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1. Introduction

The fractional-integral calculus extends the theory of
differential equations to the domain of non-integral order
of derivatives eliminating discontinuities of this parameter.
Solutions of linear equations of this kind represent a wide
class of various functions that differ from the combination of
exponential and harmonic functions. These functions are the
infinite oscillating series. Recently, from 1993 to 2007, when
developing the theory of Mittag-Leffler functions, solutions
to some fractional differential equations were obtained in
general form. These functions are named after their devel-
opers: Robotnov-Hartley, Erdei, Miller-Ross. Unification of
these functions in 2007 has led to the development of gener-
alized R- and G-functions. Despite the complexity of these
functions, fields of application of the fractional-integral cal-
culus in modern technical systems are gradually expanding.
Creation of the chaos theory [1] has combined mathematical
description of fractal spatial and surface structures and
interaction of mobile particles, which is rather effective in
describing the processes occurring in porous structures of
filters, catalysts, accumulator electrodes and supercapac-

itors [2]. Application of the methods of fractional-integral
calculus to the wide list of physical processes given in [3]
enables obtaining the best results.

One of the features of solution of fractional-differential
equations is their close connection with power functions.
Accordingly, the control objects in a number of technolog-
ical processes with nonlinear dependences approximated by
these functions are better described by fractional-differen-
tial equations [3]. Currently, methods for identifying such
objects by means of differential equations with an arbitrary
fractional order are already well tested. Accordingly, to con-
trol this kind of processes, it is advisable to use PI*DP-con-
trollers with fractional-integral and fractional-differentiat-
ing components, which ensure setting of the closed loop to
obtain the required dynamic and static parameters.

The theory of synthesis of fractional PID controllers has
been well developed [4]. However, the problem consists in
technical implementation of such controllers since the use
of discrete Griinwald-Letnikov or Riemann-Liouville forms
which are infinite rows theoretically involves allocation of
infinite memory capacities and requires a large number of
arithmetic operations to be performed during the processor
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quantization period. This limits the scope of application of
the PI*DP controllers controlling slow process. The issues of
choice of coefficients of the PI*DP-controllers when working
with non-linear objects with variable parameters remain
open as well.

Therefore, the problems of synthesis of optimized sys-
tems with a fractional order of astaticism for objects with
variable parameters and development of methods for techni-
cal implementation of fast-acting fractional integral-differ-
entiating controllers remain topical.

2. Literature review and problem statement

Effectiveness of application of fractional-integral cal-
culus is no longer open to doubt in many areas of science
and technology. In the modern theory of heat and mass
exchange, such a mathematical apparatus enables more
accurate solutions for the physics of fractal media in com-
parison with the methods of integer integration [5-7]. For
example, it was shown in [6] that dependence of temperature
on time in a thermal system operating in the transient mode
can be approximated and modeled by means of a differential
equation of fractional order. For some particular cases, ana-
lytical solutions based on the Mittag-Lefler functions were
obtained and the use of PID controllers of non-integer order
for process control was proposed [8]. However, in a number
of cases, the structure of controllers should be more complex
and standard methods for tuning PI*DP-controllers may be
ineffective.

Application of the fractional calculus in automatic
control can be conditionally divided into two fields. One of
them includes the methods of mathematical and computer
simulation of the fractional order systems in which proper-
ties of fractional dynamics manifest themselves. Discrete
calculation methods with a constant step are used there
for calculating fractional integral and differential signal
components.

The Grunwald-Letnikov (GL) form is a consequence of
generalization to an arbitrary order of the Cauchy formula
of repeated differentiation and determines the rules for com-
puting fractional derivatives:
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The complexity of application (1) is caused by the neces-
sity of calculation of the gamma function of large arguments
and the rapid loss of calculation accuracy because of the
disparate values of the coefficients.

