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Вирішується завдання візуалізації зворотним тра-
суванням (Ray Tracing) тріангульованих поверхонь, 
згладжених методом сферичної інтерполяції. Метод 
сферичної інтерполяції в основному був розроблений 
для інтерполяції тріангульованої поверхні з подаль-
шою метою візуалізації цієї поверхні методом зворот-
ного трасування. Такий підхід дозволяє поєднати метод 
зворотного трасування з накопиченою базою моделей  
з триангульованою поверхнею. Метод сферичної інтер-
поляції є універсальним і дозволяє також будувати 
плоскі і просторові гладкі криві, проведені через довіль-
но задані точки. Пропонований алгоритм інтерполя-
ції заснований на простій алгебраїчній поверхні – сфері  
і не використовує алгебраїчні поліноми третього і більш 
високих ступенів. Наведені аналітичні співвідношен-
ня для реалізації кожного етапу побудови інтерполюю-
чої поверхні цим методом. Для візуалізації інтерполю-
ючої поверхні розроблений ітераційний алгоритм (ІТА) 
обчислення точки перетину проекційного променя з цією 
поверхнею. Пропонований ІТА має можливість широко-
го розпаралелювання обчислень. Розроблено алгоритм 
побудови точок інтерполюючої поверхні, крок якого збі-
гається з кроком ітераційного процесу обчислень, що 
дозволяє виконувати алгоритм візуалізації та побудо-
ви точки поверхні за один прохід ІТА. Результати дослі-
джень підтверджені моделюванням процесу візуалізації 
в пакеті Wolfram Mathematica. Таким чином, викона-
но рішення задачі суміщення нових методів побудови 
гладких геометричних форм тріангульованих повер-
хонь і методу зворотного трасування, що в цілому доз-
волить підвищити реалістичність синтезованих сцен  
в комп’ютерній графіці
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1. Introduction

In modern computer graphics, methods of rasterization 
and ray tracing are applied to synthesize images of 3D ob-
jects [1, 2]. The main line of studies in computer graphics 
consists in improving realism of synthesized scenes. When 
synthesized by rasterizing, any surface must necessarily be 
triangulated (be approximated by triangles) [1]. Such ap-
proach leads to distortion of the surface shape. To reduce 
negative effect of perception of a triangulated surface, va-
rious methods of illumination interpolation within a triangle 
are applied in the process of its synthesis. Gouraud shading 
and Phong shading are the most common methods [1, 2].  

To date, studies are underway to improve these methods [3]. 
However, all these methods do not eliminate distortion of the 
surface geometry arising in the process of its triangulation. 
One of the possible ways to solve this problem consists in 
application of the ray tracing method for solving the image 
synthesis problems [2].

The ray tracing method has been actively developed in 
recent years. It enables synthesis of images of analytically de-
scribed surfaces without their prior triangulation which sig-
nificantly improves realism of the synthesized object images. 
At the same time, the database of object models and software 
products accumulated in computer graphics is focused on 
triangulated surfaces. Such representation is necessary in 
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synthesis of surface images in classical computer graphics 
with application of the rasterization method.

Combination of the ray tracing method with the accu-
mulated database of object models and software must be 
implemented while preserving features of high realism of the 
method.

This problem can be solved if interpolation of triangle 
illumination is eliminated and replaced by interpolation of 
a triangle with a certain curved surface. Such an approach 
makes it possible to improve realism of the synthesized po-
lygonal object images.

Thus, search for new methods for modeling smooth 
geometric shapes of polygonal surfaces for the purpose of 
further imaging with application of the ray tracing method 
is still an urgent task at this stage of the computer graphics 
development.

2. Literature review and problem statement

Modeling of curved surfaces that interpolate points in 
space which are set by the triangulated surface topology is 
one of the critical goals of computer graphics. Let us consider 
some basic methods for modeling smooth geometric shapes of 
polygonal surfaces.

One of convenient mathematical methods for describing 
curved shapes of objects consists in their representation 
using pieces of parametric surfaces or splines. Finding the 
point of intersection of a projection ray (PR) with such 
surfaces is not an easy task. An algorithm is proposed in [4] 
for finding the point of PR intersection with non-uniform, 
rational B-splines (NURBS). This algorithm is based on 
the well-known Bezier cutting method. The author suggests 
conversion of the NURBS surface into rational Bezier sec-
tions at the preliminary preparatory stage of the algorithm. 
It has additional processing demands. A comprehensive 
approach is set out in [5]: the parametrically free forms of 
surfaces and the most suitable method for their imaging 
using the ray tracing method are studied. In general, when 
analyzing studies [4, 5], it is seen that the use of NURBS 
and other parametric surfaces significantly increases time of 
scene rendering by the ray  tracing method and it is difficult 
to apply standard image synthesis algorithms using the ray 
tracing method. This feature of parametric description has 
made the researchers turn to algebraic surfaces. Construc-
tion of spherical splines for interpolation is considered in [6]. 
Because of complexity, it is proposed to use the method in 
solving the problems arising in geophysics and for realistic 
description of the Earth parameters. Use of local mixing of 
radially basis functions for constructing surfaces is proposed 
in [7]. When using this approach, difficulties arise in gluing 
at boundaries when interpolating triangulated surfaces. An 
interpolation surface for a triangle is constructed in [8] by 
mixing two algebraic surfaces of second orders. To increase 
variety of forms of the interpolation surface, it is proposed 
to mix two algebraic surfaces of the second and third or-
ders. Disadvantage of this approach consists in complexity 
of calculation of such surfaces. The lack of an algorithm 
for finding the point of PR intersection with the surface 
makes it difficult to apply this method when constructing 
imaging systems (IS) for various purposes. The author 
of [9] proposes to use a complete second-order polynomial 
and perturbation functions but interpolation requires an 
initial triangulation grid of a high detail. Besides, formation 

