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1. Introduction

At present, the main energy working units at modern en-
terprises are electric drives. In most cases, their principal ele-
ments are the multiphase induction motors (IM). This type of 
electric motors is quite common. This is evidenced by the fact 
that they consume about 40 % of all electricity produced in 
the world [1, 2]. The main feature of a given type of equipment 
is a high failure rate, in particular, the average operational life-
cycle of motors without a major repair is 10–15 years. Failure 

to detect emergency modes of IM leads to the disruption of 
continuity of technological processes with the related damage 
to products, cost of restoration and repair of electric motors, 
elevated energy consumption, etc. Specifically, this issue is 
relevant for the ore mining and metallurgical industries where 
a sudden failure of electrical equipment can almost stop the 
large part of production lines [3, 4].

Modern tools and methods for technical diagnosis of 
electrical equipment is mainly based on the use of various 
sensors that are connected directly to the object (that is, 
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Запропоновано концепцiю модульної кiберфiзич-
ної системи для ранньої дiагностики промислового 
та приватного енергетичного обладнання на основi 
використання пiдходiв та стандартiв Industry 4.0, 
зокрема концепцiї Internet of Things. Головною зада-
чею запропонованої концепцiї та пiдходiв є виконан-
ня непрямої дiагностики та iдентифiкацiї будь-яко-
го енергетичного обладнання, головним елементом 
якого є асинхронний двигун, зокрема визначення 
несправностей та пiдвищеного енергоспоживання. 
З метою реалiзацiї поставлених задач запропоно-
вано використання модульної структури Smart Box 
дiагностуючих пристроїв. Зокрема, представлено 
модель модульної кiберфiзичної системи iз застосу-
ванням Smart Box прийстрою для ранньої технiчної 
дiагностики електрообладнання та його iнформа-
цiйнi потоки. Це дозволяє розподiлювати усi техно-
логiчнi об’єкти пiдприємства на окремi структурнi 
одиницi, якi можуть бути частиною iнформацiй-
ного кластеру. Це дозволяє зменшити час реакцiї 
в кластернiй системi на 30–35 %, у порiвняннi зi 
звичайною. Також, використання даного типу сис-
теми дозволяє зменшити кiлькiсть спецiалiзовано-
го обладнання у межах використання однотипного 
енергетичного обладнання.

У якостi обчислювального ядра Smart Box при-
строю запропоновано використовувати структуру 
нейро-нечiткої мережi, яка складається з 5 шарiв. 
Особливiстю даної системи є можливiсть змiни 
кiлькостi термiв вхiдних змiнних з метою пiдви-
щення якостi iдентифiкацiї асинхронних двигунiв. 
У якостi iнформативних ознак було обрано харак-
тернi частоти, якi iдентифiкують електродвигун 
у електромережi. Зокрема, у системах з малими 
генеруючими потужностями, з метою збiльшення 
дiагностованих асинхронних двигунiв в межах клас-
теру, доцiльно зменшити вхiдну множину, напри-
клад, до 3–4 ХЧ. 

Отриманi результати дослiдження у виглядi 
моделi модульної кiберфiзичної системи можливо 
використовувати при побудовi апаратно-програм-
них модулiв для дiагностики технологiчного та 
побутового електрообладнання. У свою чергу, данi 
модулi можуть обє’єднуватися у загальну глобаль-
ну мережу IoT
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direct methods). In particular, most of them are applied 
during a planned repair or current diagnosis [1, 5]. It should 
be noted that authors understand the concept of the planned 
diagnosis or maintenance as a partial or complete termina-
tion of the technological process, which involved the object 
of analysis. An early or current diagnosis, respectively, refers 
to the monitoring of the current state of the examined object 
that does not imply its immediate disengagement from the 
technological process. The main advantage of the current 
(early) technical diagnosis over the planned one is a relative-
ly small period of time (up to a few seconds) to obtain results. 
In addition, early diagnosis makes it possible to prevent the 
emergency modes of industrial and household equipment. 
The use of modern information technologies to monitor 
and analyze the current technical condition of electrical 
equipment is an important and relevant task. That makes it 
possible to maintain and implement modern requirements 
regarding the implementation of processes of interaction, 
monitoring and analysis of operation of electrical units, 
pumps, mills, conveyors, robotic systems, etc.

