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1. Introduction

A comprehensive study of any process is closely connect-
ed with modeling. A variety of fields of science and technol-
ogy, which use modeling, as well as a desire for a model to
meet best the features of a problem, generates a large number
of specific models and types of modeling. It is often difficult
to choose a path leading to creation of the most appropriate
model in each specific case. As a result, along with the ac-
curate approach, required by the study, here appears some
element of creativity, the heuristic approach in the process of
development of an adequate model.

One of the methods that makes it possible to adjust the
magnitude of adequacy, is the ability to reduce the model to
a nondimensionalized form. The similarity theory is closely
connected with this method. In this area, there is a basic
Pi-theorem (in the English-language literature, it is the
Buckingham theorem, in the French-language literature,
it is the Vaschy theorem), fixing the possible number of
nondimensionalized values in the convertible models. Nev-

ertheless, the attempts are made to develop the methods
that allow obtaining a fewer number of nondimensionalized
magnitudes that Pi-theorem prescribes.

In the course of further development of nondimensional-
ization methods, a certain progress has been made. But the
methods, used by researchers, are the result of the intuition
of their developers, and do not mark the boundaries in the
development of nondimensionalization theory. In a scien-
tific approach, it is necessary to talk about the method as
a coherent logical system. This provides a basis for further
work in this direction and demonstrates the relevance of our
research.

2. Literature review and problem statement

A decrease in magnitudes, considered in a model due
to nondimensionalization, facilitates analysis of available
solutions and causes of possible errors. In addition, fewer
variables in a model help to obtain analytical solutions to




new problems, as well as decrease a required number of ex-
perimental studies (physical and numerical) by an order of
magnitude.

When developing new methods, the number of nondi-
mensionalized variables, predicted based on the Pi-theorem,
are accepted as the starting point. In relation to this mag-
nitude, one determines a degree of reduction of the number
of nondimensionalized magnitudes, which is achieved when
using the methods, proposed by various researchers. Thus,
in papers [1, 2], the possibility of this kind of procedures
is demonstrated. It is noted that a maximum possible de-
crease in the number of nondimensionalized magnitudes was
achieved. However, it was not described how it was deter-
mined that more profound transformations of mathematical
models (MM) in this direction are impossible.

Nondimensionalization of models can be used for analy-
sis of the obtained solutions and analysis of their reliability.
In paper [3], based on the analysis of nondimensionalized
properties and models, there is an attempt to determine the
reasons for inconsistency of the obtained results at intensi-
fication of the studied phenomena. The author believes that
decreasing magnitudes in a model facilitates analysis of a
problem. In this case, the standard method of nondimension-
alization is used. As a result of decreasing the dimensionality
of modeling space, the author managed to draw some gener-
alizing conclusions. But although in the present case there
is a decrease in the number of magnitudes in a model, in ad-
dition to variables and sought functions, there additionally
remain a number of nondimensionalized magnitudes — sim-
ilarity criteria. This is one of the factors, limiting the depth
of possible analysis.

In a number of works, nondimensionalization of models
in combination with other methods is used to obtain new
solutions. Thus, in [4], the Laplace transforms are applied
to nondimensionalized equations to simplify the obtained
algebraic equations. The Laplace transform involves the
use of linear equations, while nondimensionalization can be
applied to homogeneous functions, which is a broader class
of equations. Thus, the proposed sequence of operations in-
troduces restrictions on possible transformations.

In article [5], based on the application of the theory of
groups and nondimensionalized differential equations, their
new solutions are sought. Moreover, nondimensionalization
operations can be used to identify the group of homogeneous
strains. In article [5], like in many other works, the nondi-
mensionalization procedure is considered from the stand-
point of the possibility of reducing the number of parameters
in a model, but it is also based on the Pi-theorem. It does not
make it possible to fully use the possibilities of reducing the
dimensionality of modeling space and get all the advantages
of a combination of the proposed methods.

From this point of view, paper [6] addresses the question
what is the aim — to nondimensionalize variables or to re-
duce the number of model parameters? An unbiased opinion
on this issue suggests that the aim is to reduce the number
of parameters, and nondimensionalization is only a tool that
makes it possible to reach just the same result in a number of
cases. Not only the existence of different nondimensionaliza-
tion procedures is mentioned, but also a complexity of their
selection. Figuratively, the way is defined as “a narrow path
between the Trap of Oversimplification and the Swamp of
Overcomplication. It was proposed to use the methods of the
theory of groups as a toolkit. To be more exact, a reduction
of a model to a minimally parametric form is considered as

the problem of group bundle. Such an approach requires high
mathematical skills of a researcher. It specifies the path but
does not formalize the transformation process. In this case,
the problem about the possibility of further reduction of a
mathematical model is not discussed.