of such a surface is a multi-stage process and if the surface 
geometry varies, the time of image synthesis increases. 
According to the author of this method, it can be used in 
systems of interactive space-oriented geometric modeling. 
Study [10] is closest to the topic under consideration. It 
uses the system of quadratic parametric polynomials and 
normals at the triangle vertices to construct an interpolating 
surface. This approach advantage consists in locality and the 
quadratic order of polynomial. As a drawback, it should be 
noted that to construct a smooth surface for such relatively 
simple figures as spheres, cylinders or cones, an initial tri-
angulation grid of high detail is required. Studies [11–13] 
propose to use the method of spherical interpolation based 
on the use of the simplest quadric, a sphere. Solutions for 
constructing an interpolation surface by the method of 
spherical interpolation are presented in [11, 12]. With this 
approach, it is possible to solve the following problems. 
When using the existing base of models with a triangulated 
surface, it is possible to restore a smooth surface. In this 
case, there is no need for interpolation of illumination by 
Gouraud or Phong. When calculating glares, there is no 
need to calculate bidirectional reflectance distribution func-
tion (BRDF) and illumination perspective is also taken into 
account in calculation. When displaying, an undistorted 
shape of shadows is obtained. Texturing and many more ope-
rations are simplified. An example of constructing a curve 
by spherical interpolation and its imaging by ray tracing is  
considered in [13].

Thus, there is a problem in computer graphics con-
sisting in combining highly realistic synthesis of images 
by the method of ray tracing with the accumulated base 
of models of objects with triangulated surfaces. The first 
part of the problem solution includes conduction of further 
studies of the interpolation methods based on the simplest 
algebraic surfaces, quadrics (for example, a sphere). It is 
necessary that this method be uniform (universal) both 
for constructing curves and surfaces. The second part of 
the problem solution involves development of main stages 
of imaging by the method of ray tracing of surfaces con-
structed using algebraic surfaces. These surfaces make it 
possible to most easily perform the PR tracing operation. 
The unresolved issues mentioned above restrain widespread 
use of the highly realistic method of ray tracing in computer  
graphics.

3. The aim and objectives of the study

The study objective is elaboration of stages of image syn-
thesis by ray tracing of triangulated surfaces smoothed by 
spherical interpolation. This will make it possible to improve 
realism of image synthesis by the method of ray tracing with 
the use of the base of models of objects with triangulated 
surfaces accumulated in computer graphics.

To achieve this objective, the following tasks were  
solved:

– for the imaging purpose, construct an iterative algo-
rithm (ITA) of calculating the point of PR intersection with 
an interpolating surface;

– develop stages of constructing an interpolating surface 
that would coincide with the step of the iterative calculation 
process to enable execution of the imaging algorithm and 
construction of points of the interpolating surface in a single 
ITA pass.
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4. The main stages of the surface image synthesis

4. 1. The features of finding the point of the projection 
ray intersection with the interpolating surface

Methods and algorithms for constructing spatial curves 
and smoothing the triangulated surfaces by the spherical 
interpolation method are presented in [11–13].

An approach to constructing a surface by spherical inter-
polation is presented in [12]. In accordance with the method 
of this surface construction, only one possible point on the 
interpolating surface corresponds to each arbitrary point on 
the triangle surface. In what follows, vector quantities will 
be highlighted in bold. Note also that the points set in the 
Cartesian coordinate system (XYZ c.s.) can be defined as the 
radius vectors of these points.

Thus, any arbitrary point for such a surface can be writ-
ten as a vector equation:

r r r= +p s ,  (1)

where r and rp are the radius vectors respectively to an ar-
bitrary point of the interpolating surface and its associated 
point p on the triangle surface. The second term rs will be 
defined further.

Data for a triangulated surface are initial data. Coordi-
nates of the triangle vertices and vectors in these vertices 
will be referred to these data. After completion of synthesis 
of the interpolating surface, all points of the triangle vertices 
must belong to the surface, and the vectors at the vertices 
must coincide with the normals to the surface at these points.

In accordance with the method of ray tracing, it is ne-
cessary to find the point of intersection of the projection 
ray with an interpolating surface constructed by the method 
of spherical interpolation [12]. Peculiarity of finding the 
point of intersection of PR with a surface constructed by 
the method of spherical interpolation is that it is impossible 
to apply a purely analytical method. One of the authors of 
study [14] proposes an iterative method for finding the point 
of intersection of PR with algebraic surfaces presented in an 
implicit form.

