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Ha ochosi excnepumenmanvho 6CIMAH06IEHUX 0AHUX U000
napamempis MiKpoCmpyKmypu, ejemeHmuozo ma Qpaxuii-
H020 CK1a0Y NOPOWKI8 MUMAHOBUX CNIABIE6 BUOLILEHO HOMUPU
Kaacu ix 6i0nosionocmi aK 6uUXioHoi cuposunu 011 Aoumue-
HUX MeXHO02ill — Mamepian 3 GIOMIHHUMU B]IACMUBOCMA-
MU, ONMUMATIGHUMU BAACMUBOCAMU, 8 MAMEPIALL MONHCTU-
6i depexmu i Opaxoeanuil mamepian. Bcmanosneno ocnoeni
xapaxmepucmuxu mamepiany, aKi 6U3HA1AIOMb 1020 NPUHA-
JlesrcHicmsy 00 neenozo xaacy. Jlnapeanizauii npouedyp mawun-
H020 Ha8uanHs No0Y008aAHO HAGUATILHY MA MeCMosy 6UdIPKU
Ha ocnosi 20 o3nax, AKi xapaxmepusyoms KojiceH 3 HOMUpbLoxX
KJ1acie nopoukie mumanosux cnaasie. Onucaio po3poonenuil
Memo0 idenmuixauii xracy mamepiany, axuil 6azyemvcs na
cymicnomy euxopucmanni noninomy Koamozoposa-labopa
opye2020 cmenens ma anzopummi Bunaoxosoezo nicy. Ha octo-
61 mouHoCmi POOOMU 8 PeNcUMAX HAGUAHH MA 3ACMOCYBAH-
Hsl Mpo6edeHo eKCnepuMeHmalbHe NOPIBHAHHA Pe3yibma-
mie pobomu po3poonernozo memooy 3 pe3yiomamamu poéomu
icnyrouux memoois: Bunaoxosozo nicy, Jlozicmuunoi peepe-
cii ma Mawunu onopnux eexmopie. Hasedeno eizyanizauiio
pe3yvmamie podomu ycix 00CaAi0NceHUX Memoois.

Pospoodnenuii memoo kxeposanozo Hasuanis 00360.Jse 0yoy-
samu mMooeti ONPaulo6ants 6eJuKo0i KilbKocmi 03HaK KOIHCHO-
20 6xionozo sexmopa. Ilpu yvomy anzopummom Bunaodxosozo
Jicy 3a0e3neuytomocs 3a006LbHI 2eHepaNi3ytoui 6JACMUBo-
cmi npu 30epesicenni nepesaz 000amK06020 Ni0GUUEHH MOU-
nocmi na ocnosi noninoma Koamozoposa-Ilabopa.

Excnepumenmanvio 6cmanosieno 0CHOGHI nepesazu po3-
PobIen020 Memooy, 30Kpema w000 000amK06020 NiOGUWEHHA
mounocmi po3e’azannsa 3adaui xaacudixauii. Pospooaenui
Memo0 00360€ NIOBUWUMU MOUHICMb MOO0eEJI06AHHA HA
34,38; 33,34 ma 3,13 % nopisnano 3 memodamu: Mawuna
onopnux eexmopie, Jloeicmuuna peepecis ma Bunaoxoeuii
Jic 8i0nog6iono.

Ompumani pe3yrvmamu 003604510Mb 3HAUHO CKOPOMU-
mu pinancosi ma wacoei sumpamu nio wac 6uz0MoBJLEeHHA
8uUpodie Memoodamu AOUMUBHUX MEXHON02IU. 3ACMOCYBAHHS
iHCMpYMeHmapio wmy1Hoz20 iHmeexmy 00360J€ 3MEHUU-
mu mpyoomMicmKicms ma eHepzosumpamHicmes eKCnepuMe-
mie 3 6U3HAUEHHS ONMUMATLHUX XAPAKMEPUCTUK NOPOUKO-
8ux mamepianie

Kniouoei crosa: nopowxu mumanosux cniaegie, Mikpo-
cmpyxmypa, moponozis, panyiomempurnuil ckanao, aou-
MuU6HI MexHON021i, MeMoOU WMyYuHo20 iHmeexmy
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1. Introduction

The present stage of the material science development
is characterized by the accumulation of a large amount of
experimental data on the relationship between the structure
and properties of materials of various functional purposes
[1-3], which operate under different exploitation conditions
[4, 5]. This, in turn, causes the designing of new, unique in
properties materials. The processes of development, tech-
nological processing, approbation, and implementation are
long-lasting, costly and complex [6, 7].