In other words, meeting the requirements and future 
standards that are included in the concept of the fourth in-
dustrial revolution (Industry 4.0) [6–9].

It should be noted that modern electronic-information 
systems for enterprises enable the processes of automation 
and control over equipment. Additionally, they provide 
for the interconnection between integrated information 
subsystems and certain equipment, particularly micro-
controllers, smart sensors, etc. [10, 11]. In addition, there 
is a growing tendency to manage, control and monitor 
industrial and household objects using the global network 
of the Internet of Things (IoT) as one of the promising 
areas of Industry 4.0 [12, 13]. In this case, the tools are 
combined based on the specialized centers that manage, 
control, and process information. According to data from 
Ericsson Mobility Report [15], at present, there are al-
most 16 billion devices connected to the Internet world-
wide. Up to 2020, the number of such devices will increase 
to 29 billion, 18 billion of which will be connected to the 
network of IoT.

The main features of information systems that employ 
approaches and concepts of IoT include the process of 
permanent exchange of information between the devices 
at an enterprise without human involvement. This makes 
it possible to accumulate and analyze information under 
automatic mode, to execute administration without human 
influence. In other words, IoT enables the creation of a 
self-organized and self-adjustable information system, not 
only within the limits of a certain enterprise, but globally. 
That is, in terms of diagnosing and monitoring the current 
state of electrical equipment, it makes it possible to create 
and implement the information system capable of learning 
and self-diagnosis.

A relevant task for the further development of informa-
tion systems for the analysis and monitoring of the status of 
electrical equipment is the development of self-diagnosing 
technical systems that would be a part of the global net-
work of IoT. Specifically, the development of methods and 
approaches to creating the network elements, such as Smart 
Boxes and Smart Apps, the development of a network to 
access data (mobile or fixed), as well as development of a 
platform to manage the network of IoT, particularly when 
managing Smart Boxes and Smart Apps.

2. Literature review and problem statement

It should be noted that the creation of the network of IoT 
requires three key components:

1) Smart Box and Smart App;
2) a network to access data transfer and sharing;
3) a platform to manage the IoT elements.
To implement the network access to the IoT elements, the 

unified specialized standards are employed [6]. Specifically, 
the standard eMTC (enhanced Machine-Type Communica-
tion) is deployed based on the mobile networks LTE, while 
EC-GSM-IoT (Extended Coverage – GSM – Internet of 
Things) operates over a GSM network. But the most pop-
ular is the standard NB-IoT (Narrowband IoT). Its special 
feature implies that it can be deployed both in GSM or LTE 
networks and independently, as a separate network, such as 
Ethernet. Therefore, we can conclude that the design and 
development of SmartBox need to consider the unified spec-
ified-above communications standards for the implementa-
tion of the future platform for interaction between devices.

At present, many companies engaged in the manufac-
turing of energy equipment are conducting research into 
the field of innovation for IoT. Specifically, company LG has 
created a technology for intelligent self-diagnosis Smart Di-
agnosis and a control system for energy consumption Smart 
Grid Ready [16]. These technologies make it possible for the 
latest versions of household appliances made by this compa-
ny to conduct the self-diagnosis and inform the user about it. 
Using Wi-Fi, NFC and sound diagnostic signals, the owner 
is given a notice about minor problems. For example, about 
switching an ice generator off or an emergency mode in the 
work of a washing machine’s electric motor. It contributes to 
the early diagnosing of damage and improper operation of 
electric equipment. The main disadvantage of this system is 
the use of proprietary protocols and operation modes of “in-
telligent” devices, which makes it impossible to apply these 
devices for different equipment, such as a washing machine 
made by another company.