Representation in a nondimensionalized form makes
it possible to use the MM properties for modeling the
processes that are difficult to realize under experimental
conditions [7]. This also facilitates the generalization of
results, obtained in numerical and physical experiments [8].
The prospects of ensuring not only a geometrical similarity,
but also a possibility of modeling physical properties of used
working environments are noted. But in this case, the used
methods do not enable going beyond the limits, prescribed
by the Pi-theorem.

It is possible to expect that the development of nondi-
mensionalization methods will further improve modeling
processes. In some cases, [9], nondimensionalization of
models is called “a problem of reduction to a minimally
parametric form”. But in this case, the issue of achieving
self-similarity by parameters is not considered.

Systematization of the results of cited research makes
it possible to draw a conclusion about effectiveness of the
method of analysis, solutions and generalization of results,
obtained when using MM, reduced to a nondimensionalized
form. The results of the works of several authors indicate the
possibility of decreasing the number of nondimensionalized
variables to smaller magnitudes, set by the Pi-theorem. A
deterrent to a further decrease in the number of nondimen-
sionalized magnitudes in models is the lack of a common
method of similar transformations and, as a consequence,
uncertainty of the lower boundary of the possible number of
such magnitudes.

The need to develop such a method determines the pros-
pects of the present research.

3. The aim and objectives of the study

The aim of the study is to develop the method that
ensures minimization of a number of nondimensionalized
variables for the studied model.

To accomplish the set aim, the following objectives
were set:

—to develop an algorithm, formalizing the process of
nondimensionalization of the MM magnitudes with the
view to minimizing their number compared to the results,
prescribed by the Pi-theorem;

— to develop procedures for determining a lower bound-
ary of the possible number of nondimensionalized values in a
mathematical model;

— to ensure reproducibility (coverage, inclusion in com-
position) of results of the MM nondimensionalization, per-
formed with the help of other methods.

4. Nondimensionalization method for
mathematical models

Scheme for providing the models with self-similarity for
criteria.

Let us consider the Pi-theorem. “Any equation, con-
necting N physical and geometrical values, dimensionality
of which is expressed through n basic units of measurement



can be transformed into an equation of similarity n=N-n"
[10]. By virtue of this theorem, due to nondimensionaliza-
tion, a decrease in the number of magnitudes, included in
a model, can be performed only by value “n”. Thus, within
the ST system, mechanical magnitudes can be described by
only three measurement units: mass [M], length [L] and
time [T]. Therefore, in correspondent models, the number of
magnitudes, included in them, can be reduced only by three
units. But on the other hand, in this definition, it is possible
to consider a way to a further decrease in the number of
magnitudes, included in a model.

It is known that currently used SI system or formerly
used SGS and other similar systems are not based on any
physical sense, but on metrological convenience. Applying
the magnitudes from this system, written down in a dimen-
sional form, in a system, it is necessary to agree to use the
unified scales of dimensional magnitudes. But physical laws,
with consideration of which model are constructed, display
the relationship between magnitudes that they include with-
out regard to their scales. As a result, recording physical
laws using dimensional magnitudes leads to formation of di-
mensional physical constants, which take into consideration
the scales of the currently used measurement system. These
constants in various combinations, as well as variables,
constitute a set “N” of physical and geometrical magnitudes,
used in the statement of the Pi-theorem. It does not seem
possible to decrease the number of variables without chang-
ing a model itself. Therefore, it is necessary to decrease the
number of constants.

The standard procedure of nondimensionalization, dis-
played in the Pi-theorem, is associated with the tendency to
minimize the number of constants. Introducing the normal-
ization of dimensional variables by any characteristic values
of the same nature, the standard scales of dimensional mag-
nitudes, such as from the SI system, are reduced taking into
consideration internal scales of the processes, described by
a nondimensionalized model. In this case, the resulting cri-
teria are complexes, formed by different scales. They them-
selves are the scales of the studied processes. A positive side
of this procedure is consideration of the scales of proceeding
processes in each model separately. In fact, this is the reason
to decrease the number of magnitudes in a model through a
combination of internal scales of the analyzed process. The
drawback is the normalizing magnitudes of the same nature
as nondimensionalized ones. The used dimensional magni-
tudes are selected not for physical reasons. For this reason,
it is not possible to ultimately decrease the number of scales
(criteria) up to their complete exclusion.