4. 2. Determining the interpolation region
In the process of modeling curved surfaces that interpo-

late the points in space set by vertices of an arbitrary triangu-
lated surface, specifying of the interpolation region is a non-
trivial task. Solution of this problem determines a number of 
parameters of the modeled surface: locality for each triangle 
of the triangulated surface, a one-to-one correspondence of 
surface points to points in a triangle, fulfillment of condi-
tions of connectivity and smoothness, etc. Let us assume that 
the triangle for which surface is synthesized was previously 
selected in general by application of the scene rendering 
methods not considered in this article.

Fig. 1 presents geometric elements of the problem. In 
the space of the coordinate system (c, s.) XYZ, two adjacent 
triangles are shown which are usually set by the initial data:

– vertices of the triangles: p1, p2, p3, p4;
– normals (single) at the vertices: n1, n2, n3,n4.
Like points, normals can be set or obtained by calculation 

taking into account locations of triangles. As an option, di-
rection of the normals at a point can be calculated using the 
Gouraud method.

The center of gravity, point C, is shown in the triangle 
p1, p2, p3. Point C divides the triangle area into three equal 

areas with the medians meeting in this point. Determine 
the radius vector of the center of gravity of the triangle 
pc = (p1+p2+p3)/3. Denote the normal to the plane of the 
triangle at the center of gravity, nc. Write the equation in the 
form of a scalar product for the triangle plane:

f c cp p p n( ) = −( ) .  (2)

The interpolation region was locally defined in [11, 12] 
for three set points (triangle vertices) and singled out in 
space using a sphere of greatest curvature and three planes.

Y
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α22

α11

α 33
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Fig.	1.	Geometric	elements	of	the	problem	and		
a	system	of	angles	for	constructing		

the	interpolating	spheres

The sphere of greatest curvature bounds the space in such 
a way that any surface constructed by spherical interpolation 
over a chosen triangle will be inside this sphere. The sphere 
describing the triangle is chosen as such sphere. Determina-
tion of parameters of this sphere is a trivial task, so equation 
for this sphere can be immediately written in a vector form:

p c− − =0 0R ,  (3)

where p and c0 are the radius vectors to an arbitrary point on 
the surface and to the center of the sphere of greatest curvature, 
respectively, R is a scalar equal to the radius of this sphere.

To construct three planes, write down the vectors:

vc n p p1 12 2 1= × −( );  vc n p p2 23 3 2= × −( );

vc n p p3 31 1 3= × −( ),  (4)

where

n n n12 1 2= + ;  n n n23 2 3= + ;  n n n31 3 1= + .

Finally, write down the relations for the three planes in 
the form of scalar products.

f12 1 1p p p vc( ) = −( ) ;  f23 2 2p p p vc( ) = −( ) ; 

f31 3 3p p p vc( ) = −( ) .  (5)

It follows from relations (4), (5) that the planes are 
drawn perpendicular to the vectors (4), and the vectors  
(n12, n23, n31) and the triangle sides lie in these planes. Thus, 
the interpolation region for each triangle is limited in space 
by a sphere of greatest curvature (3) and planes (5). It is 
important to note here that the planes (5) also belong to 
adjacent triangles («neighbors» along their sides) which is 
necessary for matching the interpolating surfaces of adjacent 
and current triangles according to C0 (surface continuity).
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4. 3. The vector field of guides
Authors of [11] have proposed a method for constructing 

a vector field of guides (vg-vector guide) in the plane of  
a triangle arbitrarily set in space by points p1, p2, p3.

Write down equations for the planes that pass through 
the vertices of the triangle p1, p2, p3 and the center of gravity 
perpendicular to the triangle plane.

fc1 1 1p p p nc( ) = −( ) ;  fc2 2 2p p p nc( ) = −( ) ;

fc3 3 3p p p nc( ) = −( ) ,  (6)

where

nc n p p1 1= × −( )c c ;  nc n p p2 2 2= × −( )c ;

nc n p p3 3= × −( )c c .

The planes (6) divide the triangle into three equal areas 
over which vectors of the guide field can be built for any 
space point. Form a set of «reference signs» for each of the 
three areas which makes it possible to identify position of an 
arbitrary space point bounded by planes (5) and (6):

f sign f sign f sign fsign c c1 12 1 2pc1 pc1 pc1 pc1( ) = ( )( ) ( )( ) ( )( )( ), , ,,

f sign f sign f sign fsign c c2 23 2 3pc2 pc2 pc2 pc2( ) = ( )( ) ( )( ) ( )( )( ), , ,,

f sign f sign f sign fsign c c3 31 3 1pc3 pc3 pc3 pc3( ) = ( )( ) ( )( ) ( )( )( ), , ,, (7)

where

pc p p1 212= +( )c / ,  pc p p2 223= +( )c / ,

pc p p3 231= +( )c / ;

pc p p12 1 2 2= +( ) / ,  pc p p23 2 3 2= +( ) / ,

pc p p31 3 1 2= +( ) / .

In accordance with the method of [11], vectors of the 
guide field at any point on the medians drawn from the verti-
ces to the C point are collinear with the normal drawn to the 
triangle plane at the point set by the radius vector pc.

Vectors of the guide field on the triangle boundaries are 
perpendicular to the sides and lie in planes (5).