Quite a powerful information system for IoT in the field 
of diagnosing the electric equipment is the software platform 
Winnum [17]. A given system is the integrated environment 
that enables the collection, storage and processing of large 
volumes of data (BigData). This makes it possible to mon-
itor the work of nodes in the system, in particular, monitor 
the status and technical conditions of electrical equipment. 
There is a possibility to restore the events that preceded the 
emergency mode. The main disadvantage of a given system 
is the limited range of supported power devices, particularly, 
only industrial machines with human-program management 
and the limited range of operating IM.

It should be noted that there are information technolo-
gies, procedures and hardware tools for the digital diagnosis 
of IM as a component of electrical equipment that uses the 
spectrum-current analysis of the electric grid. This method 
makes it possible to monitor IM without a direct connection 
to the examined object [1, 18]. The spectrum-current anal-
ysis most commonly employs a direct Fourier transform, in 
order to receive, for example, the amplitude-frequency char-
acteristic in real time. The main disadvantages of informa-
tion technologies that exploit the spectrum-current analysis 
include the use of a large number of sensors, the need for the 
presence of an expert to act as the final element who makes 
decisions on the technical condition of equipment.
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Study [19] proposed the concept of information system 
as part of the intelligent enterprise and the network of 
IoT, which enables the exchange of information between 
the examined elements. That is, it makes it possible for the 
electric equipment to work and monitor at the same time 
the current technical condition of each other. The main 
disadvantages of a given approach include the presence 
of large amounts of non-deterministic information as a 
consequence of the technological process and the presence 
of a large number of additional sensors for each energy 
equipment item.

Thus, based on the scientific literature reviewed [6–
19], we can conclude that the concept of the development 
of information self-diagnosing systems as parts of IoT is a 
promising direction. However, the main drawback is that 
almost all of the existing developments in a given direc-
tion are commercialized with the technologies themselves 
being closed and applied within a specific enterprise. That 
is, there is no a single unified and universal system that 
implements the commonly accepted methods and tech-
niques for the technical diagnosis of electrical equipment. 
In addition, the general disadvantages include the fact it is 
required to use, when diagnosing the electrical equipment, 
measuring sensors for each studied object, which increas-
es the overall cost of implementing this kind of systems at 
an enterprise. Moreover, in the case of implementing the 
IoT technology, there is no a single information platform 
to manage them at all.

In order to reduce the number of the pickups used, we 
propose an indirect technique for diagnosing the complex 
of IM, suggested in studies [1, 18], and which is based on a 
spectrum-current analysis of the electric grid. That would 
make it possible in the future to implement modular Smart 
Box devices as elements of the general IoT network. The 
result could enable the application of fewer diagnosing 
sensors and the implementation of a unified management 
platform for various modules included in the Smart Box.

3. Literature review and problem statement

The aim of this work is to develop a concept of the mod-
ular cyberphysical system for the early diagnosis of energy 
equipment based on the principles and standards of Indus-
try 4.0, specifically IoT. The base method for diagnosing 
IM will be the indirect technique of diagnosis established 
in studies [1, 18].

To accomplish the aim, the following tasks have been set:
– to construct a logical-functional circuit for the oper-

ation of IoT network, which consists of modular Smart Box 
diagnosing devices, and to define the basic principles of its 
functioning; 

– to design the structure of a modular diagnosing 
Smart Box device with existing external interfaces for in-
tegrating it into the general IoT system based on spectral 
analysis; 

– to choose informative input attributes and the struc-
ture of a neural-fuzzy network as a unit of logical derivation 
and adaptation, which is the core of a diagnosing Smart 
Box device; 

– to model, to run analyses for the feasibility and ratio-
nality of using the proposed concept of a modular cyberphys-
ical system.

4. The concept of a modular cyberphysical system for  
the early diagnosis of power equipment

A typical logical-functional schematic of an enterprise 
that employs the principles of Industry 4.0, specifically IoT, 
is shown in Fig. 1.