Another possible way of simplification of expressions
at the expense of decreasing the magnitudes, included
in them, is exclusion from consideration of a number of
physical constants. This effect is pronounced when using
natural measurement units. In these systems, the basic
measurement units are selected not due to metrological
considerations but using physical constants themselves.
The constants, selected as the basic units, are equaled to
unity and, based on this, all other magnitudes are subse-
quently expressed. The systems of units, constructed by
M. Planck, H. Lewis, D. Hartree, P. Dirac, and others, are
constructed in this way. For example, we will consider the
expression of the Coulomb’s law in various measurement
units. In the SI system, electric constant in the Coulomb’s
law has the form g,=8.99-10° [N-m*.C™] Taking this
into consideration, it is written as follows:

F:50%=&99-109-%. (1)

In the system of CGSE, where €, =1 was accepted as one
of the main units, this law takes a simpler form:

F:1~%. 2)

The positive side of the procedure of this kind is the
equality of physical constants to unity. Because constants
are building blocks of similarity criteria, a number of cri-
teria become equal to 1. In other words, self-similarity is
achieved by correspondent criteria. However, the described
procedure has a drawback. A certain natural system of units
is convenient for a particular model. In other models, the
magnitudes, determined on its basis, usually have the values
that are inconvenient to use: they are too large or too little.
In addition, physical constants are determined with some
margin of error. As a result, for example, constants of mass,
time of processes, determined on their basis, will have the
errors, impermissible for practical use.

The proposed nondimensionalization method combines
the positive aspects of the Pi-theorem (taking into account
the scales of proceeding processes in each model separately)
and of the introduction of natural measurement units (equal-
ity of physical constants to unity).

At the first stage, we will represent;

P,=D, Py VGE€J 3

Here p, p, are the dimensional and nondimensionalized
magnitudes of MM, respectively, p; is the normalizing mag-
nitude (scale), ¢ is the number of variables in MM, £ is the
number of dimensional values. During the normally applied
nondimensionalization procedure, the magnitude of the
same kind as a nondimensionalized one is selected as a scale.
Thus, geometric characteristics of the research space are
normalized by the magnitude, corresponding to any char-
acteristic dimensions, temperature — by the characteristic
temperature and so on. This is a significant and unjustified
restriction. Normalization can be made by the magnitude of
the same nature as a normalized magnitude, or of the same
dimension, but not necessarily of the same kind. For exam-
ple, for geometric characteristics of space, the normalizing
magnitudes, having dimensionality of length [L], depending
on magnitudes, included in the MM, can take the form:

2
xt=v- /L or xA=i/V7, 4)
AP 8

for speed, having dimensionality [LT]:

ut = AP or u*=3/v-g. ©))
p

Here, APis the pressure drop, vis the kinematic vis-
cosity, pis the density, gis the free fall acceleration. With
such approach, magnitude x* displays its use as the scale
for geometric characteristics, rather than its characteristic
dimensions. Similarly for u* as the scale of speed and other
normalizing magnitudes.

Next, the procedure of nondimensionalization runs like
the standard one:



— by removing normalizing magnitudes and physical
constants beyond the sign of the operator and formation of
complexes with the same dimensionality;

— nondimensionalization of complexes by dividing by
one of them.

As a result, nondimensionalized complexes, which ex-
ternally meet the similarity criteria, but differ from them in
nature, are formed. Similarity criteria are formed from phys-
ical constants and scales of variables, which are unchanged
characteristic magnitudes for the explored process: a charac-
teristic size, time, speed, pressure, temperature, etc. For that
reason, the criteria also have a constant form. Normalizing
magnitudes are not selected in the proposed nondimension-
alization method at the stage of transformation. Expressions
(4), (5) are given to demonstrate the ability of their wider
representation. The possibility to vary ratios with a view to
representing obtained nondimensionalized complexes of the
necessary form remains.

At the second stage, the condition of equality of all ob-
tained nondimensionalized complexes to unity is set. A sim-
ilar result, but only for some of the complexes and particular
models, at the expense of some simplification, is achieved
when introducing the natural reference frame for them. In
this case, like in the case of the standard nondimensional-
ization procedure, the basic measurement units are constant
and only change the form: there is a transition from the char-
acteristic magnitudes of the process to physical constants,
corresponding to this process. As a result, it is not possible
to change the form of nondimensionalized complexes, which
are the criteria.

