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1. Introduction

The fractional-integral calculus extends the theory of 
differential equations to the domain of non-integral order 
of derivatives eliminating discontinuities of this parameter. 
Solutions of linear equations of this kind represent a wide 
class of various functions that differ from the combination of 
exponential and harmonic functions. These functions are the 
infinite oscillating series. Recently, from 1993 to 2007, when 
developing the theory of Mittag-Leffler functions, solutions 
to some fractional differential equations were obtained in 
general form. These functions are named after their devel-
opers: Robotnov-Hartley, Erdei, Miller-Ross. Unification of 
these functions in 2007 has led to the development of gener-
alized R- and G-functions. Despite the complexity of these 
functions, fields of application of the fractional-integral cal-
culus in modern technical systems are gradually expanding. 
Creation of the chaos theory [1] has combined mathematical 
description of fractal spatial and surface structures and 
interaction of mobile particles, which is rather effective in 
describing the processes occurring in porous structures of 
filters, catalysts, accumulator electrodes and supercapac-

itors [2]. Application of the methods of fractional-integral 
calculus to the wide list of physical processes given in [3] 
enables obtaining the best results.

One of the features of solution of fractional-differential 
equations is their close connection with power functions. 
Accordingly, the control objects in a number of technolog-
ical processes with nonlinear dependences approximated by 
these functions are better described by fractional-differen-
tial equations [3]. Currently, methods for identifying such 
objects by means of differential equations with an arbitrary 
fractional order are already well tested. Accordingly, to con-
trol this kind of processes, it is advisable to use PIαDβ-con-
trollers with fractional-integral and fractional-differentiat-
ing components, which ensure setting of the closed loop to 
obtain the required dynamic and static parameters.

The theory of synthesis of fractional PID controllers has 
been well developed [4]. However, the problem consists in 
technical implementation of such controllers since the use 
of discrete Grünwald-Letnikov or Riemann-Liouville forms 
which are infinite rows theoretically involves allocation of 
infinite memory capacities and requires a large number of 
arithmetic operations to be performed during the processor 
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quantization period. This limits the scope of application of 
the PIαDβ controllers controlling slow process. The issues of 
choice of coefficients of the PIαDβ-controllers when working 
with non-linear objects with variable parameters remain 
open as well.

Therefore, the problems of synthesis of optimized sys-
tems with a fractional order of astaticism for objects with 
variable parameters and development of methods for techni-
cal implementation of fast-acting fractional integral-differ-
entiating controllers remain topical.

2. Literature review and problem statement

Effectiveness of application of fractional-integral cal-
culus is no longer open to doubt in many areas of science 
and technology. In the modern theory of heat and mass 
exchange, such a mathematical apparatus enables more 
accurate solutions for the physics of fractal media in com-
parison with the methods of integer integration [5–7]. For 
example, it was shown in [6] that dependence of temperature 
on time in a thermal system operating in the transient mode 
can be approximated and modeled by means of a differential 
equation of fractional order. For some particular cases, ana-
lytical solutions based on the Mittag-Lefler functions were 
obtained and the use of PID controllers of non-integer order 
for process control was proposed [8]. However, in a number 
of cases, the structure of controllers should be more complex 
and standard methods for tuning PIαDβ-controllers may be 
ineffective.

Application of the fractional calculus in automatic 
control can be conditionally divided into two fields. One of 
them includes the methods of mathematical and computer 
simulation of the fractional order systems in which proper-
ties of fractional dynamics manifest themselves. Discrete 
calculation methods with a constant step are used there 
for calculating fractional integral and differential signal 
components.

The Grunwald-Letnikov (GL) form is a consequence of 
generalization to an arbitrary order of the Cauchy formula 
of repeated differentiation and determines the rules for com-
puting fractional derivatives:
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The complexity of application (1) is caused by the neces-
sity of calculation of the gamma function of large arguments 
and the rapid loss of calculation accuracy because of the 
disparate values of the coefficients.