The property of a simple ratio of three points inherent in 
affine transformations is the theoretical basis for constructing 
a vector field of guides for any point in each of the three re-
gions of the triangle singled out by the planes in (7). Each vec-
tor of the field of guides [11] is written in the following form: 
vg (x′g–xg, y′g–yg, z ′g–zg), where p (xg, yg, zg) is an arbitrary 
point on the triangle surface (Fig. 1) which specifies beginning 
of the guide vector. The corresponding point p’ (x ′g, y′g, z′g)  
lying on a plane parallel to the plane of the triangle sets the 
end of the guide vector. The method enables construction 
of a vector field of guides both locally for one triangle and 
adjacent triangles since there are common guides located in 
a common side and belonging to the fields of both triangles.

In accordance with the method, the entire set of space 
points lying on any vector of the field of guides have only one 
single point in the projection onto the triangle. The points of 

the interpolating surface actually lie on these vectors [12]. 
Many concepts and definitions used in this article are con-
sidered in detail in [11–13].

4. 4. Definition of a section of the projection ray in the 
interpolation field

At this stage of synthesis, the PR section which fell into 
the interpolation region is determined. This approach makes 
it possible to control accuracy and time of finding the point of 
PR intersection with an interpolating surface using iterative 
methods.

Let us write down the equation of a straight line in  
a parametric form (hereinafter, the projection ray, PR) which 
coincides with the observation vector [13, 14]:

p h vt t( ) = + ⋅ ,  (8)

where t is a parameter, v is the observation vector, h is the 
radius vector of the projection center.

Let us find a joint solution of equations (3), (8) with re-
spect to the parameter t. Let it be t1 and t2. If the roots have  
a complex value, then go to the next PR or triangle. In the 
case of real values, substitute these roots in (8) to obtain 
values of the radius vectors for the points of PR intersection 
with the sphere of greatest curvature, p(t1) and p(t2).

Let us find a joint solution of equations for each of the 
planes (5) and the straight line (8) relative to the parame-
ter t. Let it be t3, t4 and t5. Exclude complex roots from the 
obtained roots and leave one from two or three equal roots. 
Leave only real roots for further analysis. In the case of three 
real roots, substitute them into (8) and obtain values of the 
radius vectors for the points of PR intersection with the sur-
faces (5): p(t3), p(t4) and p(t5).

Let us form a set of «reference signs» which will make it 
possible to identify (indicate) position of an arbitrary space 
point with respect to the interpolation region bounded by 
the planes (5).

sign sign f sign f sign fc c c cp p p p( ) = ( )( ) ( )( ) ( )( )( )12 23 31, , .  (9)

If the condition of equality is met for any point p of space:

sign sign cp p( ) = ( ),  (10)

then this point is in the interpolation region bounded by 
planes (5).

Analysis of the relative position of the segments of these 
points p(t1)–p(t5) on the PR as well as positions of these 
points and segments in space of the sphere (3) and the 
planes (5), will be made further. The search logic is to find 
the PR segment which is simultaneously located in the re-
gion of the sphere (3) and the interpolation region bounded 
by the planes (5). The stages and a number of options for 
finding such a segment will be considered further.

Stage 1. Positions of two points of PR intersection, p(t1) 
and p(t2), with the sphere of greatest curvature (3) with respect 
to planes (5) is analyzed. The following options are possible.

Option 1. Condition (10) is satisfied for both points. For 
simplicity of further description, denote it (True, True). The 
segment search is completed and limited by points p(t1), p(t2).

Option 2. Condition (10) is not satisfied for both points. 
Denote it (False, False). Both points are excluded from fur-
ther analysis.
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Option 3. Condition (10) is met for the first point but not 
for the second one or vice versa. Denote it (True, False or 
False, True). The point for which condition (10) is fulfilled 
will participate in the further analysis.

Stage 2. Position of the three points p(t3), p(t4) and p(t5) 
with respect to the sphere (3) is analyzed. To do this, form 
function of the sphere:

f Rs p p c( ) = − −0 .  (11)

To identify position of an arbitrary space point with re-
spect to the sphere, write down the condition:

signf signfs sp c( ) = ( )0 .  (12)

There are some examples of possible options.
Option 4. Condition (12) is satisfied for two points from 

three. Denote it (True, True, False) or (False, True, True). The 
segment search is completed. In the first case, the found PR 
segment is bounded by points p(t3), p(t4) and by points p(t4), 
p(t5) in the second case.

Option 5. Condition (12) is satisfied for one point of the 
three. Denote it, for example, as (False, True, False). The point 
p(t4) obtained in this variant is supplemented, for example, with 
the point p(t1) obtained in step 1 (for example, option 3). In 
this case, a certain PR segment is bounded by points p(t1), p(t4).

With proper analysis, the found PR segment should re-
main alone. The ends of this segment are the sought entry 
and exit points in the interpolation region.

There is no need to analyze all possible options since this 
does not violate logic of further presentation of the material. 
But it is important to note that the number of these options, 
as simulation confirms, is final and small.