In the proposed method, the nondimensionalization pro-
cedure is constructed from the opposite. The desired form
of nondimensionalized complexes is assigned (in the present
case, equal to one), and this is achieved by varying the type
of normalizing magnitudes.

Formalization of the procedure for ensuring self-similar-
ity for criteria.

At the first stage, we will designate normalizing mag-
nitudes as p, (3), without determining their specific form.
These magnitudes have dimensionality of scalable magni-
tudes. They include normalization: for a function in the con-
sidered model, for spatial-temporal coordinates of the model,
for other variables of the model, for edge conditions of the
model. In the process of the standard nondimensionalization
procedure on their basis, as well as using physical constants
¢y, nondimensionalized complexes, which have the form of
products of power functions, are constructed:

TC1

g=l p=m
m, = 1)™ x[1c,), (6)
q=1 p=1

where /is the number of dimensional magnitudes,
included in the model, m is the number of physical con- =
stants, included in the model. Similarity criteria have
the same form.

At the second stage, all complexes (6) are equal to unity:

q=I p=m
m =1 <1, =1 Vhe], Q)

q=1

where his the number of the formed nondimensionalized
complexes.

As a result, we have the system of % equations with /
unknown. In this case, 2</. In addition to (/-k) variables, m

0 1 ” Y

physical constants take part in formation of h normalizing
magnitudes p;.

To solve (7), we will take logarithms of these equations
and obtain the system of linear homogeneous algebraic equa-
tions A-M =0 or

(qz_iotq~ln(p;)+’§[3p~ln(cp)=ln(1)=0] , ®)

h

where

Oy =+ Oy Bﬂ Bm
A= o o)

oy 0y By o B

A is the matrix of exponents o, and B,;

M=[In(p;) - In(p}) In(e) - In(c,)]
is the vector-column of all dimensional magnitudes of the
model (scales and physical constants).

Elements in the lines of matrix A are located in the order,

corresponding to the list:

Dio s s Piosss P Dot Py Prgo = Py GGy (9)

In the tuple of magnitudes (9):

— the first n, positions are allocated for the sought func-
tions;

— n, positions correspond to spatial-temporary coordi-
nates of the studied process;

— n, magnitudes-parameters of the process;

— ng boundary conditions;

— m physical constants.

In this case, (n,+ns+n,+nq)=L

Using the Gauss-Jordan Elimination Method, matrix A
can be transformed into the form of:

A—[EiB], (10)
where Eis the identity matrix of dimensions (r X r);
r — rank[A]. Lines with linearly dependent elements from
matrix A are eliminated; B is the matrix of exponents vy, of
dimensions [rx(/+m—7)].

In general form, matrix [E:B] can be represented as
follows:

1 0 ” 'Y“ Y1(l+m—r)

1 R Y (1)

Yr(1+m—r)

Using matrix [E:B], it is easy to write down the solu-
tion to the system and analyze the results.
Based on (11), normalizing magnitudes for the first
r elements from tuple (9) (corresponding to identity
part of matrix [E:B]) can be expressed through the
other elements of the tuple (9) in the correspondent po-
wers y,;:
v=(l+m)
a —Yio

pi = H pz,'

o=(l+m+1)-r

(12)



With their help, normalized (nondimensionalized) mag-
nitudes (3), which ensure meeting condition (7): w,=1.
It follows from it that complete self-similarity by criteria
(equality of all m, =1) can be achieved at rank[A]=n, +n,.

5. Examples of reducing models to the
nondimensionalized form in problems on the dynamics of
engineering systems

To demonstrate the workability of the proposed nondi-
mensionalization method, the MM of the hydraulic impact
in a pipe is explored as an example in two versions: without
and with taking into consideration the dissipative term.
In each case, the process of nondimensionalization in the
accepted way and with the use of the proposed method is
considered.

5. 1. Nondimensionalization of MM, recorded without
taking into account a dissipative term

In the classical statement of N. Y. Zhukovsky [11], this
model takes the form:

_9P_ dw
ox P ot ’ (13)
_9P_ . p2.90
ot ox
Edge conditions:
— initial
{t —g O7%
P=0;
— boundary
x=0 P=0;
14
{x =/ o=0, 4

where P is the pressure in the flow; o is the flow rate; x, ¢ are
the coordinates by the length of the pipe and the time of the
process, respectively; p is the density of fluid, flowing along
the pipe, ¢ is the sound velocity in fluid; o, is the initial flow
rate; /is the length of the pipe.