Fig. 1. Logical-functional schematic of an enterprise that 
employs the Smart Box diagnosing devices

In Fig. 1, ERP (Enterprise Resource Planning) is the 
integrated management of the basic business processes that 
is realized by software and the production technology. MES 
(Manufacturing Execution System) is the computerized 
systems that are used in the production, for monitoring and 
documenting the transformation of raw materials into fin-
ished products. Smart box is the software-hardware device 
that is used to read the current information from the investi-
gated object, particularly the spectral characteristics of the 
equipment. This is executed by applying the sensors of cur-
rent. EQ1, EQ2,..., EQn is the equipment from which current 
information is read. In this case, these are electric motors.

It should be noted that MES supplies information that 
helps manufacturers who make decisions understand the 
ways to optimize the current operational modes of equip-
ment. In turn, that makes it possible to improve the perfor-
mance efficiency of production based on the optimal opera-
tion with the minimization of costs for technical diagnosis 
and subsequent repair. 

Thus, based on the shown logical-functional schematic 
(Fig. 1), the typical scheme of integration of the Smart Box 
device for the determining the technical condition of the 
examined object will take the following form (Fig. 2).

Fig. 2 shows: А={a1(f), a2(f),…, am(f)} is the spectrum 
of the electric grid noise; I(t) is current; J={ j1(t), j2(t),…, jn(t)} 
are the higher harmonics created by the electrical equipment 
in the electric grid; xc are the decisions concerning the cur-
rent state of the electric motor; α(t) is the character of the 
workflow; B={b1(t), b2(t)…bn(t)} are the higher harmonics 
created by other non-examined objects; z(t) is the character 
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of the electric motor loading; φ(t) is the character of work of 
the non-examined objects; µ is the vector of parameters for 
setting a SmartBox device.

Fig. 2. Integration diagram of a Smart Box device for 
determining the technical state of the examined object

It should be noted that in most cases the Smart Box 
consists of two parts: Hardware and Software. The hard-
ware implies the use of microcontrollers, various sensors 
and switching devices for a data transfer en-
vironment. The software implies the software 
that primarily processes initial information with 
its subsequent partial analysis. The direct and 
broader analysis is run at the IoT network level 
and the general information platform of an enter-
prise (MES).

The schemes considered (Fig. 1, 2) represent 
the prototypes of existing decision support sys-
tems with one difference, namely the possibility 
of remote monitoring, planning and management 
of the examined objects at enterprises and house-
holds. This is evidenced by studied and existing 
developments [6, 15, 16, 20]. Additionally, it 
should be noted that the application of special-
ized information platforms, remote databases, 
specialized software, does not make it possible 
to unify the process for the creation of Smart-
Box devices. That results in that the existing 
software and hardware solutions require special 
experts in order to analyze technical information 
by means of costly software and technical tools.

We propose a new concept of the modular 
cyberphysical system for the early diagnosis of 
power equipment based on the approaches to using IoT and 
a group spectral analysis in line with studies [1, 21]. Specifi-
cally, a key element of any IoT network is a Smart Box. From 
the standpoint of an enterprise, there may be several variants 
of Smart Box devices. In addition to resolving tasks, Smart 
Boxes can differ cardinally in the architecture of elements of 
hardware and software, which may lead to additional costs 
of their integration into the overall IoT network at an enter-
prise. This may be due to the use of additional software and 
hardware tools. Therefore, it is proposed to separate each 
SmartBox device into a separate module that could run, 
in addition to self-analysis and self-diagnosis, an analysis 
of compatible Smart Box devices. A model of the modular 
cyberphysical system using a Smart Box device for the early 
technical diagnosis of electrical equipment, as well as its 
information flows, are shown in Fig. 3.

In Fig. 3, the examined IM is connected to a single-phase 
or three-phase electric grid. According to study [1], IM in 
the process of their work and due to their own design fea-
tures form higher harmonics in the electric grid. Therefore, 
in order to run further analysis of the higher harmonics, the 

subsystem for current information collection converts an an-
alog signal into a digital one with the subsequent formation 
of the spectral noise of an electric grid for its analysis [12]. A 
given subsystem can be represented in the form of a conven-
tional analog-to-digital converter. The task of the database 
management subsystem (DBMS) is to store and manage all 
necessary data to enable the correct and efficient operation 
of a modular SmartBox device. Specifically, such data may 
include: the data that are responsible for storing a reference 
sample of the work of the examined IM; the data that are re-
sponsible for the current values of parameters in the work of 
the examined IM. The subsystem for conclusion derivation 
and display of information is an expert system. It should 
be noted that the final decision on the technical condition 
should be taken by MES. This relates to the peculiarities of 
a technological process and a probability for the error as a 
result of computation, which in turn may lead to a certain 
error when drawing a conclusion on the technical condition 
of the equipment.