In its turn, the discrete Riemann-Liouville (RL) form
is a generalization to an arbitrary order of the Cauchy
formula of iterated integration and is used to calculate the
fractional integral:
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The error of this formula is caused by the presence of the
integrand denominator which becomes equal to 0 at ¢=¢;. If
the last summand is neglected (which is usual for the method
of finite increments), then the error is very noticeable, espe-
cially at the beginning of the transient process. There is a
method for calculating the correcting function [4] calculated
from formula
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however, when calculating the correction value, it is neces-
sary to calculate the gamma function and the factorial with
arguments equal to the number of the calculated points
which (as already emphasized) leads to certain problems.
Besides, calculation of correction is algorithmically equiva-
lent to calculation of one more fractional integral.

The second field includes the methods using the ap-
paratus of fractional calculus for synthesis of the systems
controlling the objects of both integer and fraction orders,
in particular, synthesis of controllers of fraction order
[10]. Because of their transcendence, the resulting transfer
functions significantly complicate solution of the classical
problems in the theory of automatic control: estimation
of stability, observability, robustness [11]. However, after
the synthesis of controllers, problems of their implemen-
tation arise because of complexity of calculating infinite
rows in microcontrollers. Therefore, some approximate
analog models of such controllers are proposed based on
serial RC-circuits [12] which in a case of sufficiently large
number of links become similar to fractals and the num-
ber of components is limited in the controllers. Also, the
fractional-integral components are replaced by high-order
filters which are sufficiently similar in their properties in
the mid-frequency range [13].

Metal processing is one of the technology fields where
the PI*DP-controllers can provide an improvement in qual-
ity. The metal-cutting machines operate in conditions of
action of parametric perturbations caused by variation of
the depth and width of cutting, the workpiece material
hardness and the cutting tool condition. Stabilization of
the cutting power in machine tools due to the feed speed
control helps to rise machining productivity and preci-
sion and extend the cutting tool service life. However, in
combination with yielding of the “machine-part” system
elements, perturbations cause changes in the equivalent
parameters of the control object which results in a deterio-
rated quality of the transient processes. Therefore, the use
of classical control systems with anticipatory correction,
flexible feedback in the regulated coordinate does not en-
sure achievement of a high quality of transient processes
and smaller static errors in the steady state at a wide range
of changes in processing conditions. For metal rolling mills,
surface roughness of the worked billets is characterized
in [14] as a fractal. This has made it possible to develop a
high-precision system for assessing the product quality. It
can be assumed that good results can be obtained for other
metal processing methods as well.

On the other hand, development of the microprocessor
technology has led in recent years to the mass spread of uni-
versal single-chip microprocessors manufactured using the
14-28 nm technology processes. Such processors are already
used not only in personal computers and smartphones but
also in Arduino, Raspberry Pi and Altera controllers.




Thus, some issues remain open concerning determina-
tion of parameters and structure of integral-differentiating
controllers of a fractional order. The issues of the possibility
of applying the theory of fractional integral calculus to the
processes of metal processing by cutting are still open. There
are mathematical and technical difficulties in implementing
the PI*DP-controllers based on inexpensive microcontrol-
lers. Solution of these problems opens the way for building
systems for control of various technological objects on the
basis of complex mathematical models and controllers with-
out simplifications which was impossible previously.

3. The aim and objectives of the study

The study objective is the synthesis of fractional inte-
gral-differentiating controllers that provide the required
order of astaticism at a small overregulation for the systems
with increased requirements to dynamic and static indica-
tors as well as development of a method for implementing
high-speed discrete fractional PID controllers based on
modern microprocessors.

To achieve this objective, the following tasks should be
solved:

—to develop a criterion for synthesis of controllers to
ensure optimal dynamic and static indicators;

—to check operability of regulators for an object with
parameters varying in a certain range;

—to develop a method for implementing discrete frac-
tional-integral high-speed controllers corresponding to the
capabilities of modern single-chip microprocessors.

4. Synthesis of closed systems with optimal dynamic and
static indicators

Let us consider a closed system in which we shall use
not a PI*DP-controller but provide setting to a given opti-
mum. High accuracy of stabilization of coordinates in stat-
ic and dynamic modes can be provided by astatic systems
with their open loop containing an integrating link of the
first or higher order corresponding to the required order of
astaticism.