Since the model is linear, instead of absolute pressure,
we consider its deviation P from the initial value, accepted
as equal to 0.

5. 1. 1. The generally accepted nondimensionalization
model

When using normalizations P*, ®®, ¢*, x*, nondimen-
sionalized magnitudes of the correspondent variables are
written down as:

P _ o - t _ x
; O=—1j; [ =—; Xx=—0u.
p: o* t* x*

P= (15)

Subsequently, when they are used in the model (13), (14),
dimensional complexes are separated before operators. Opera-
tors are written down in the nondimensionalized form. Accord-
ing to the Fourier theorem, dimensional complexes within one
equation have the same dimensionality. Then nondimension-
alized complexes are formed within each equation by dividing

all dimensional complexes by one of these. All equations and,
accordingly, a model get a nondimensionalized form:

P __ 0o
ox ‘ot
oP 00

==y
ot ox

(16)

edge conditions:
—initial

(17)

pro-x*
e

2 A za
p-c-o° -t 0} /
= ; ,=—2; m,=—, (18
x*-P* MO R 1

where 7y, my, 73, 74 are the nondimensionalized complexes.

Subsequently, based on the heuristic approach, the num-
ber of complexes decreases and the form of complexes ; is
simplified. The result depends on complexity of a model and
experience of a researcher. Assuming than, under boundary
conditions m3=1, ms=1, the values of normalizing values
®*=w, x*=I are determined. Normalizing magnitude
for time can be determined from the ratio of characteristic
magnitudes of the process: ¢* =I/c. For P*, in the reduced
model, a characteristic magnitude is absent, but can be in-
troduced artificially. Let us assume P*=P. We can accept
pressure in the system before the beginning of development
of hydraulic impact as P. Substituting the values of ®*, x*,
t*, P* in the remaining complexes (18), we will obtain:

_p-w“-x“_p-wo-X-c_p-ma-c_
P X P’

o

T

_pctottt pcto, K po,c
- xPr XPx P

(19)

T,

Comparison of complexes (19) shows their equality
n, =7, =7. In nondimensionalized model (16), (17), there
remained only one nondimensionalized complex — similarity
criterion.

At this stage, the process of transformation of a model
usually finishes. In the studied case, characteristic mag-
nitude of the process t* for normalizing the time variable,
which is missing under boundary conditions, was selected
successfully. It is not always possible to do it. In a similar
situation, two similarity criteria 7y and ny would remain in
the studied model.

5. 1. 2. The proposed nondimensionalization method

According to (9), a tuple of dimensional magnitudes from
model (13), (14) is constructed, in which elements 1-2 corre-
spond to 1, elements 3—4<n,, elements 5—6<nq, elements
7-8<>m of physical constants of the process. Based on (8),
matrix A is formed from exponents at correspondent variables
in expressions for nondimensionalized complexes (18):



12 3 4 5 6 7 8

P o x ¢ o, ! c

-1 1 1 -1 0010

-1 1 -1 1 :00 1 2
. . (20)

O -1 0 0 : 1000

7, 0 0 -1 0 0100

For matrix (20), rank[A]=4. Therefore, at this stage,
it is possible to speak about the possibility of achieving
self-similarity by all criteria before making transformations.

After applying the Gauss-Jordan algorithm, the trans-
formed matrix has the form of:

Po xti: o | p ¢
n[1 000 -1 0 -1 —1
w0 1 0 0 -1 0 0 O @1
|0 001 0: 0 -1 0 0
(0 001 0 -1 0 1
E : B

With the help of matrix (21), normalizing magnitudes
are formed in the following way:

— any line from (21), for example ny, is selected. In part
[E] in this line, «1» is located in the column, corresponding
to magnitude P. For it, normalization P* is determined;

— with the help of magnitudes from this line, located
in part [B] of matrix (21), the kind of normalization P* is
formed. It is constructed according to (12).

The specified values act as exponents with an opposite
sign for the magnitudes of edge conditions and physical
constants, designating correspondent columns in this part
of the matrix.