In addition, one should note that the model shown 
above (Fig. 3) makes it possible to use a single Smart Box 
device for a group of similar electric motors. To identify 
each engine as a separate examined object, a spectral anal-
ysis is applied [19], which enables its identification among 
a group of similar devices. It should be noted that the iden-
tification of the object is one of the key provisions in the 
concept of IoT [11, 16].

The proposed approach makes it possible to monitor the 
current state of equipment using fewer SmartBox devices. 
Specifically, the total number of SmartBoxes is defined by 
the type and quantity of equipment used, the pattern of 
a technological process, and the distance between them. 
Therefore, a general logical-functional scheme of an enter-
prise that employs the Smart Box diagnosing devices based 
on the modular principle can be represented in the following 
form (Fig. 4).

It should be noted that a single module includes only 
one Smart Box diagnosing device and a group of similar 
electric motors connected to the electric grid. Taken to-
gether, all of the modules form an information computing 
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Fig. 3. A model of the modular cyberphysical system using a Smart Box 
device for the early technical diagnosis of electrical equipment and its 

information flows
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cluster. A special feature of the organization of objects into 
a cluster is the improvement of their performance efficiency 
and reliability.

Fig. 4. Modular network of Smart Box diagnosing devices

It is also necessary to take into consideration the fact 
that a Smart Box cannot arrive at correct conclusions based 
on experimental (current data) only. This is due to the im-
possibility of considering all possible situations in a system 
that may occur. For example, as a result of an error from mea-
surement sensors (ADC), the lack of a precise mathematical 
model for a pattern in the occurrence of defects, failure of 
sensors, etc. Therefore, during operation of a Smart Box, 
there may occur inconsistencies in the classification of situ-
ations. To resolve a given problem, one can use fuzzy logic, 
neural networks, linear discriminant analysis, classification 
trees, etc.

Based on the considered types of systems [22, 23], we 
propose, in order to construct a Smart Box expert system, 
employing a multi-level fuzzy-neural network hybrid sys-
tem, which would consist of subnets with different archi-
tectures (neural network and fuzzy logic). Specifically, the 
set of all possible situations can be divided in the diagnos-
ing system into a set of standard situations (S1) and a set 
of emergencies. It is necessary then, based on the results 
of measuring the current state of electrical equipment, to 
make the correct decision relating a given situation to one 
of the sets S1(t) or S2(t). The solution to a given problem 
is the construction of the rule that recognizes the current 
situation and computes the membership function (using a 
fuzzy neural network system). 

In general, the functioning of the neuron takes the fol-
lowing form: 

0

( ) ,
n

i i
i

y f s f x w
=

 
= =   ∑     (1)

where f(s) is the activation function, y is the output of a neu-
ron, wi are the weights, xi are the inputs.

A fuzzy neural network system (FNS) should include 
clear inputs and fuzzy degrees of influences of each input 
on the situation. FNS would then represent a three-level 
structure, which would execute control over state of the l-th 
component (defect) of Smart Box ( 1,l k= ). The first level is 
the source data (spectral characteristics acquired in interval 
[x0;xn]); the second level performs the filtration of situation 
attributes Сj( 1,j N= ) separating the noise from an useful 
signal; the third level identifies the situation (there is a de-
fect/no defect).

Weights of the first level are the fuzzy sets xk (a range of 
amplitude fluctuation at a corresponding frequency), the set 
ak is the result of performing the aggregation,

Fig. 5. Construction of a membership function for attribute xk 
of defect k

Weights of the first layer are the fuzzy sets ( 1, , 1, )ki l cA k N j N= =
( 1, , 1, )ki l cA k N j N= = , ( )Ak kxµ  is the activation function, which 
is derived from the following formula

1
( ) .