Setting to the modular optimum with a calculated over-
regulation of 4.35 % is widely used for the first-order astatic
systems and setting to a symmetrical optimum at which
overregulation increases by a factor of 10 is used for the sec-
ond-order astatic systems. The reason for this is reduction in
phase and amplitude stability margin.

To unify the subsequent calculations, move to relative
units in the time domain. This will allow us to consider
from a single point of view both relatively slow systems (e. g.
climate systems) and high-speed systems (such as metal cut-
ting machines, welding machines). Assume

t= real , (4)

where ¢, t,,,; are relative time and absolute time, T, is uncom-
pensated small time constant of the control object. By select-
ing this value, one can set the required system speed based
on the requirements to the process. In particular, a number
of additional restrictions related to equipment wear and tear,
financial and energy costs may be taken into account [18].

Then, the Laplace operator and frequency will also be
changed in the transfer functions and in calculation of fre-
quency characteristics:
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Synthesize a system with a fractional order of astaticism
1+u,ne[0,1] and the open loop transfer function described
by the following expression:
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where a, b are setting parameters and the 1 component

corresponds to the uncompensated part of the control object.
Such a system does not have a position error. A constant
velocity error arises when a “concave” signal of the ¢!"* form
is applied to the input.
The transfer function (6) corresponds to the logarithmic
amplitude- and phase-frequency characteristics (LAFC and
LPFC) calculated from formulas:
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Comparison of LAFC and LPFC of an open loop with
a fractional order of astaticism and the systems with tun-
ing to a modular or symmetric optimum at identical cutoff
frequencies shows that the phase stability margin increases

by (1—u)g with a decrease in p. This makes it possible to

improve dynamic performance of the system by increasing
the cutoff frequency while maintaining or even increasing
the stability margins.

The transition function (6) of the system which is a con-
volution of the Robotnov-Hartley function and damped har-
monic oscillations [4] is characterized by several extrema.
For each p, one can choose a certain a to b ratio that satisfies
the set quality criterion of the transient process.

The classical criterion of the mean-square total error can
be formally represented as a sum of the products of multipli-
cation of errors by their “weight” equal to the error itself. As
aresult, the largest “contribution” is made by the first points
with the maximum deviation and the process “pressed” to
the ordinate axis appears to be optimal. The overregulation
can be very large but short-lived.

Let us formulate a criterion for optimizing the transient
process for the systems requiring provision of high system
speed (comparable to the chosen value of T;) but with a strict
limitation of width of the admissible “corridor” of deviations
from the set value. To this end, integrate the error before the
first entrance to the (|Yl -1|< 8) “corridor” (the error weight
is 1) and then increase the F functional by the amount of the
cubed error relative to 8. Accordingly, the weight appears to



be less than 1 in the “corridor” and more than 1 outside it and
rises according to a quadratic parabola:
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where ¢4 is the time of the first entry into the “corridor”. This
formulation of the estimation criterion makes it possible to
avoid compression of the optimal transition function to 0 in
time and short-term surges and depressions outside the set
corridor [15].

Fig. 1, 2 show the normalized transition functions ob-
tained based on the set criterion. Optimum characteristic
can be chosen from them on the basis of the desired system
speed. The corresponding combinations of the y, a, b values
can be taken from Table 1.

The values of the margin of Ag phase stability and Q
cutoff frequency for §=0.025 and 3=0.05 are also given in
Table 1. It can be seen that an increase in § leads to a certain
decrease in the phase stability margin with a simultaneous
increase in the cutoff frequency, that is, to an increase in the
system speed. Also, for all combinations of the parameters
obtained, the phase stability margins are even greater than
when tuned to the modular optimum (65.5°) and overregu-
lation is smaller.

