase the frequency of natural oscillations of the
platform.



5. The second characteristic speed is to be effectively used  results of a computational experiment applying a method of
to search for the form of a function that brings closer the critical ~ least squares. In the examined region of change in the parame-
speed. In this function, coefficients are determined based on the  ters the derived function produces an error not exceeding 6 %.
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