4. 5. Relationships for the construction of reference 
spheres

The main feature of the interpolation method is the use 
of such a quadric as a sphere for construction of a surface of 
arbitrary shape between the three points. To construct the 
surface, perform construction of reference spheres. Reference 
spheres are common for adjacent triangles and make it easy 
to achieve smoothness of C0 and C1 between splines of the 
constructed surface for each of the triangles. To do this, draw 
two reference spheres with centers o12 and o21 through the 
ends of the segments defined by sides of the triangle, for 
exam ple, through the points p1, p2.

In this case, the center o12 of one sphere must be on  
a straight line passing through the point p1 and coinciding 
with the normal vector n1 at this point. The center o21 of the 
second sphere must be on a straight line passing through the 
point p2 and coinciding with the normal vector n2.

Ratios for equations of these straight lines in the vector 
form are as follows:

p p n= + ⋅1 1 t;  p p n= + ⋅2 2 t.  (13)

Determine the radius vector for the middle of the side p1, p2:

p p p12 1 2 2= +( ) / .  (14)

Write down the equation for a plane passing through the 
point (14) perpendicular to the segment p1, p2, in the form  
of a scalar product:

p p p p−( ) −( ) =12 1 2 0.  (15)

Find joint solution of equations (13) for each straight 
line and the plane (15) with respect to t and substitute the 
obtained values into (13). Thus, the radius vector for the 
centers of the reference spheres o12, o21 is obtained.

Write down scalar values of the radii for the reference 
spheres:

r12 1 12= −p o ;  r21 2 21= −p o .

Write down in the final form equations for the reference 
spheres in the vector form:

p o− − =12 12 0r ;  p o− − =21 21 0r .  (16)

By analogy, remaining four reference spheres for the re-
maining two sides of the triangle can be constructed.

The reference spheres do not change during synthesis of 
the interpolating surface.

4. 6. Basic relations for the construction of interpo-
lating spheres

Coordinates of vertices p1–p3, normals n1–n3 and cur-
vature of the reference spheres (16) adjacent to the cor-
responding vertices of the triangle (Fig. 1) are the initial 
data for construction of interpolating spheres. Interpolating 
spheres are constructed for each triangle vertex in such a way 
that centers of these spheres lie on the straight lines passing 
through the triangle vertices of the triangle and coincide 
with the normals at these vertices.

In contrast to the reference spheres, interpolating spheres 
have a variable curvature which changes when position of 
the point p on the triangle surface changes. Curvature of the 
interpolating spheres is the source for formation of curvature 
of the interpolating surface for any arbitrary point on the tri-
angle surface. To construct the interpolating spheres, angles 
α1, α2, α3 at the triangle vertices (Fig. 1) are first determined. 
For example, the angle at vertex 1 is determined by relation:

α1 3 1 2 1 3 1 2 1= −( ) −( )( ) −( ) −( )( )arccos / .p p p p p p p p  (17)

Construct a system of angles α11, α22, α33 for an arbitrarily 
chosen point p on the triangle surface (Fig. 1). By analogy 
with (17), the following relation is obtained, for example, for 
the angle α11, 

α11 3 1 1 3 1 1= −( ) −( )( ) −( ) −( )( )arccos / .p p p p p p p p  (18)

Construct an interpolating sphere for each triangle ver-
tex with curvature, for example, cs1 at vertex 1, changing as 
follows:

cs cs u cs u1 13 1 12 11= −( ) + ⋅ ,  (19)

where cs12, cs13 are curvatures of the corresponding refe-
rence spheres, the parameter u1 = α11/α1. Coordinates of the 
center o1 of the interpolating sphere at vertex 1 will have 
the form:

o p
n

p
n

p
n

1 1
1

1
1

1

1
1

1

1

x x
x

cs
y y

y

cs
z z

z

cs
= ( )+

( )
= ( )+

( )
= ( )+

( )





, , .. (20)

Radius for this sphere is:

r1 1 1= −p o .  (21)
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By analogy, one can obtain relations of curvatures cs2, cs3, 
coordinates of the centers o2, o3, and the radii r2, r3 for the 
remaining two interpolating spheres. Finally, write down the 
relations for the three interpolating spheres:

p o− − =1 1 0r ;  p o− − =2 2 0r ;  p o− − =3 3 0r .  (22)

Thus, a system of three interpolating spheres of different 
curvatures can be constructed for any arbitrary point on the 
triangle surface. If the point falls on the triangle side, then pa-
rameters of the interpolating sphere coincide with parameters 
of the reference sphere adjacent to the corresponding vertex.

4. 7. Relationships for constructing an interpolating 
surface

All stages of constructing an interpolating surface by 
spherical interpolation are described in detail in [12].

The ray tracing synthesis of an image of the interpolating 
surface constructed by spherical interpolation differs in that 
the radius vector rp is specified in (12) and this vector must 
be determined during synthesis.

Let us assume that a PR segment was determined in sub-
section 4.4 in the interpolation region.

Let it be points p t1( ),  p t2( ). At the same time, assume 
that the point p t1( )  on the PR is located closer to the center 
of the projection h than the point p t2( ). Write down the 
equation of a straight line for the part of the PR segment with 
these points being its ends. Then the equation for this line 
coinciding with the PR has the form:

pr p p pt t t t t( ) = ( )+ ( ) − ( )( )⋅1 2 1 .  (23)

To find the point rp, set an arbitrary point on the line and 
denote it:

prj, (24)

where j is the index specifying number of the point on the PR.
Perform a test for belonging of a point (24) to any of the 

three i-regions bounded by the planes in (7). To evaluate the 
test, calculate the predicate.

pred
 

 ,otherwise
i

f fsigni j signi i
= ( ) = ( )1

0

, ,

,

pr ps
 (25)

where i is the index of the region number, i = (1, 2, 3).
If predi = 1, then the tested point belongs to the i-th 

region. If predi = 0, then the test point does not belong to the 
i-th region.