1Akj k akjx
e−µ =

+
    (2)

It should be noted that the second-level weights are 
assigned in interval [0; 50] and are the mean deviation of 
amplitude fluctuation at the appropriate frequency. 

The structure of NS in general is shown in Fig. 6.

Fig. 6. Structure of a fuzzy neural network system

According to each of the levels of functioning of a fuzzy 
neural network, it takes the following form:

( )1
0

,.., ,
cN

h s s s
m m jm j N

j

z f w x x
=

 
= ⋅µ  

∑   (3)

where s=2, 3 are the numbers of the corresponding level, h= 
=1, 2 is the number of the resulting state, s

mf  is the activation 
function of the output layer. Membership functions shall be 
determined by the methods of an expert estimation [24–26]. 

Therefore, the proposed fuzzy neural network system 
that would act as an apparatus of logical derivation for Smart 
Box could enable solving the tasks on monitoring the cur-
rent state and on the early diagnosis of electrical equipment 
in real time.

5. Results of modeling the operation of a modular 
cyberphysical system for the early diagnosis of energy 

equipment

The feasibility and rationality of the proposed concept 
for a modular cyberphysical system for the early diagnosis of 
IM was analyzed using the simulation and computer analysis 
by the Monte Carlo method. This method is statistical, that 
is, it simulates rather well the real distribution of sample sta-
tistics under condition of a large number of experiments [24]. 
The applied generator of random numbers was a random 
number generator, which is part of Framework 4.5 based on 
the millisecond timer of a computer [27].

It should be noted that, according to available studies 
[1], it is necessary, when monitoring the current state of 
IM, to employ 6 or more characteristic frequencies (CF) 
for the identification of electric motors. However, as CF is a 
training sample for a neural network, the quantity of these 
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frequencies then could affect the learning time, which could 
influence the overall reaction time of an information system.

An analysis of influence of the number of CF on the 
learning time was performed by computer simulation in the 
mathematical software Matlab Fuzzy Logic employing the 
program m-function ANFIS, in which we applied CF as in-
put variables. The algorithm to train the ANFIS network to 
define parameters for the membership function was the error 
backpropagation method based on the method of gradient 
descent. The results are shown in Fig. 7. 

Thus, the result of computer simulation shows that the 
shortest learning time could be achieved when using 1 to  
6 characteristic frequencies.

Fig. 7. Results of modeling the influence of the number of 
characteristic frequencies on learning time

We examined, for each type of a modular Smart Box 
device, the time of the system’s reaction to object τ. The 
time of reaction is to be understood as the time over which 
a Smart Box derives a conclusion on the technical condi-
tion of electric motors. At each stage of the experiment, the 
number of examined motors varied from 1 to 5. Spectral 
characteristic and a possible defect for each motor were 
generated randomly. 5 CF were chosen as the input sample 
for a neural network.

Results of comparing the reaction of a standard and a 
modular Smart Box device are shown in Fig. 8. 

The modular structure of a Smart Box was analyzed by 
increasing the number of diagnosed electric motors from 1 to 
5 and by increasing the number of nodes in a cluster from 1 
to 4. A node of the cluster was a Smart Box device module.

Fig. 8. Results of testing the standard and modular  
Smart Box device

The type of a cluster was the model of a cluster system 
of type НРС (cluster for high-performance computing). Re-
sults of tests are shown in Fig. 9.

Thus, based on the results of testing, we can conclude 
that the reaction time in the cluster system is longer than 

that in a standard one, by about 30‒35 % under condition of 
using 3 or 4 nodes in the cluster. 

Fig. 9. Results of testing a cluster system composed of the 
Smart Box nodes

It is obvious that at an actual enterprise the obtained 
indicators may differ according to different types of situa-
tions. However, the electric motor defect recognition quality 
would be higher in the case of applying a modular Smart 
Box system.