In its turn, the discrete Riemann-Liouville (RL) form 
is a generalization to an arbitrary order of the Cauchy 
formula of iterated integration and is used to calculate the 
fractional integral:
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The error of this formula is caused by the presence of the 
integrand denominator which becomes equal to 0 at t=ti. If 
the last summand is neglected (which is usual for the method 
of finite increments), then the error is very noticeable, espe-
cially at the beginning of the transient process. There is a 
method for calculating the correcting function [4] calculated 
from formula
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however, when calculating the correction value, it is neces-
sary to calculate the gamma function and the factorial with 
arguments equal to the number of the calculated points 
which (as already emphasized) leads to certain problems. 
Besides, calculation of correction is algorithmically equiva-
lent to calculation of one more fractional integral.

The second field includes the methods using the ap-
paratus of fractional calculus for synthesis of the systems 
controlling the objects of both integer and fraction orders, 
in particular, synthesis of controllers of fraction order 
[10]. Because of their transcendence, the resulting transfer 
functions significantly complicate solution of the classical 
problems in the theory of automatic control: estimation 
of stability, observability, robustness [11]. However, after 
the synthesis of controllers, problems of their implemen-
tation arise because of complexity of calculating infinite 
rows in microcontrollers. Therefore, some approximate 
analog models of such controllers are proposed based on 
serial RC-circuits [12] which in a case of sufficiently large 
number of links become similar to fractals and the num-
ber of components is limited in the controllers. Also, the 
fractional-integral components are replaced by high-order 
filters which are sufficiently similar in their properties in 
the mid-frequency range [13].

Metal processing is one of the technology fields where 
the PIαDβ-controllers can provide an improvement in qual-
ity. The metal-cutting machines operate in conditions of 
action of parametric perturbations caused by variation of 
the depth and width of cutting, the workpiece material 
hardness and the cutting tool condition. Stabilization of 
the cutting power in machine tools due to the feed speed 
control helps to rise machining productivity and preci-
sion and extend the cutting tool service life. However, in 
combination with yielding of the “machine-part” system 
elements, perturbations cause changes in the equivalent 
parameters of the control object which results in a deterio-
rated quality of the transient processes. Therefore, the use 
of classical control systems with anticipatory correction, 
flexible feedback in the regulated coordinate does not en-
sure achievement of a high quality of transient processes 
and smaller static errors in the steady state at a wide range 
of changes in processing conditions. For metal rolling mills, 
surface roughness of the worked billets is characterized 
in [14] as a fractal. This has made it possible to develop a 
high-precision system for assessing the product quality. It 
can be assumed that good results can be obtained for other 
metal processing methods as well.

On the other hand, development of the microprocessor 
technology has led in recent years to the mass spread of uni-
versal single-chip microprocessors manufactured using the 
14‒28 nm technology processes. Such processors are already 
used not only in personal computers and smartphones but 
also in Arduino, Raspberry Pi and Altera controllers.
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Thus, some issues remain open concerning determina-
tion of parameters and structure of integral-differentiating 
controllers of a fractional order. The issues of the possibility 
of applying the theory of fractional integral calculus to the 
processes of metal processing by cutting are still open. There 
are mathematical and technical difficulties in implementing 
the PIαDβ-controllers based on inexpensive microcontrol-
lers. Solution of these problems opens the way for building 
systems for control of various technological objects on the 
basis of complex mathematical models and controllers with-
out simplifications which was impossible previously.

3. The aim and objectives of the study

The study objective is the synthesis of fractional inte-
gral-differentiating controllers that provide the required 
order of astaticism at a small overregulation for the systems 
with increased requirements to dynamic and static indica-
tors as well as development of a method for implementing 
high-speed discrete fractional PID controllers based on 
modern microprocessors.