According to this algorithm:

— from line iy— P* =o' -p'-¢' =0, -p-¢;

— from line my— 0* = 0! = ,;

— from line m3— x* ="' =1

o

— from line my— ¢* =—=—. (22)
¢ ¢

Substitution of normalizing values (22) in (18) trans-
forms all nondimensionalized complexes into equal magni-
tudes of n=1. In other words, self-similarity is achieved by
all similarity criteria. Results of (22) were obtained without
heuristic searches based on a formal procedure that can be
performed by a researcher of any skill level.

5. 2. Nondimensionalization of MM, recorded with
consideration of a dissipative term

A more complicated variant of the MM of the process of
hydraulic impact can be represented by the model (13), (14)
with addition of linearized dissipative term. In this case, the
model is presented, for example, in [12]:

ox ot (23)
_9P_ p.09
o P
edge conditions:
— initial
ieg  ©=O0
P=0;

— boundary
x=0 P=0;
24
{x:l o=0, 24

were a is the resistance coefficient

5. 2. 1. Common nondimensionalization method

As a result of using transformation and normalization
P, o°, t*, x*, we will obtain the model in the nondimen-
sionalized form:

ap—n 86+n ;
= YW= 3 W,
o (25)
P
ac P ax’
edge conditions:
— initial
Gt
0 2
P=0;
— boundary
=0 P=0 (26)
x=1 o=0,
where
c-® 2a-l
m=m =P =P =t @)

In comparison with model (13), (14), appearance of a new
term in the equation led to appearance of one more nondi-
mensionalized complex — similarity criterion 3.

5. 2. 2. The proposed nondimensionalization method
Nondimensionalized complexes for model (23), (24) are
written down in general form like (18):

A a 2 PSEPPS
HOREN Ry (Y A
7t1=p N n2=p  Da
t*-P x*-P
p-ao-x* o, /
= m,=—2; T =—-. 28
=0 = M= (28)
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A tuple of dimensional values is built form model (23),
(24) and matrix A, similar to (20), is formed:

1 2 3 4 5:67389
P o x t a:i: o [ pc
mf-1t 1 1 -1 0:0010
m-1 1 -1 1 0:00 1 2
-1 1 1 0 1 :0 0 1 0} (29)
|0 -1 0 0 0 : 1000
|0 0 -1 0 0 :0 100

From (29), at all linearly independent lines, it follows
that rank[A]: 5. To solve this system, 5 variables are nec-
essary. At 4 available (P, o, X, t), for modeling it is necessary
to separate another magnitude, which would be used in this



capacity. In the explored case, we separate, for example, a —
resistance coefficient. In addition to (15), it can be deter-
mined from the ratio @=a/a*, where @ is the nondimen-
sionalized magnitude of resistance coefficient. As a result
of it, normalizing magnitude a* will appear in complex m3in
(28) instead of the dimensional magnitude “a”. After apply-
ing the algorithm of Gauss-Jordan, the transformed matrix
has the form of:

P o x t a o, [ p c
mft 000 0: -1 0 -1 -1
m{0 1000 : -1 0 0 0
/0 01 00: 0 -1 0 0] (30)
{0 001 0: 0 -1 0 1
|0 000 1: 0 1 0 -1
E B

Similarly to (22), normalizing magnitudes were obtained
from (30):

— from line ;y— P* =} -p'-¢'= 0, p-c;

— from line my— 0* =) =, j;

— from line mg— x* =1"'=1;

1

. A
— from line my— ¢* =—=—;
c

a O

— from line n5— a* =—.

] 3D

With the use of (31), the original MM (23), (24) in the
nondimensionalized form will be written down as:

P d® ,_ _
—_—— =+ 2a- ,
oo 32)
_9P _do,
o ox’
edge conditions:
— initial
{t: o =k
P=0;
— boundary
S 33)
x=1 0=0.

As in the previous case, all nondimensionalized com-
plexes — similarity criteria m=1. Self-similarity is achieved
by all criteria. But another magnitude a. appeared in the
transformed model (32) in addition to nondimensionalized
variables P, ®, ¥, £. On the one hand, it was introduced to
(29) as a variable. On the other hand, in the process of solv-
ing a specific problem, it remains a constant magnitude like
the similarity criterion. It is its special feature. Ultimately,
what is important is that when using the proposed method,
in contrast to the generally accepted method of nondimen-
sionalization, it was possible to decrease the number of
magnitudes that determine the transformed model. Thus, in
the conventional method, the model includes 6 magnitudes:
P, ®, X, t, as well as ©,, m, from (27). In case of applica-
tion of the proposed method, 5 such magnitudes remain:

P, o, x, t,as well as a.