Table 1
Optimal ratios of the setting parameters
5=0.025 5=0.005
p| a b |Ag,°| Q | p | a ho A% Q
0.1]0.080 [1.675] 82 [ 1590 | 0.1 [0.085]| 5.002 | 82 |40.87
0.210.267 [2.113| 77 | 555 | 0.2 |0.189| 3.162 | 75 [10.44
0.3]0.574 2781 73 | 3.27 | 0.3 |0.483| 3.502 | 71 | 4.52
0.4 1.146 |4.226| 70 | 241 | 0.4 |1.021| 4226 | 69 | 2.64
0.5 2420 |6.077| 69 | 1.68 | 0.5 [2.284| 6.437 | 67 | 1.84
0.6 [5.023(9.396| 67 | 1.28 | 0.6 |4.742| 9953 | 67 | 1.40
0.7 1197 [13.46| 71 | 0.82 | 0.7 | 10.67 | 14.26 | 68 | 0.96
0.8129.26 [20.15] 74 | 0.54 | 0.8 |26.08 | 22.61 | 69 | 0.67
09]81.62 40.16| 72 | 0.42 | 0.9 |77.06| 47.73 | 68 | 0.52
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Fig. 1. Transient characteristics at the ratio of y, a, b optimal
by criterion (9) for 6=0.025(9)

The transition functions at Qe [0.3,0.7], are of greatest
interest of all obtained results since it is necessary to use the

quantization period A¢<(0.005...0.02)T,, at smaller u. The
system speed becomes relatively low at larger p (¢, >3T,).
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Fig. 2. Transient characteristics at the optimal ratio of y, a, b
for =0.05

5. Analysis of operation of the cutting power stabilization
system of the milling machine with fractional-integral
controllers

Let us check how the system behavior changes with
the change of the control object parameters. Consider a
system for stabilizing the milling machine cutting power
as such an object. The feed rate is the control coordinate
in this machine and a sudden change in the cutting depth
is the perturbation action.

The static value of the cutting power is determined from
the empirical relationship [16]:

P=Ks"t,”, 10)
where K is the equivalent coefficient depending on the
types and parameters of the tool and the part, ¢, is the
cutting depth, s is the feed rate, x,, v, are the expo-
nents that vary depending on the materials of the part
and tool:

x,€ [0.75, 0.95], v, € [0.65, 0.8].

Fig. 3 shows two of the oscillograms obtained in the
study of a vertical milling machine, model 6B75, for
milling gray cast iron with an end milling cutter made
of R6M5 grade high-speed steel. The active power of
the asynchronous motor of the main motion when the
cutter cuts into the workpiece was determined by the
K-50 measuring instrument of 0.5 accuracy class with
further signal filtering by a first-order inertial link with a
time constant Tr=0.2 s. The “machine-detail” system was
identified by classical methods for the transfer function of
the form:

H,(p)=———>——, 11)

(Top+1)2 (1,p+1)

which resulted in the dependence of the milling process time
constant on the feed rate s [mm/min] and the cutting depth
t, [mm] as:
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where A is the coefficient determining condition of the cut-
ting tool and the material of the workpiece, z is the number of
teeth of the milling cutter and # is the rotational speed of the
milling cutter [rpm]. The synthesized control system with a
fuzzy controller has made it possible to reduce cutting power
to 15...25 % in one second [17].

Taking into account formula (10), it is obvious that the
mathematical description of the control object includes pow-
er dependences which, under the Laplace transform, leads
to a fractional-differential equation in the operator form.
The features of the objects described by such equations are
clearly visible in Fig. 3: the rapid onset and the prolonged
termination of the transient process.
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Fig. 3. Experimental and calculated graphs of the change in
the active power of the main motor at ;=4 mm

Let us take Tras an uncompensated time constant and
describe the relationship between relative power and feed by
transfer functions of orders 1+u and 2+p:

1
H (p)= ,
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Then identification of the object by the transient pro-
cesses from Fig. 3 leads to the results presented in Table 2.

Table 2
Results of control object identification
Fig. 3, a Fig. 3, b
e ) | ) | HY) | Hap)
H 0.7348 0.7582 0.6652 0.6743
a, 1.4820 1.6427 1.0604 1.1907
a, 2.2372 2.1110 2.3182 2.2372
a, 0.5721 0.6810
F 0.0132 0.0110 0.0208 0.0140

With the relative rms error of F to 1.4...2.1 % deter-
mined by noise and see-saw pulsations, the cutting pro-
cess is described by fractional-differential equations. The
order of the equations is comparable with the order of the
power dependence (10) for the workpiece and cutter mate-

rials and a more complicated H;(p) or simplified Hy(p)
model can be used depending on the required accuracy of
calculations.