Further, it is necessary to find the vector of guides for 
the point (24). To this end through the point prj, draw planes 
perpendicular to the triangle sides for example, p1, p2, in the 
region of which condition (25) is supposedly satisfied. Write 
down equation for this plane:

fj jp p pr p p( ) = −( ) −( )2 1 .  (26)

Draw a plane parallel to the triangle plane through the 
same point (24):

fnj j cp p pr n( ) = −( ) .  (27)

In accordance with [11, 12], use planes (2), (5), (6), 
(26), (27) to find the only point, rpj on the triangle plane 

corresponding to the point (24). To this end, use the pro-
perty of the simple relation of three points inherent in affine 
transformations. Write down the vector of the guide for the 
point (24):

vg pr rj j pj= − .  (28)

Draw a straight line parallel to the vector of the field  
of guides, vg, at this point through the obtained point rpj on 
the triangle surface.

r r vgj pj j t= + ⋅ .  (29)

Substitute (29) into the equations of interpolating 
spheres (22) and find the values of t at which the line inter-
sects the spheres.

There are two roots for each sphere. To select one of 
the roots correctly, use [12]. Denote these solutions for the  
point j : t1, t2, t3. Substitute these solutions in (29) and obtain 
the coordinates (radius vectors) of the corresponding points 
on the interpolating spheres (22):

ps ps psj j jt t t1 2 3( ) ( ) ( ), , .  (30)

Determine a set of vectors:

s ps r1 1= ( ) −j pjt ,  s ps r2 2= ( ) −j pjt ,  s ps r3 3= ( ) −j pjt .  (31)

To determine the point of the constructed surface, find 
relations of the barycentric coordinates b1, b2, b3 for an arbi-
trary point p on the triangle surface:

b s1 3 33 2 3 2= −( ) −( )p p p psin / ,α

b s2 1 11 3 1 2= −( ) −( )p p p psin / ,α  (32)

b s3 2 22 1 2 2= −( ) −( )p p p psin / ,α

where s is the triangle area.
In the general case, expression for the resulting vector rs 

in (1) whose beginning is at the point rp and the end is on the 
interpolating surface, write down:

r s s ss b b b= + +1 1 2 2 3 3,  (33)

where s1, s2, s3 are the collinear vectors (31) coinciding with 
the vector of field of guides (28) and b1, b2, b3 are barycentric 
coordinates (scalars). Subscripts denote their connection 
with the corresponding triangle vertices. The barycentric  
coordinates take into account the degree of influence of 
curvature of the corresponding interpolating sphere on for-
mation of a constructed surface point [12].

4. 8. Construction of an iterative process and synthesis 
of the interpolating surface image

In the general case, it is necessary to find at least one 
point of intersection of the straight line (23) with the syn-
thesized interpolation surface (1).

This point is calculated using an iterative algorithm 
which determines n1 digit places of the sought number in 
each step of iteration. In this case, the number of steps will 
be equal to:

K n n= / ,1  (34)
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where n is the number of digits of the sought number. Assume 
that n and n1 are multiples.

In addition, the iterative process (IP) should be con-
structed in such a way as to combine ITA with simultaneous 
construction of the sought surface point.

Hereinafter, to build the IP, turn to [14] in which the 
proposed parameter t is proposed to be presented in the form:

t tk k k k= + ⋅ ,1 η δ  (35)

where k is the step number of the iterations, k∈{1, 2,..., K}; 
δk is a quantum of the k-th iteration step, 12 n k

k
− ⋅δ = ; ηk is  

a positive coefficient determining the number of quanta used 
at the k-th iteration step.

The goal of each k-th step is to define a segment on  
a straight line (23) (hereinafter, a selected segment) within 
which there may be a result of joint solution of equations (1), 
(23). It is important to note here that at each next ITA step, 
the selected segment is reduced by a factor of 2 1n . The main 
stages of calculations performed in the k-th iteration step  
of ITA are considered below.

Stage 1. Substitute the parameter value in equation (23) 
in this form:

pr t jk k ,1 + ⋅( )δ  (36)

where tk–1 is the parameter calculated in the general case 
at the previous ITA step. Since we start consideration with 
k = 1, then tk–1 = t0 = 0. The parameter t in (23) sets length  
of the segment p(t2)–p(t1) in relative units. At this step, this 
segment and all selected segments in subsequent steps will  
be divided into 2 1n  equal segments. The index j is introduced 
for numbering of points bounding equal segments.

Denote radius vectors of the points of the ends of  
these equal segments at the k-th step taking into account 
(23), (24):

prj
k ,

where

j J J n∈ …{ } =0 1 2 2 1, , , , .  (37)

In this case, when k = 1, the value of quantum δk
n= 2 1 .  