To achieve this objective, the following tasks should be 
solved:

– to develop a criterion for synthesis of controllers to 
ensure optimal dynamic and static indicators;

– to check operability of regulators for an object with 
parameters varying in a certain range;

– to develop a method for implementing discrete frac-
tional-integral high-speed controllers corresponding to the 
capabilities of modern single-chip microprocessors.

4. Synthesis of closed systems with optimal dynamic and 
static indicators

Let us consider a closed system in which we shall use 
not a PIαDβ-controller but provide setting to a given opti-
mum. High accuracy of stabilization of coordinates in stat-
ic and dynamic modes can be provided by astatic systems 
with their open loop containing an integrating link of the 
first or higher order corresponding to the required order of 
astaticism.

Setting to the modular optimum with a calculated over-
regulation of 4.35 % is widely used for the first-order astatic 
systems and setting to a symmetrical optimum at which 
overregulation increases by a factor of 10 is used for the sec-
ond-order astatic systems. The reason for this is reduction in 
phase and amplitude stability margin.

To unify the subsequent calculations, move to relative 
units in the time domain. This will allow us to consider 
from a single point of view both relatively slow systems (e. g. 
climate systems) and high-speed systems (such as metal cut-
ting machines, welding machines). Assume

,realt
t

Tν

=   (4)

where t, treal are relative time and absolute time, Tν is uncom-
pensated small time constant of the control object. By select-
ing this value, one can set the required system speed based 
on the requirements to the process. In particular, a number 
of additional restrictions related to equipment wear and tear, 
financial and energy costs may be taken into account [18].

Then, the Laplace operator and frequency will also be 
changed in the transfer functions and in calculation of fre-
quency characteristics:
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Synthesize a system with a fractional order of astaticism 
[ ]1 , 0,1+ µ µ ∈  and the open loop transfer function described 

by the following expression:
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corresponds to the uncompensated part of the control object.

Such a system does not have a position error. A constant 
velocity error arises when a “concave” signal of the t1+µ form 
is applied to the input.

The transfer function (6) corresponds to the logarithmic 
amplitude- and phase-frequency characteristics (LAFC and 
LPFC) calculated from formulas:
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Comparison of LAFC and LPFC of an open loop with 
a fractional order of astaticism and the systems with tun-
ing to a modular or symmetric optimum at identical cutoff 
frequencies shows that the phase stability margin increases 

by ( )1 .
2
π

− µ  with a decrease in µ. This makes it possible to  
 
improve dynamic performance of the system by increasing 
the cutoff frequency while maintaining or even increasing 
the stability margins.

The transition function (6) of the system which is a con-
volution of the Robotnov-Hartley function and damped har-
monic oscillations [4] is characterized by several extrema. 
For each µ, one can choose a certain a to b ratio that satisfies 
the set quality criterion of the transient process.

The classical criterion of the mean-square total error can 
be formally represented as a sum of the products of multipli-
cation of errors by their “weight” equal to the error itself. As 
a result, the largest “contribution” is made by the first points 
with the maximum deviation and the process “pressed” to 
the ordinate axis appears to be optimal. The overregulation 
can be very large but short-lived.

Let us formulate a criterion for optimizing the transient 
process for the systems requiring provision of high system 
speed (comparable to the chosen value of Tν) but with a strict 
limitation of width of the admissible “corridor” of deviations 
from the set value. To this end, integrate the error before the 
first entrance to the ( )1iY − < δ  “corridor” (the error weight 
is 1) and then increase the F functional by the amount of the 
cubed error relative to δ. Accordingly, the weight appears to 
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be less than 1 in the “corridor” and more than 1 outside it and 
rises according to a quadratic parabola:

( ) 1
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1 1
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1
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i i

Y t t

F
Y t t=

 − ∀ <


= → − ∀ >  δ

∑   (9)

where t1 is the time of the first entry into the “corridor”. This 
formulation of the estimation criterion makes it possible to 
avoid compression of the optimal transition function to 0 in 
time and short-term surges and depressions outside the set 
corridor [15].