The smoothed lines in Fig. 3 convince that the calculated
transient processes are close to the experimental ones.

To ensure the selected settings, the controller connected
in series with the control object must have a transfer func-
tion determined from the relation

H
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When p,=p, the transfer functions of the controllers
are converted into a combination PID+I*(PI) of functions:
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When p, #u, the transfer functions of the controllers
are more complex and it becomes necessary to calculate two
fractional integrals of different orders:

1 (a  a 11
Hzm(p>=<bp+1>(m (p],,p]

L (Pj“) 17
p a a ap p ap

HIQQEG(p) = (bp+ 1)[

In a particular case, when p, =1, that is for the objects
with an integer order of differential equations, the following
is obtained:
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Simulation of transient processes was performed for
controllers with a Hp,.(p) structure according to formula
(16) for the worst case of object parameters: the maximum
equivalent gain and the largest coefficients of the denomi-
nator of the transfer function corresponding to the nominal
power. Fig. 4 shows response of the cutting power stabili-
zation system to the stepped changes in the cutting depth
resulting in cutting power jumps in the open system from
100 % to 140 %, 180 %, 220 %, 160 % and again to 100 %.
The model takes into account the power dependences of



the cutting power both on the feed and the depth of cut-
ting, the noise and the sensor lag. The controller settings
were made for u=0.5. Similar results were obtained for the
order of astaticism 0.3<p<0.7. At lower values of y, the
system is sensitive to noise. To make its operation stable,
a quantization period A¢<(0.005...0.02)T,, is required. At
higher values of y, the system speed is much lower than the
variants shown in Fig. 4.
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Fig. 4. Graphs of transient processes in the system of power
stabilization at jumps in the depth of cutting

Based on the obtained graphs, it can be concluded that
the proposed method of setting is advisable. Obviously, the
synthesized controller provides the desired quality of tran-
sient processes: the cutting power in any of the modes does
not deviate more than 2 % from the set value.

6. The method of technical realization of fractional
integral calculation for microprocessor-based control
systems

To realize calculation of the fractional-integral and
differential components of the controller signal in the mi-
croprocessor systems with quantization period Atz, several
calculation methods can be used. The Grunwald-Letnikov
(1) and Riemann-Liouville (2) forms lead to close results.
However, considering, that the systems’ astaticism provides
integral components of controllers and the differentiating
components appear only when the inertial components of
the object of the 2nd and higher order are compensated, it is
more often necessary to perform an integration operation to
find solutions. Therefore, we shall prefer the form (2) and use
the following relation to calculate the fractional derivative:
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To compensate for the calculation error by the Rie-
mann-Liouville form, introduce a corrective bias into the
denominator. This will allow us to obtain an exact solution
for some particular cases and more accurate solutions for
arbitrary-shaped signals.

If a single jump is applied to the input of a fractional-in-
tegrating link, solution of the equation y(t):l“(1(t)) is
described by expression:

(20)

Then, write
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and the following formula for calculating the fractional
integral is obtained after a series of transformations:
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where &Y are constant coefficients.
The obtained solution (21) was tested using the relation
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by integrating a pseudo-random signal (of “white” noise).
In the proposed method (21), because of the shift in the
denominator, a regular error inherent in the basic form was
eliminated without applying corrective calculations.

However, the main problem of calculating the frac-
tional integral using either of formulas (1), (2) or (21)
consists in a necessity of calculation of sums of the pair-
wise products of the coefficients by all previous values
of the input signal in each quantization period. In this
case, the processor memory should store both the array
of coefficients and the entire “history” of the input sig-
nal. Neglect of the highest terms of the series leads to an
error in calculation of ¢. It is possible to determine the
minimum number of points from (21) to provide the set
error value:

1/n
N= (11“(14—;1)) . (23)
e T(W)AL"

For example, for u=0.5 and £€=0.05 at Az=1, 315 previous
points should be remembered and 1,964 points to be re-
membered to ensure €=0.02. Storage of this amount of data
exceeds capabilities of many single-chip processors.