Under such conditions, the sustainable development of
material science involves several possible approaches:

— the analysis of existing information accumulated over
the years about certain research objects, in particular, by
machine learning methods (ML) [8] and extrapolation of the
obtained results;

— the investigation the “samples of witnesses” of new
materials by traditional methods with the transferring of
generalized results to “reference” samples.

The combination of traditional experimental investiga-
tion of the materials with using models, methods, and tools




of artificial intelligence [9, 10] increases the efficiency of the
procedure for developing or designing new materials. Tradi-
tional approaches allow obtaining all necessary information
about the material properties [7], and the usage of powerful
[11], modern ML algorithms [12—13] makes this process
easier, shorter and cheaper. This is due to solving prediction
and regression tasks, classification or clustering on a small
experimental data sample and extrapolation of the results to
the new material.

That is why the development of new and modification
of existing approaches for designing and constructing new
materials based on such approach is the actual task.

2. Literature review and problem statement

In many cases, traditional approaches to establishing a
relationship between the structure and properties of mate-
rials are commonly used and justify themselves [1, 2]. How-
ever, when it comes to the significant non-linearity of such
relationships, it is difficult to establish the necessary param-
eters. Particularly acute is the problem of multi-parameter
dependencies processing. It is these tasks that cause the
search for new, more effective ways to obtain the required
information.

Artificial intelligence tools usage to solve material sci-
ence tasks; is not sufficiently widespread, but interest to
this area is steadily increasing. In the review papers [8, 14],
some methods of artificial intelligence in the supervised and
unsupervised modes, including machine learning algorithms
are described. These methods have obvious advantages for
data pre-processing using Principal Component Analysis
[14]. However, they are not tools for solving regression or
prediction tasks [14].

In [15], the Artificial Neural Networks (ANN) were used
for solving the polystyrenes temperature prediction task. It
should be noted that such an approach for prediction and
classification tasks has a number of disadvantages, the main
of which is that most of the ANN paradigms do not provide a
repeatability of the solution. In [16], the solution of the task
for predicting the reaction outcomes for the crystallization of
template vanadium selenites on the basis of the Support Vec-
tor Machine (SVM) usage is described. The solution of the
classification problem in the field of material science, based
on the use of the same tools, is given in [8]. The main disad-
vantage of the proposed methods is the need for the correct
selection of optimal parameters, in particular, the kernel, to
ensure an effective result. In [17], a method for solving the
regression task to determine the high-performance metal-
organic frameworks for CO, capture was developed. SVM
with the radial-basis function core was chosen as a tool for
solving this task. Based on the high speed of the SVM and
the high accuracy provided by the radial-basis function, the
method shows satisfactory results. However, the method is
sensitive to the data standardization and noises.

In [8], the solution of the prediction task of the material’s
friction coefficients based on Decision trees is described.
The advantages of these algorithms, both in prediction and
regression tasks, and in classification tasks are the high
speed and accuracy of their work. However, the methods of
this class require the correct selection of optimal parameters
for their work. Otherwise, they occupy a huge amount of
memory, which limits their practical use. In addition, this
tool shows poor results on noisy data.

The literature review shows the perspectives of machine
learning algorithms application for solving various tasks of
material science (forecasting, detection of anomalies, classi-
fication, recognition, regression). However, the main prob-
lem is the right choice of machine learning algorithm. On
the one hand, it should ensure high accuracy of work, and on
the other hand, it should be quick and easy, not require large
computing resources and computer memory.

Known methods do not always provide a combination
of the above characteristics, which imposes a number of
limitations on their practical application. In this regard, an
important task is to improve the existing and develop new
methods of artificial intelligence in the field of material
science.