6. Discussion of results of the solution, based on the
developed method

Application of different methods of nondimensionaliza-
tion to identical MM potentially should provide a uniform
result. That is why effectiveness of such procedure should be
assessed by the number of nondimensionalized magnitudes,
included in models after the procedure of transformations.

Let us consider model (13), (14). It is composed of N=8
dimensional variables (20) at =3 main measurement units
[M], [L] and [T]. Based on Pi-theorem, a nondimensional-
ized model must include n=N-n=8-3=>5 nondimensionalized
magnitudes. This result was obtained due to the use of
the common procedure: P,®,f,x and n,=m,=n from
(19). The application of the proposed nondimensionalization
method made it possible, based on the formalized procedure,
to get the form of the normalizing magnitudes (22), leading
to a further decrease in the number of nondimensionalized
variables. As a result, m, =m,=1 was obtained for mag-
nitudes from (19), which corresponds to achievement of
self-similarity according to the criteria of similarity. This
result is maximally possible in such procedures. This was due
to consideration of the MM structure in the nondimension-
alization process.

The MM of hydraulic impact makes it possible to show
the possibility to achieve self-similarity by using other meth-
ods. This happens due to its simplicity. It follows from (19),
that the product p-®,-¢c has dimensionality of pressure.
Using this expression as normalizing magnitude P* leads
to m,=m,=1, like in the previous case. This result is trivial
and is possible in this case because there is only one criteri-
on (19). If there are more criteria and complex relationships
between them in a model, a limit decrease in the number
of nondimensionalized magnitudes is theoretically possi-
ble, but very difficult in practice. The proposed method of
nondimensionalization does not have this drawback due to
formalization of the nondimensionalization procedure.

In MM (23), (24), while taking into account the
dissipative forces, compared to (13), (14), an additional
term and another dimensional magnitude (resistance co-
efficient) appear, which make altogether N=9. In this case,
the number of basic measurement units did not change
and remained n=3. As a result, based on the Pi- theorem, a
nondimensionalized model must include i=N-n=9-3=6 of
nondimensionalized values. This result was obtained after
application of the generally accepted procedure P, @, ¢, ¥,
as well as m, =m, and =, from (27).

The application of the proposed method of nondimen-
sionalization made it possible, as in the previous case, based
on a formalized procedure, to obtain the form of normal-
izing magnitudes (31), resulting in self-similarity by all
similarity criteria.

The nondimensionalized MM of hydraulic impact in
pipes, selected for discussion of the ways of implementation
of the proposed nondimensionalization method due to its
simplicity, does not enable demonstration of all capacities
of the proposed approach. Thus, paper [13] shows without
a description of the method the results of applying the
proposed method to more complex models based on the
Navier-Stokes equation or even more general equations
of conservation (energy, momentum, and substance). The
possibility of the “distorted” modeling was also shown in

paper [13].



7. Conclusions

1. We developed the algorithm, formalizing the process
of the MM nondimensionalization with the view to minimiz-
ing their number as compared with the results, prescribed
by the Pi- theorem. In the explored examples, the number of
nondimensionalized magnitudes, determining the explored
model, is by unity less than the number, prescribed the by
Pi-theorem.

2. Based on the developed procedure, the lower bound-
ary of the possible number of nondimensionalized magni-
tudes of the mathematical model was determined. At reach-
ing self-similarity by all criteria, their number is determined
by the sum of the sought functions of the model and its spa-
tial-temporal coordinates. This state has been achieved for

the given example of the model of hydraulic impact in pipes
without taking into consideration dissipative forces. Number
of nondimensionalized magnitudes is minimally possible,
equal to 4 and is determined by the sum of the two sought
functions (P, ®) and two spatial-temporal coordinates (x, 7).

3. The possibility to obtain all results, prescribed by
the Pi-theorem, using the nondimensionalized magnitudes,
obtained with the help of the described transformation pro-
cedure, was shown. The nondimensionalization method (3)
in all the explored cases is the same. The difference is only in
the form of records of normalizing magnitudes (12). For this
reason, both original results and the results, prescribed by
the Pi-theorem, can be obtained in the process of transfor-
mations, depending on the form of recording the normalizing
magnitudes.
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