Now, calculate the coefficients for various p from 0.1 to
0.9 and plot their variation depending on the ordinal number
in the logarithmic coordinate axes. At the same time, con-
struct trend lines for these dependences in the form of power
functions (Fig. 5).

Ki \
=0,9361x7"!
1,0E-1 v = 0,8596x7
=0,7712x%
LOE-2 =0,6725x%
’ <0 3652X7
y 4518x7"
1,0E-3 =—r
_t:g; \y\:\}%
——p=0.3 >
1,0B-4 | ——n=04 Y2185
’ —pu=0.5
——p=0.6 — 09
1=0.7 y =0,1055x
1,0E-5 T :
1 10 100 1000 i

Fig. 5. Dependence of coefficients in the fractional
integration formulas on the ordinal number



A remarkable feature of these dependences is obvious.
Starting from 50...100 numbers, the differences between
the forms (2), (21) practically disappear and the depen-
dences of the coefficients with an error in the 5™ or the
6th decimal place are approximated by the power function,
that is, they become close to a geometric progression with
a coefficient g extremely close to but still less than 1. This
means that calculation of the sum of products of higher
terms can be replaced by multiplying the previous value of
this sum by the coefficient of geometric progression. Then,
by setting the maximum number of the stored values of
the input signal ng;,, calculation of the fractional integral
can be performed in two blocks. The initial ng;, points
are calculated by (21), and then all leading summands are
gradually taken into account in the sum of the geometric
progression S. Only the last ng;, points are processed by
(21) and form the I} ~value. The resulting approximate
value of the integral is defined as the sum of S and Lo

i

BO)=X (AR ) [ Viellng,l
j=t
S = f;'—nd,m + (At”k::”“ )"' 484

I (f(2)): (24)

g —1

Bof0)= Y (AR S Vielng,-l,

Mdim
J=1

ﬁf@=&+qmﬂﬂ

where ¢ is calculated as the mean geometric between &, -
and &, :

1

(ndim + 1),’1 - (ndim )!’l

(25)

Accordingly, only the last ng;, values of the input signal
and the same number of k,...k, coefficients should be stored
in the processor memory.

Efficiency of the algorithm was verified by calculating
the fractional integral of the sinusoidal signal x(¢)=sin(t)
for various p. Fig. 6 shows a quarter of the period of the
results of integration by (24) from the 900" to the 1,000t
calculation points at a set 74;,,=1000 (the time axis is marked

in degrees). The phase shifts are exactly equal to ug, that

corresponds to the definition of the fractional integral of the
harmonic function. The error in the calculation results in
comparison with the calculation by (21) is from 0.11 % for
u=0.9 to 1.7 % for p=0.1.

The speed of the calculation method was tested on Ar-
duino Intel Galileo Gen 2 microcontrollers based on the
8086 processor with clock speed of 400 MHz, FPGA Altera
Cyclone V with clock speed of 50 MHz in the DE1-SoC con-
troller as well as Arduino Nano with Atmega328 processor
with clock speed of 8 MHz.

Fig. 7 demonstrates comparison of the calculated values
(y_ p) and the values (y_ard) obtained via serial port from
Arduino Galileo for a fractional-aperiodic link with u=0.5 at
Ndim=128, 71,,,=1000. Double-precision floating-point math
(double) was used. The exact data and the data calculated by
the controller coincide at 7,5 which can serve as a criterion
for nyax choice. For comparison, the graph of y_old change
illustrates the result of calculating the fractional integral

when memory capacities are exhausted: the fractional-inte-
grating link becomes proportional and a static error appears
in the astatic system.
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Fig. 7. Calculated and experimental values of the output
signal of the fractional-aperiodic link

The calculation time for the fractional integral was on
average 15 ps, periodic communication procedures took up
to 15 ps as well. Calculation time for the fractional integral
was 8 us at n4;n=64. FPGA Altera used integer mathematics
with data storage in 64-bit registers. Due to organization
of parallel computations available in FPGA, the calculation
time for the fractional integral was 6 ps. Even for the sim-
plest Atmega328 based controller, the calculation time was
2.2 ms at ng;p,=128 and 1.1 ms at n4;,=64.