Fig. 1, 2 show the normalized transition functions ob-
tained based on the set criterion. Optimum characteristic 
can be chosen from them on the basis of the desired system 
speed. The corresponding combinations of the µ, a, b values 
can be taken from Table 1.

The values of the margin of Δφ phase stability and Ω0 
cutoff frequency for δ=0.025 and δ=0.05 are also given in 
Table 1. It can be seen that an increase in δ leads to a certain 
decrease in the phase stability margin with a simultaneous 
increase in the cutoff frequency, that is, to an increase in the 
system speed. Also, for all combinations of the parameters 
obtained, the phase stability margins are even greater than 
when tuned to the modular optimum (65.5°) and overregu-
lation is smaller.

Table 1

Optimal ratios of the setting parameters

δ=0.025 δ=0.005

µ a b Δφ, o Ω0 µ a b Δφ, o Ω0

0.1 0.080 1.675 82 15.90 0.1 0.085 5.002 82 40.87

0.2 0.267 2.113 77 5.55 0.2 0.189 3.162 75 10.44

0.3 0.574 2.781 73 3.27 0.3 0.483 3.502 71 4.52

0.4 1.146 4.226 70 2.41 0.4 1.021 4.226 69 2.64

0.5 2.420 6.077 69 1.68 0.5 2.284 6.437 67 1.84

0.6 5.023 9.396 67 1.28 0.6 4.742 9.953 67 1.40

0.7 11.97 13.46 71 0.82 0.7 10.67 14.26 68 0.96

0.8 29.26 20.15 74 0.54 0.8 26.08 22.61 69 0.67

0.9 81.62 40.16 72 0.42 0.9 77.06 47.73 68 0.52

Fig. 1. Transient characteristics at the ratio of μ, a, b optimal 
by criterion (9) for δ=0.025(9) 

The transition functions at [ ]0.3,0.7 ,µ ∈  are of greatest 
interest of all obtained results since it is necessary to use the 

quantization period ( )0.005...0.02 ,t Tν∆ <  at smaller µ. The 
system speed becomes relatively low at larger µ ( )1 3 .t Tν>

Fig. 2. Transient characteristics at the optimal ratio of μ, a, b 
for δ=0.05

5. Analysis of operation of the cutting power stabilization 
system of the milling machine with fractional-integral 

controllers

Let us check how the system behavior changes with 
the change of the control object parameters. Consider a 
system for stabilizing the milling machine cutting power 
as such an object. The feed rate is the control coordinate 
in this machine and a sudden change in the cutting depth 
is the perturbation action.

The static value of the cutting power is determined from 
the empirical relationship [16]:

,p pv x
pP Ks t=  (10)

where K is the equivalent coefficient depending on the 
types and parameters of the tool and the part, tp is the 
cutting depth, s is the feed rate, xp, vp are the expo-
nents that vary depending on the materials of the part  
and tool: 

[ ]0.75, 0.95 ,px ∈  [ ]0.65, 0.8 .pv ∈

Fig. 3 shows two of the oscillograms obtained in the 
study of a vertical milling machine, model 6B75, for 
milling gray cast iron with an end milling cutter made 
of R6M5 grade high-speed steel. The active power of 
the asynchronous motor of the main motion when the 
cutter cuts into the workpiece was determined by the 
K-50 measuring instrument of 0.5 accuracy class with 
further signal filtering by a first-order inertial link with a 
time constant TF =0.2 s. The “machine-detail” system was 
identified by classical methods for the transfer function of  
the form:

( )
( ) ( )2

,
1 1

O
O

O F

k
H p

T p T p+ +
=   (11)

which resulted in the dependence of the milling process time 
constant on the feed rate s [mm/min] and the cutting depth 
tp [mm] as:
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p

O p
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T Az Azn t s
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where A is the coefficient determining condition of the cut-
ting tool and the material of the workpiece, z is the number of 
teeth of the milling cutter and n is the rotational speed of the 
milling cutter [rpm]. The synthesized control system with a 
fuzzy controller has made it possible to reduce cutting power 
to 15...25 % in one second [17].