3. The aim and objectives of the study

The main aim of this work is to develop the method for
the identification of the titanium alloys conformity based
on the parameters of microstructure and properties of their
powder fractions, by solving the classification task using
means of machine learning.

To achieve the aim, it is necessary to accomplish the
following objectives:

— to conduct experimental studies on the determination
of the microstructure and properties of titanium alloy pow-
ders of different fractions and micro geometry of the surface,
to form training and test samples;

—to apply the Kolmogorov-Gabor polynomial and the
Random Forest algorithm for solving the classification task.
To investigate such composition of the method in terms
of the accuracy during the identification of the object of
research while minimizing time resources required to imple-
ment the training procedures;

—to establish experimentally the machine learning
method parameters, which would provide the optimal result
in terms of time and accuracy of its work;

— to compare the accuracy of the proposed method with
existing ones and to develop recommendations for its appli-
cation.

4. Inputs data and research methods

4. 1. Investigation of the material properties

Spherical powders of titanium alloys are obtained by the
technology of centrifugal atomization of an electrode [18],
and non-spherical — by the hydrogenation-dehydrogenation
technology [19].

The formation of the inputs database for the implementa-
tion of the machine learning process was carried out on the
basis of studies of morphology, elemental and granulometric
composition of titanium alloy powders of various systems
[20, 21] previously conducted by the authors and based on
the usage of literary sources [22, 23].

The morphology of the particle surface structure was
studied using a scanning electron microscope EVO 40XV P.

The distribution of powders by fractions was performed
by the sieve method in accordance with DSTU ISO 565:
2007. To evaluate the micro geometry of the surface struc-
ture, as well as the extended fractional analysis of the pow-
ders, a software product Image] was used to analyze the
microstructures [24]. The degree of inhomogeneity (polydis-



persity) of the powder, which depends on the average size of
the dominant particles in a certain fraction and the standard
deviation of the particle size of the powder from the average
size, was determined by the construction of the Gaussian
curve based on the histogram of the particle distribution in
a certain fraction [25].

Artificial intelligence tools can be used to reduce the
duration, as well the cost of investigation of the properties
of spherical and nonspherical titanium alloy powders [10].
The conducted literature review has shown the feasibility of
using the algorithms of machine learning to solve this task,
in particular on the basis of the Random Forest algorithm
and the Kolmogorov-Gabor polynomial.

4. 2. Random Forest algorithm

The machine learning algorithms based on Decision
trees since their creation and to this day have been given
great attention. Such methods are used for solving applied
problems in various areas.

The algorithm for constructing one binary Decision tree
works according to the scheme of the Greedy algorithm.
During each iteration, the hypersurface partition of class
space is constructed for the input set of training sample
vectors, which minimizes the average measure of the het-
erogeneity between two obtained subsets. This procedure
is performed recursively for each received subset until the
criteria for stopping are met [26].

Obviously, for constructing a model based on only one
Decision tree, you can get a solution that is sensitive to noise.
Therefore, it is expedient to use an ensemble of several trees,
which is typical for the Random Forest algorithm. This leads
to the number of advantages, including:

— possibility to get a stable and effective solution to the
task by combining responses from each tree;

— a multi-tree ensemble avoids problems associated with
the method overfitting, or at least minimizes them [27];

— an independent training procedure for each individu-
al tree from the ensemble at its sample’s part provides the
possibility to apply methods of this class in
distributed computing systems, in particu-
lar using methodology [28].

In order to solve the classification task,
the Random Forest algorithm uses a large
number of trees, each of which is taught
in a separate subset of the set of vectors of
the entire training sample. The response of
each tree from the ensemble is taken into
consideration in the following way. Each of

tool allows modeling with very high accuracy in the gener-
alization mode [30].

In this case, the polynomial degree plays an important
role. In case of increasing the polynomial degree, the approx-
imation possibilities for dependencies with essential nonlin-
earity are improved, however, the data generalization prop-
erties are worsened. The experimental investigations carried
out with available data allowed choosing the second-degree
Kolmogorov-Gabor polynomial as a model of optimal com-
plexity. This polynomial can be written as follows:

n n n
Y (&, )= aiy+ Y @iy X xi + Y Y aigi, X i X iy, (1)

i=1 iy=1 iy=i;

where n — the number of variables for each data vector.