Despite the calculation error from percent fractions to
several percent, the most important feature of the developed
method consists in reduction of memory capacity require-
ment and the number of operations necessary to implement
fractional-integral computations.

Fig. 8 shows the graphs of transients in the Arduino
Galileo control of the second-order inertial link with a unit
gain and sending to the meander input 15002500 The
controller corresponds to transfer function (18) at a;=0,
a»=0 and the quantization period of 50 ps. Comparison
of the control signal Ur and the output signal Yo confirms
operation of the fractional-integral component: the con-
troller signal does not coincide with the feedback signal in
quasi-steady modes.

Thus, by modifying the algorithm of calculation of the
fractional integral, a possibility of forming control systems
with discrete fractional-integral controllers with a quanti-
zation period of units to tens of microseconds was achieved.
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Fig. 8. Graphs of transients in Arduino Galileo

7. Discussion of results obtained in the synthesis and
technical realization of discrete fractional
integral-differentiating controllers

The obtained results allow us to make a conclusion about
effectiveness of application of fractional integral-differenti-
ating controllers. Due to the new variable parameter, namely
the fractional order of astaticism, it is possible to obtain the
combinations of speed, overregulation and speed error in
closed systems that are unattainable with the systems of an
integer order. Although such controllers are parametric, they
can be applied in nonlinear systems, for example, in metal
processing machines. It is possible to select such coefficients
and the controller order for nonlinear objects which will
provide the desired quality indicators in certain ranges of
parameter variation.

The complexity of implementing fractional controllers
in digital systems is explained by the necessity of calcu-
lation of sums of infinite series. Therefore, in the opinion
of the authors, the proposed method for approximating
the terms of expansion by geometric progression is an
essential step in solving this problem and enables cre-
ation of high-speed microprocessor-based control systems.
This opens up new fields of application of the methods of
the fractional-integral calculus. For example, the use of
fractional integral-differentiating controllers can become
possible not only for theoretical studies and control of slow
processes (such as climate systems) but also for a number of
high-speed control systems for metal-cutting machines and
electric drives of various types.

The issues of rational choice of the quantization period,
the controller structure and coefficients for the optimal

systems of asynchronous motor and motors of valve control
remain open in this area.

8. Conclusions

1. The control systems with a fractional order of astat-
icism which provide better dynamic and static indicators
for many technical objects in comparison with the systems
with an integer order were investigated. Based on analysis
of the frequency characteristics, the transient processes
and the modified quality assessment criterion (9), optimal
relationships between the parameters of the desired transfer
function were obtained. Normalized transition functions of
closed systems with an order of astaticism from 1 to 2 and
overregulation less than 2...5 % were presented. Parameters
can be chosen and the controller structure determined on
their basis.

2. Analysis of the process of stabilizing cutting power
of milling machines as an example of the systems with
nonlinear parametric and structural dependences in the
control and perturbation channels was performed. It was
shown that fractional integral-differentiating controllers
make it possible to provide the order of astaticism from 1.3 to
1.7 and the permissible level of overregulation in a wide
range of external perturbing influences. This indicates ad-
visability of applying the methods of fractional-integral cal-
culus for synthesis of systems of metal processing by cutting.

3. A method of approximate calculation of fractional in-
tegrals based on approximation of the highest coefficients of
series expansion of geometric progressions was developed. It
enables reduction of the memory capacity required to store
the coefficient arrays and the history of the input signal
and requires significantly less CPU time to calculate the
controller signals. For example, for the controllers based on
Intel® Quark ™ SoC X1000 or FPGA Altera Cyclone V, the
quantization period is 6...15 ps and units of millisecond for
Atmega328. This makes it possible to implement fractional
integral-differentiating controllers based on widely used
modern processors and apply the fractional-integral calcu-
lus methods in synthesis of high-speed automatic control
systems. The proposed methods can be used to control the
objects both with fractional and integer orders of differential
equations.
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