Taking into account formula (10), it is obvious that the 
mathematical description of the control object includes pow-
er dependences which, under the Laplace transform, leads 
to a fractional-differential equation in the operator form. 
The features of the objects described by such equations are 
clearly visible in Fig. 3: the rapid onset and the prolonged 
termination of the transient process.

Fig. 3. Experimental and calculated graphs of the change in 
the active power of the main motor at tp=4 mm

Let us take TF as an uncompensated time constant and 
describe the relationship between relative power and feed by 
transfer functions of orders 1+µ and 2+µ:

( ) ( )( )
1

1
1 0

1
,

1 1OH p
a p a p p+µ µ

=
+ + +
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2

2 1
2 1 0

1
.
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a p a p a p p+µ +µ µ

=
+ + + +

 (13)

Then identification of the object by the transient pro-
cesses from Fig. 3 leads to the results presented in Table 2.

Table 2

Results of control object identification 

Parameter
Fig. 3, а Fig. 3, b

( )1
OH p ( )2

OH p ( )1
OH p ( )2

OH p

µ  0.7348 0.7582 0.6652 0.6743

0a
 1.4820 1.6427 1.0604 1.1907

1a
 2.2372 2.1110 2.3182 2.2372

2a
 0.5721 0.6810

F  0.0132 0.0110 0.0208 0.0140

With the relative rms error of F to 1.4...2.1 % deter-
mined by noise and see-saw pulsations, the cutting pro-
cess is described by fractional-differential equations. The 
order of the equations is comparable with the order of the 
power dependence (10) for the workpiece and cutter mate-

rials and a more complicated ( )2
OH p  or simplified ( )1

OH p  
model can be used depending on the required accuracy of 
calculations.

The smoothed lines in Fig. 3 convince that the calculated 
transient processes are close to the experimental ones.

To ensure the selected settings, the controller connected 
in series with the control object must have a transfer func-
tion determined from the relation

( ) ( )
( ) ,OPT

REG
O

H p
H p

H p
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When ,µ = µO  the transfer functions of the controllers 
are converted into a combination ( )PID I PIµ+  of functions:

( )1 1 0 1 0 1 1
,REG

a b ba a a b
H p p

a a ap p a apµ

   +
= + + + +      

 

( )2

22 1 0 1 0 1 1
.

REGH p
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p p

a a a ap p a apµ

=

   +
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 (16)

When Oµ ≠ µ , the transfer functions of the controllers 
are more complex and it becomes necessary to calculate two 
fractional integrals of different orders:

( ) ( )1 1 01 1 1
1 ,

OREG

a a
H p bp

p a ap p apµ−µ µ

  
= + + +    

( ) ( )2 2 1 01 1 1
1 .

OREG

a p a a
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In a particular case, when 1,Oµ =  that is for the objects 
with an integer order of differential equations, the following 
is obtained:

( ) ( )1 1 01 1
1 ,REG

a a
H p bp p

p a a apµ

  
= + + +    

 

( ) ( )
2

2 2 1 01 1
1 .REG

a p a p a
H p bp

p a a a apµ

  
= + + + +    

 (18)

Simulation of transient processes was performed for 
controllers with a ( )2

REGH p  structure according to formula 
(16) for the worst case of object parameters: the maximum 
equivalent gain and the largest coefficients of the denomi-
nator of the transfer function corresponding to the nominal 
power. Fig. 4 shows response of the cutting power stabili-
zation system to the stepped changes in the cutting depth 
resulting in cutting power jumps in the open system from 
100 % to 140 %, 180 %, 220 %, 160 % and again to 100 %. 
The model takes into account the power dependences of 
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the cutting power both on the feed and the depth of cut-
ting, the noise and the sensor lag. The controller settings 
were made for µ=0.5. Similar results were obtained for the 
order of astaticism 0.3 0.7.≤ µ ≤  At lower values of µ, the 
system is sensitive to noise. To make its operation stable, 
a quantization period ( )0.005...0.02 ,t Tν∆ <  is required. At 
higher values of µ, the system speed is much lower than the 
variants shown in Fig. 4.