The procedure for finding the coefficients of this poly-
nomial is a non-trivial task. Existing methods are rather
complex or very lengthy. In addition, they do not always
provide sufficient accuracy of the result, in particular, when
constructing a system of equations with initial conditionali-
ty, or in the case of a significant correlation of the inputs, or
when the task is almost degenerate.

5. Results of the initial database formation and computer
modeling

5. 1. Initial database formation

Fig. 1 shows the morphology of the investigated spher-
ical and non-spherical powders of systems Ti-6Al-4V and
Ti-Al-V-Zr.

It should be noted that the main characteristics by which
the investigated powders will be classified into certain class-
es (excellent material properties, optimal material proper-
ties, possible defects in the material and defective material)
(Fig. 2), are the average diameter of the powder particles
(Fig. 3) and polydispersity (Fig. 4), which are partially tak-
en from [31, 32].
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them is noted for the affiliation of the type
of conformity, then they are averaged, and
based on their largest number, the winner is
determined.

However, averaging is not always the
most effective option for assembling Random
forest. There are others [29], such as Simple
Voting, Weighted Voting, Mixture of Ex-
perts, and so on. However, their use is limited
to tasks that require the implementation of a
fast training procedure.
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4. 3. Kolmogorov-Gabor polynomial

The Kolmogorov-Gabor polynomial is
often used as an effective tool for approxi-
mating multi-parameter dependencies. This

c d
Fig. 1. Morphology of titanium alloy powders:

a, b — system of Ti-6Al-4V [18]; ¢, d — system of Ti-Al-V-Zr [19]



Fig. 2. Classes of conformity of powders of the investigated
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The algorithmic implementation of the method involves
the creation of a database, which in our case consists of
480 vectors, each of which contains 20 input characters
(Fig. 5) [10]. These attributes determine belonging to one of
the four classes of material mentioned above (Fig. 4).
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Fig. 4. Polydispersity of powder particles of the investigated
titanium alloys: a — spherical; b — non-spherical

In the case of processing images with a large number of
small details, the geometrical image super-resolution meth-
ods to accelerate the evaluation of all the required parame-
ters of the investigation material can be used.
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5. 2. Sample formation for the implementation of ma-
chine learning procedures

The data sample to solve the task posed in the work
based on the experimental data was formed.

Canav (s

@ Ti-Al-Mo-Z>

pm

o Sphe >
o ot
o e

The form of

Diameter range
of powder particles,

powder particles

< Ti-Al-V-ZrS

Investigated
material

Averaged values
of polydispersity,
%

Machine learning 0-0.5 @
The content of 0.5-1

growths on the 155 .

surface of @

particles, %



In Fig. 6, in 2D space, 4 studied classes of material
(Fig. 2) based on 20 input characteristics (Fig. 5) are vi-
sualized. For this purpose, the method of machine learning
FreeViz using the Orange software (version 3.8.0.) [33] was
used. Different colors and shapes mark the characteristics
of four different classes. In order to better visualize the
input data, in Fig. 6, b, the results of visualization after the
optimization procedure by the above method are presented.
It should be noted that the optimization procedure was
conducted solely for the purpose of a clearer visual represen-
tation of different classes.
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Fig. 6. 2D visualization of 4 material classes with 20 input
features: a — before optimization; b — after optimization

As can be seen in Fig. 6, b, the experimental data are
grouped in the colored regions, each of which represents a
separate powder material class. The blue area separates the
first class, that is, the case when the material is characterized
by excellent properties. The red area denotes the second
class of material, which has the optimal characteristics. The
green area combines the data obtained for the material in
which the defects are detected. It is not recommended for
creating important parts. The last, fourth, or orange area
groups data with the characteristics of the defective material
that is not generally recommended for use.

480 vectors of experimental data, each of which is char-
acterized by 20 characteristics, were randomly divided into a
training and test sample. The ratio of such division is 80 and
20 % respectively. Fig. 7 shows histograms of the quantita-
tive representation of data vectors of each of the four classes
that were used during modeling for both types of samples.