In view of (23), assume that the index j will be counted in  
the direction from the point p(t1) to the point p(t2).

Stage 2. Let us test for the belonging of points (37) to any 
of the three i-regions bound by planes in (7). To evaluate the 
test, calculate predicate (25) for each of the points (37) at 
each k-th step.

Stage 3. In the following, determine vectors of the field of 
guides for each point (37). To do this, use relations (26)–(28) 
and write down vector of the field of guides for all j points of 
the k-th step.

vg vg vg vg0 1
k k

j
k

J
k, , , .… …  (38)

Stage 4. Determine on the surface of each interpolating 
sphere (22) the points corresponding to the point rpj on 
the triangle surface. Write down equation of a straight line 
passing through the point rpj and parallel to vector (28) in 
the k-th step:

p r vgk
pj
k

j
kt t( ) = + ⋅ .  (39)

Next, find joint solutions of equations for the three inter-
polating spheres (22) and the straight line (39) with respect 
to t for each point j, for example, at k = 1. There are two roots 
for each sphere. To select one of the roots correctly, use [12]. 
By analogy with (29), (30), substitute these solutions in (39) 
and obtain (taking into account k = 1) coordinates (radius 
vectors) of the corresponding points on the surface of the 
interpolating spheres (22):

ps j t1
1( ),  ps j t1

2( ),  ps j t1
3( ).  (40)

Stage 5. Determine the points for the interpolating sur-
face corresponding to the points rpj. To do this, take into 
account (40) and find vectors (31) and the barycentric coor-
dinates (32) corresponding to the points rpj. Finally, use (33) 
to define vectors rpj, the beginning of which is the point rpj 
and the end belongs to the interpolating surface. Write down 
the set of these vectors for all points j:

r r r r rs s s sj sJ0 1 2, , , , , , .… …  (41)

In accordance with (1), sum up vectors (41) and the 
radius vector of the point rpj to find the radius vector for all 
points j of the interpolating surface in the k-th step:

r r rj
k

pj sj

k
= ( )+ .  (42)

Stage 6. Substitute the radius vectors (37) and (42) in (2) 
and get two sets of scalar values with the j-index specifying 
number of the element of the sets:

f fj
k

j
kpr r( ) ( ); .  (43)

Determine difference of these values:

F f fj
k

j
k

j
k= ( ) − ( )pr r .  (44)

By analogy with [14], find elements of the set Fj
k as 

parameter-indicators (PI). Joint analysis of the values and 
signs of PI allows one to determine the strategy of movement 
in each iteration step. The value of ηk in (35) is determined 
in each ITA step by the results of Fj

k  analysis. In doing this, 
two cases are possible.

Stage 7. Determining the selected segment.
Case 1. All elements of a set have the same sign. Then 

analysis of the Fj
k  elements consists of the following steps.

1) The element of the set with the minimum value of mo-
dulus, i. e. |Fj

k |min  is determined. Let it be some j-th element.
2) The moduli of the first differences are determined.

DF F Fj
k

j
k

j
k= − +| |,1  DF F Fj

k
j
k

j
k

− −= −1 1| | .  (45)

3) Indices of the smallest modulus of the difference de-
fined in p. 2 are taken as indices of the selected segment. Let 
it be indices j and j+1. Name them accordingly: initial and 
final indices.

4) The coefficient ηk at this step is equal to:

ηk kj= ( ) ,  (46)

where ( )j k  is the initial index of the selected segment in  
the k-th step.

Case 2. The elements of the set Fj
k  have different signs. 

This means that the PR intersects the interpolating surface 
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in some part of it. As the analysis shows, the function of the 
interpolating surface spline within the interpolation region for 
one triangle can have no more than two adjacent extrema: ma-
ximum and minimum. Thus, the number of intersection points 
does not exceed three. For example, the relations between the 
elements of set (44) for two points of intersection can be:

F k
0 0> ;  F k

1 0> …; ;  Fj
k > 0;  Fj

k
+ ≤1 0;

Fj
k
+ < …2 0; ;  Fj

k
+ ≤5 0;  Fj

k
+ > …6 0; ;  FJ

k > 0.  (47)

For relations (47), there are two selected segments with 
indices j, j+1 and j+5, j+6 and, accordingly, coefficients 
ηk kj= ( )  and ηk kj= +( ) .5  In this case, further, two IPs can 
be performed for each of the selected segments if the surface 
is transparent and two intersection points must be found or 
one IP for the selected segment with a smaller index if the 
surface is opaque.

Stage 8. Calculate the parameter tk in the iteration equa-
tion (35) taking into account that η ηk 1= ,  determined at the 
previous stage. Initial conditions at k = 1 for IP: t tk .1 0 0= =  
The obtained value of the parameter in this iteration step 
when substituted in (23), enables calculation of the radius 
vector of the initial point of the selected segment to be calcu-
lated in the XYZ c.s.

Calculations of each IP step in stages 1–8 proceed up to 
k = K. If relations (47) were not fulfilled in any of the itera-
tion steps, then the point of PR intersection with the inter-
polating surface is absent. When relations (47) are fulfilled, 
at least in one step, the intersection point exists. Moreover, 
coordinates of this point are equal to the coordinates of any 
of the borders of the segment selected in the last step:

r r rj
K

pj sj

K
= ( )+ .  (48)

In accordance with the ray tracing method to calculate 
illumination, it is necessary to further determine the normal 
at point (48). Since construction of the normal is simply per-
formed by a numerical method, definition of the normal is not 
considered in this study.