Fig. 4. Graphs of transient processes in the system of power 
stabilization at jumps in the depth of cutting

Based on the obtained graphs, it can be concluded that 
the proposed method of setting is advisable. Obviously, the 
synthesized controller provides the desired quality of tran-
sient processes: the cutting power in any of the modes does 
not deviate more than 2 % from the set value.

6. The method of technical realization of fractional 
integral calculation for microprocessor-based control 

systems

To realize calculation of the fractional-integral and 
differential components of the controller signal in the mi-
croprocessor systems with quantization period Δt, several 
calculation methods can be used. The Grunwald-Letnikov 
(1) and Riemann-Liouville (2) forms lead to close results. 
However, considering, that the systems’ astaticism provides 
integral components of controllers and the differentiating 
components appear only when the inertial components of 
the object of the 2nd and higher order are compensated, it is 
more often necessary to perform an integration operation to 
find solutions. Therefore, we shall prefer the form (2) and use 
the following relation to calculate the fractional derivative:

1 1I I
D I .i if fd

f f
dt t

µ µ
−µ µ −−

= ≈
∆

  (19)

To compensate for the calculation error by the Rie-
mann-Liouville form, introduce a corrective bias into the 
denominator. This will allow us to obtain an exact solution 
for some particular cases and more accurate solutions for 
arbitrary-shaped signals.

If a single jump is applied to the input of a fractional-in-
tegrating link, solution of the equation ( ) ( )( )I 1y t tµ=  is 
described by expression:

( ) ( )
1

.
1

y t tµ=
Γ + µ

  (20)

Then, write

( ) ( ) ( ) ( )1
1

1 1 1
,

1

i

j
i j

t i t
t j t C

µ
−µ

=

∆ = ∆
Γ µ Γ + µ− ∆ +

∑

and the following formula for calculating the fractional 
integral is obtained after a series of transformations:

( )
( )( )

( ) 1 1
1 1

1
I ,

1i j

i i

t i j i j
j j

j j
f t t f t k f

µµ

µ µ µ µ
− + − +

= =

− −
= ∆ = ∆

Γ + µ∑ ∑   (21)

where jkµ  are constant coefficients.
The obtained solution (21) was tested using the relation

( )( )( ) ( )1

0

I I d
t

f t f t tµ −µ = ∫  (22)

by integrating a pseudo-random signal (of “white” noise). 
In the proposed method (21), because of the shift in the 
denominator, a regular error inherent in the basic form was 
eliminated without applying corrective calculations.

However, the main problem of calculating the frac-
tional integral using either of formulas (1), (2) or (21) 
consists in a necessity of calculation of sums of the pair-
wise products of the coefficients by all previous values 
of the input signal in each quantization period. In this 
case, the processor memory should store both the array 
of coefficients and the entire “history” of the input sig-
nal. Neglect of the highest terms of the series leads to an 
error in calculation of ε. It is possible to determine the 
minimum number of points from (21) to provide the set  
error value:

1/
1 (1 )

.
( )

N
t

µ

µ

 Γ + µ
=  ε Γ µ ∆ 

  (23)

For example, for µ=0.5 and ε=0.05 at Δt=1, 315 previous 
points should be remembered and 1,964 points to be re-
membered to ensure ε=0.02. Storage of this amount of data 
exceeds capabilities of many single-chip processors.

Now, calculate the coefficients for various µ from 0.1 to 
0.9 and plot their variation depending on the ordinal number 
in the logarithmic coordinate axes. At the same time, con-
struct trend lines for these dependences in the form of power 
functions (Fig. 5).