As can be seen from Fig. 7, the most representative for
both samples is the first class (the case where the material
is characterized by excellent properties) and the least pre-
sented is the fourth study class of material that is not rec-
ommended for use.
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Fig. 7. The ratio of data vectors for each of four classes:

a — training sample; b — test sample

5. 3. Composition of the proposed classification method

In the paper, the combined use of the Kolmogorov-Gabor
polynomial and the Random Forest algorithm to increase
the accuracy of the solution of the material class identifica-
tion task based on the proposed characteristics is proposed.
Input characteristics from Fig. 5 (x,...x,,) of each vector are
represented as the polynomial members, according to (1).
The Random Forest algorithm is used to find the coefficients
for Kolmogorov-Gabor polynomials. The expediency of us-
ing the developed method for solving this task is due to the
following assertions:

— it provides an opportunity to effectively process a large
number of characteristics of each input vector (the number
of features during their representation in the form of Kolm-
ogorov-Gabor polynomial members significantly increases);

— it allows one to efficiently work with small data sam-
ples while providing a sufficient level of generalization, and
with large ones, with a minimization of the probability of
overfitting.

Based on the obtained coefficients, the Kolmogorov-
Gabor polynomial is used, which, having high approxima-
tion properties provides a high-precision result.

5. 4. Computer modeling for material class identifi-
cation

The simulation of the material class identification meth-
od was carried out on the software developed by the authors.
A number of libraries of the programming language Python
[35] have been used for this purpose. The main parameters
of the developed method are as follows:

— the degree of the polynomial was 2;

— the number of trees in the Random Forest algorithm
was 9;

— the minimum number of objects at which splitting is
performed was 2;

— the maximum depth of trees;

— the splitting criterion was classic, Gini index.

The accuracy of the method was estimated by the num-
ber of correctly classified samples to the dimension of the
test sample in percentage terms.

It is found that the accuracy of the developed method at
these parameters is 96.88 %.

6. Discussion of the developed method results

The combined use of the Kolmogorov-Gabor polynomial
and the Random Forest algorithm ensures:

—on the one hand, sufficient generalization properties
for constructing effective training models;



—on the other hand, saving the benefits of further in-
crease of the accuracy of the result.

Both advantages are important in view of the expected
high costs of creating a new material with unsatisfactory
properties in case of a false identification. This, in turn, will
negatively affect the performance of the design of aerospace
equipment, the parts of which are planned to be made of the
investigated materials by the 3D printing method.

Since increasing the number of trees in the Random For-
est algorithm increases both the accuracy and the working
time of the developed method, it is necessary to investigate
the minimum number of trees that would provide the best
result. Fig. 8 shows an experimental comparison of the
accuracy of training and testing of the developed method
when changing the number of trees in the machine learning
algorithm under other equal conditions.
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Fig. 8. Influence of the number of trees of the developed
method the accuracy of its work

As can be seen from Fig. 8, the highest accuracy of the
method is obtained with the least possible number of trees — 9.
Apart from the fact that the specified method parameter
provides the highest accuracy, it also provides the smallest
difference between the training and testing accuracy, which
is also can be seen from Fig. 8.

Comparison of the developed method results was carried
out with the results of existing ones:

— Random Forest;

— Logistic regression;

— Support Vector Machine.

Table 1 presents experimental results of the modeling of
all methods based on the accuracy both in the training and
test modes.

Table 1

Comparison results of the developed method with the
existing ones

Method Train accuracy, % Test accuracy, %
Developed method 100 96.88
Random Forest 100 93.75
Logistic Regression 78.85 63.54
SVM 76.5 62.5

As can be seen from Table 1, the best results, i.e. 96.88 %
of accuracy, are obtained using the developed method. The
worst results for solving the classification task are obtained
by two well-known methods — the Support Vector Machine
and the Logistic Regression.