According to the calculations performed, the standard 
deviation was Sa=2.78 Hz, an absolute error for a 95 % reli-
ability (Student’s coefficient tα=1.984 at α=0.05 and n=100) 
amounted to ∆x=5.79, a relative error was ea=3.47 %. We 
also tested the reproducibility of experiments (homogeneity 
of variances) Gр=0.3294 at the boundary tabular value 
Gk=0.372.

6. Discussion of results of studying the proposed 
structure for a modular cyberphysical system

A solution to the task on the technical diagnosis of 
electrical equipment at an enterprise was found by em-
ploying the concept of cyberphysical systems. That is, a 
combination of Smart Box devices with intelligent man-
ufacturing (MES), at which each Smart Box is capable 
of self-diagnosing both separately and in combination. 
Specifically, the use of modular Smart Box devices makes 
it possible to reduce the number of equipment items em-
ployed for diagnosis. Additionally, there is a possibility to 
build clusters of Smart Box modules, which makes it pos-
sible to improve the reliability and performance efficiency 
of IoT system in general.

The proposed structure for a modular cyberphysical 
system for the early diagnosis of power equipment in the 
absence of integration into the overall information system 
of an enterprise could represent part of IoT in a private 
household. It could also form an element of the system 
“Smart Home” and work independently. For example, 
for diagnosing household appliances, such as hair dryers, 
washing machines, fans, etc. 

The advantage of the proposed system is the flexibility 
in its setting as it makes it possible to use, as a subsystem 
for conclusion derivation and display of information, a fuzzy 
derivation system. The structure of a fuzzy system makes it 
possible to easily change parameters for term sets, which in 
turn could improve the quality of defects recognition accord-
ing to special features or conditions of use.

In addition, the benefit of the system is the capability to 
create a cluster of modular Smart Box devices that provides 
for an opportunity to work in tandem with other modules. 
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That makes it possible to exchange information with neigh-
boring Smart Box devices. 

The disadvantages of a given intelligent system in-
clude the inability to work with power units that do not 
include IM. In addition, the disadvantages include a 
probability of errors related to the quality of electric grid. 
Specifically, surges in voltage, the occurrence of higher 
harmonics due to the energy equipment that is several 
times more powerful. 

A prospect for the further development is solving a task 
on the creation of the concept of alternative global IoT for 
technological devices. In turn, that would make it possible 
to significantly improve the quality of communication be-
tween devices, thereby increasing an informative basis for 
diagnosis.

7. Conclusions

1. We have proposed a modular structure of the cyber-
physical system for the early diagnosis of power equipment 
based on the principles of IoT. Specifically, modular Smart 
Box devices that are capable, based on a spectrum-current 
analysis, of identifying electrical equipment and further diag-
nosis. Employing a given approach makes it possible to unite 
all IoT devices in clusters, thereby improving performance 
efficiency and reducing the reaction time of the system.

2. According to the structure of the subsystem for con-
clusion derivation and display of information, we chose, as 
informative attributes, the characteristic frequencies that 
identify an electric motor in the power grid. We have pro-
posed using the structure of a neural-fuzzy network, which 
consists of 3 layers. A special feature of this system is the 
possibility to change the number of terms for input variables 
in order to improve the quality of IM identification. Specifi-
cally, for systems with small generation capacity, in order to 
increase the diagnosed IM within the cluster, it is advisable 
to reduce the set to, for example, 3‒4 CF.

3. We established in the course of training a neu-
ral-fuzzy network that in order to achieve a smaller value 
for a standard error in training and to improve the quality 
of IM identification in the power grid, it is necessary to 
apply a training sample with large values of characteristic 
frequencies. It should be noted that an increase in the 
number of CF contributes to an increase in the number 
of training epochs. However, an increase in the number of 
training epochs increases the total time of a neural-fuzzy 
network learning. This, in turn, affects the overall re-
action of the system. It was established empirically that 
the optimum number of neurons in the outer layer (N) is  
5‒6 that corresponds to the number of CF. In this case, 
the standard error is within Е=10-3. Due to this, we ob-
tained the best result of prediction with a relative devia-
tion within 3 %.
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