Fig. 5. Dependence of coefficients in the fractional 
integration formulas on the ordinal number
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A remarkable feature of these dependences is obvious. 
Starting from 50...100 numbers, the differences between 
the forms (2), (21) practically disappear and the depen-
dences of the coefficients with an error in the 5th or the 
6th decimal place are approximated by the power function, 
that is, they become close to a geometric progression with 
a coefficient q extremely close to but still less than 1. This 
means that calculation of the sum of products of higher 
terms can be replaced by multiplying the previous value of 
this sum by the coefficient of geometric progression. Then, 
by setting the maximum number of the stored values of 
the input signal ndim, calculation of the fractional integral 
can be performed in two blocks. The initial ndim points 
are calculated by (21), and then all leading summands are 
gradually taken into account in the sum of the geometric 
progression S. Only the last ndim points are processed by 
(21) and form the 

dim
I .n

µ

 
value. The resulting approximate 

value of the integral is defined as the sum of S and 
dim

In
µ :

( )( )
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where q is calculated as the mean geometric between 
dimnk  

and 
maxnk :

( ) ( )
( ) ( )

max dim

1

max max

dim dim

1
.

1

n nn n
q

n n

µ µ −

µ µ

 + −
=   + − 

  (25)

Accordingly, only the last ndim values of the input signal 
and the same number of 

dim1... .nk k  coefficients should be stored 
in the processor memory.

Efficiency of the algorithm was verified by calculating 
the fractional integral of the sinusoidal signal ( ) ( )sinx t t=  
for various µ. Fig. 6 shows a quarter of the period of the 
results of integration by (24) from the 900th to the 1,000th 
calculation points at a set ndim=1000 (the time axis is marked 

in degrees). The phase shifts are exactly equal to ,
2
π

µ  that  
 
corresponds to the definition of the fractional integral of the 
harmonic function. The error in the calculation results in 
comparison with the calculation by (21) is from 0.11 % for 
µ=0.9 to 1.7 % for µ=0.1.

The speed of the calculation method was tested on Ar-
duino Intel Galileo Gen 2 microcontrollers based on the 
8086 processor with clock speed of 400 MHz, FPGA Altera 
Cyclone V with clock speed of 50 MHz in the DE1-SoC con-
troller as well as Arduino Nano with Atmega328 processor 
with clock speed of 8 MHz.

Fig. 7 demonstrates comparison of the calculated values 
( )_y p  and the values ( )_y ard  obtained via serial port from 
Arduino Galileo for a fractional-aperiodic link with µ=0.5 at 
ndim=128, nmax=1000. Double-precision floating-point math 
( ).double

 
was used. The exact data and the data calculated by 

the controller coincide at nmax which can serve as a criterion 
for nmax choice. For comparison, the graph of y_old change 
illustrates the result of calculating the fractional integral 

when memory capacities are exhausted: the fractional-inte-
grating link becomes proportional and a static error appears 
in the astatic system.

Fig. 6. Fractional integrals of the sinusoidal function

Fig. 7. Calculated and experimental values of the output 
signal of the fractional-aperiodic link

The calculation time for the fractional integral was on 
average 15 µs, periodic communication procedures took up 
to 15 µs as well. Calculation time for the fractional integral 
was 8 µs at ndim=64. FPGA Altera used integer mathematics 
with data storage in 64-bit registers. Due to organization 
of parallel computations available in FPGA, the calculation 
time for the fractional integral was 6 µs. Even for the sim-
plest Atmega328 based controller, the calculation time was 
2.2 ms at ndim=128 and 1.1 ms at ndim=64.

Despite the calculation error from percent fractions to 
several percent, the most important feature of the developed 
method consists in reduction of memory capacity require-
ment and the number of operations necessary to implement 
fractional-integral computations.