Let us consider the modeling results in more detail. Fig. 9
provides a visual assessment of the work in the form of

mosaic displays and scatter plots using Orange software
(version 3.8.0.) [33]. The scatter plots provide visual in-
formation on how many class members are misidentified,
and the mosaic displays clearly demonstrate which of these
classes are assigned to these samples. Fig. 9, a shows the ini-
tial conditions for both diagrams, i.e. the ideal case where all
samples are correctly identified.

The width of the mosaic display columns indicates the
number of representatives of one or another class. The nu-
merical ratio of this indicator can be found in Fig. 7. The
scatter plot depicts 4 material classes, diagonally, starting
from one. The x-axis is responsible for the true values of
classes and the y-axis is responsible for the obtained values
by one of the described methods. For a better visual percep-
tion of data, parameter Jittering=1 % of the Orange software
environment is used to estimate the number of each class ele-
ments. In fact, all members of each separate class are overlaid
and are at one point.

Information from both charts is important for this task.
As already mentioned above, the accuracy of classification
plays an important role, in particular in terms of the cost for
developing the material, especially in the case of improper
operation of the method. Incorrectly classified samples can
cause large losses in the case when the part created based on
such material will quickly fail and may cause the entire device
to fail. Nevertheless, it is equally important to identify a class
for which an incorrectly classified sample will be assigned. For
example, from Fig. 9, d (results of the SVM work) it can be
seen that three members of class 3 (the material with a defect)
are identified as class 1, (the material with excellent charac-
teristics), and one member of class 4 is classified as a class of
material with optimal properties (class 2). This result is crit-
ical because based on such identification, material that is not
recommended to be used for developing important parts can
be used as having excellent characteristics. The same is the
case with the application of the Logistic Regression method.
Two samples from the class 3, i.e. the material with a defect,
is classified as belonging to the class 1, and one sample from
class 1 (specific material that is not recommended for use) is
identified as a class with optimal characteristics.

Even in spite of the low classification results using the
SVM and Logistic Regression, the above results are inad-
missible because they can affect the adoption of an incorrect
decision that will have negative consequences. It is not rec-
ommended to use such methods to solve this task.

Analyzing the developed method (Fig. 9, ¢), and the most
similar to it — Random Forest (Fig. 9, b), it is possible to note
the following. These methods identified respectively one and
two samples of class 4 as class 3, three and one sample of
class 3 (respectively for the Random Forest and the devel-
oped method) as class 2. Both methods classify one sample
of the material class with optimal properties as the material
class, which is characterized by excellent properties.

Such results are satisfactory from the standpoint of pos-
sible minor losses due to the incorrect identification, since
situations where material with the defect is identified as
the material with excellent properties, etc., do not have the
place in the application of these methods. As for the accuracy
of the results, the developed combination of the use of the
Kolmogorov-Gabor polynomial and the Random Forest al-
gorithm shows significantly better results in comparison to
the classic Random Forest algorithm. Therefore, this method
can be used for solving practical tasks of material science,
which are critically sensitive to the accuracy of the result.
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Fig. 9. Comparison of the methods based on the work results visualization:
a — Initial data; b — Random Forest; ¢ — developed method; d — SVM; e — Logistic Regression

Further research can be conducted in the direction of
applying new splitting criteria for the developed method.
In order to improve the accuracy of the classification and
clustering, regression, and prediction tasks for the solution
of various problems in material science, it is also planned
to use neural-like structures of the Successive Geometric
Transformations Model [11].

7. Conclusions

1. Based on experimental data on the titanium alloy
powders properties, 20 characteristics of their belonging to
a certain class of raw material for the additive technologies
have been identified. This allowed constructing training

and test samples for the implementation of machine training
procedures for the purpose of powder materials classification
according to the parameters of microstructure, elemental
and fractional composition.

2. A new classification method based on the combined
use of the random forest algorithm and the Kolmogorov-Ga-
bor polynomial has been developed. It was found that such a
combination provided high accuracy of the result of solving
the classification task — 96.88 %.

3. The expediency of using the developed method is con-
firmed by an experimental comparison of the results with
existing methods. It is found that the developed method
allows increasing the modeling accuracy by 34.38, 33.34
and 3.13 % compared with the methods: Support Vector Ma-
chine, Logistic Regression, and Random Forest respectively.
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