5. Discussion of results of simulating the synthesis  
of images of triangulated surfaces smoothed  

by the spherical interpolation method

Simulation was performed using the Wolfram Mathemat-
ica math package.

The task of simulation was to verify the provisions stated 
in the theoretical part, namely:

– verification of correct functioning of the imaging algo-
rithm based on calculation of the point of PR intersection 
with an interpolating surface in the studied ITA; 

– verification of the algorithm for constructing points of 
an interpolating surface with its step coinciding with the step 
of the iterative calculations process which makes it possible 
to perform the imaging algorithm and construction of points 
of the surface in a single ITA pass.

The simulation results fully confirmed correctness of all 
theoretical provisions of the study. For example, for subsec-
tions 4.1–4.7, along with construction of an interpolation 
surface using the package, an error estimate of the construc-
ted surface was made. The following surfaces were chosen as 

reference surfaces: sphere, cylinder, cone and torus. For such 
diverse surfaces, error will be estimated as the relative error 
of deviation of the constructed surface points from the refe-
rence points lying on the guide straight line. Write down the 
relative error for our case in the following form:

δ = D / ,M  (49)

where D is the absolute error of deviation of the points of the 
constructed surface from the reference points lying on the 
guide straight line; M is the parameter that has a maximum 
value for one or another reference surface. This is the maxi-
mum diameter of the reference surfaces.

Table 1 shows the results of estimating the maximum δmax 
and average δav errors in accordance with (49). For a sphere, 
two options were considered for specifying polygons that 
define interpolation range. A tetrahedron: 4 polygons (4 tri-
angles) and a cube: 6 polygons (12 triangles).

Table	1

Results	of	interpolation	error	estimation

Reference surfaces
Number of 

areas of triangle 
interpolation

δmax δav

Sphere (tetrahedron) 4/4 3.7⋅10–8 9.258⋅10–9

Sphere (cube) 6/12 2.3⋅10–16 7.675⋅10–17

Cylinder 8/16 0.0053 0.0014

Cone 8/8 0,0085 0,0023

Тоrus 48/96 0.015 0.0035

In comparison with the closest study [10], according to 
the results of simulation of the method of spherical inter-
polation, to restore surfaces of reference figures (Table 1),  
a smaller number of triangles are required as input data with 
the target error.

Fig. 2 shows the result of simulation of synthesis by ray 
tracing of images of triangulated surfaces smoothed by the 
spherical interpolation method.

а

c

b

d
Fig.	2.	The	results	of	simulating	the	surfaces		

of	reference	figures	according	to	the	ratios	presented		
in	subsections	4.1–4.8:	sphere	(a),	cylinder	(b),	cone	(c),	

torus	(d )
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The results obtained differ from those known in such 
aspects:

– application of the simplest quadric (sphere) for inter-
polation of triangulated surfaces;

– the obtained interpolating surfaces satisfy the condi-
tion of surface continuity, C0, and the condition of continuity 
of the first derivative, C1;

– when constructing an interpolating surface passing 
through arbitrarily set vertices of triangles, it is unnecessary 
to use algebraic polynomials of the third and higher order;

– the method of spherical interpolation makes it possible 
to construct a smooth surface both locally for three points 
and for an ensemble of points arbitrarily located in space;

– simulation of the spherical interpolation method has 
shown the possibility of smoothing a triangulated surface 
with a target error at initial data with a smaller number of 
triangles;

– the proposed iterative process for imaging has the 
possibility of a wide parallelization of calculations. The ITA 
algorithm has the ability to customize the number of digits of 
the sought number determined in one step which is limited 
only by hardware.

As a disadvantage, it should be noted that, a sufficiently 
high performance of computational tools is necessary for 
implementation of this method, especially when construc-
ting surfaces. It is supposed to aim further studies at the 
development of a purely analytical description of the method 
of spherical interpolation for smoothing the triangulated 

surfaces. Completed studies can be applied in various areas 
of computer graphics. For example, when designing imaging  
systems for simulators of vehicles for various purposes (air-
craft simulators, etc.), when creating feature films using 
computer graphics, etc.

6. Conclusions

1. For synthesis by ray tracing of images of triangulated 
surfaces smoothed by spherical interpolation, an iterative al-
gorithm (ITA) was developed. The proposed computational 
process could widely parallelize computations. In an iterative 
algorithm, it is possible to adjust the number of digits of the 
sought number determined in one step which is only limited 
by hardware.

2. The method of spherical interpolation of triangulated 
surfaces is based on the simplest algebraic surface, a sphere, 
and does not use algebraic polynomials of the third and 
higher orders. The stages of constructing an interpolating 
surface have been elaborated, they coincide with the step of 
the iterative process of computations making it possible to 
perform the imaging algorithm and construct points of the 
interpolating surface in a single ITA pass.

The stated results solve an acute problem of compati-
bility of the ray tracing method with the accumulated base 
of models and software tools focused on the rasterization 
method.
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