Fig. 8 shows the graphs of transients in the Arduino 
Galileo control of the second-order inertial link with a unit 
gain and sending to the meander input 1500ó2500 The 
controller corresponds to transfer function (18) at a1=0, 
a2=0 and the quantization period of 50 µs. Comparison 
of the control signal Ur and the output signal Yo confirms 
operation of the fractional-integral component: the con-
troller signal does not coincide with the feedback signal in 
quasi-steady modes.

Thus, by modifying the algorithm of calculation of the 
fractional integral, a possibility of forming control systems 
with discrete fractional-integral controllers with a quanti-
zation period of units to tens of microseconds was achieved.
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Fig. 8. Graphs of transients in Arduino Galileo

7. Discussion of results obtained in the synthesis and 
technical realization of discrete fractional  

integral-differentiating controllers

The obtained results allow us to make a conclusion about 
effectiveness of application of fractional integral-differenti-
ating controllers. Due to the new variable parameter, namely 
the fractional order of astaticism, it is possible to obtain the 
combinations of speed, overregulation and speed error in 
closed systems that are unattainable with the systems of an 
integer order. Although such controllers are parametric, they 
can be applied in nonlinear systems, for example, in metal 
processing machines. It is possible to select such coefficients 
and the controller order for nonlinear objects which will 
provide the desired quality indicators in certain ranges of 
parameter variation.

The complexity of implementing fractional controllers 
in digital systems is explained by the necessity of calcu-
lation of sums of infinite series. Therefore, in the opinion 
of the authors, the proposed method for approximating 
the terms of expansion by geometric progression is an 
essential step in solving this problem and enables cre-
ation of high-speed microprocessor-based control systems. 
This opens up new fields of application of the methods of 
the fractional-integral calculus. For example, the use of 
fractional integral-differentiating controllers can become 
possible not only for theoretical studies and control of slow 
processes (such as climate systems) but also for a number of 
high-speed control systems for metal-cutting machines and 
electric drives of various types.

The issues of rational choice of the quantization period, 
the controller structure and coefficients for the optimal 

systems of asynchronous motor and motors of valve control 
remain open in this area.

8. Conclusions

1. The control systems with a fractional order of astat-
icism which provide better dynamic and static indicators 
for many technical objects in comparison with the systems 
with an integer order were investigated. Based on analysis 
of the frequency characteristics, the transient processes 
and the modified quality assessment criterion (9), optimal 
relationships between the parameters of the desired transfer 
function were obtained. Normalized transition functions of 
closed systems with an order of astaticism from 1 to 2 and 
overregulation less than 2...5 % were presented. Parameters 
can be chosen and the controller structure determined on 
their basis.

2. Analysis of the process of stabilizing cutting power 
of milling machines as an example of the systems with 
nonlinear parametric and structural dependences in the 
control and perturbation channels was performed. It was 
shown that fractional integral-differentiating controllers 
make it possible to provide the order of astaticism from 1.3 to  
1.7 and the permissible level of overregulation in a wide 
range of external perturbing influences. This indicates ad-
visability of applying the methods of fractional-integral cal-
culus for synthesis of systems of metal processing by cutting.

3. A method of approximate calculation of fractional in-
tegrals based on approximation of the highest coefficients of 
series expansion of geometric progressions was developed. It 
enables reduction of the memory capacity required to store 
the coefficient arrays and the history of the input signal 
and requires significantly less CPU time to calculate the 
controller signals. For example, for the controllers based on 
Intel® Quark ™ SoC X1000 or FPGA Altera Cyclone V, the 
quantization period is 6...15 µs and units of millisecond for 
Atmega328. This makes it possible to implement fractional 
integral-differentiating controllers based on widely used 
modern processors and apply the fractional-integral calcu-
lus methods in synthesis of high-speed automatic control 
systems. The proposed methods can be used to control the 
objects both with fractional and integer orders of differential 
equations.
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