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1. Introduction

The tasks on diagnosing are common in technical and
medical applications.

The essence of diagnosing implies solving a classification
problem: based on data acquired from a set of sensors as the
diagnosing features, it is necessary to relate the diagnosed
object to one of the possible classes that characterize an
overall state of the diagnosed object or the location and type
of a defect in it.

Solving the tasks on technical diagnosing makes it pos-
sible to timely detect and prevent failure or malfunctioning
of the equipment and the manufactured or operated products.
Solving the tasks on medical diagnosing enables diagnosing
a patient either without the participation of a physician or to
validate the diagnosis made by a physician.

In this case, because of the lack or an insufficient number
of experts that can at present diagnose the appropriate ob-
jects, it is a relevant task to automate the diagnosing process.

In order to automate decision-making in tasks on tech-
nical and medical diagnosing, it is necessary to have a diag-
nostic model.

To construct diagnostic models, statistical methods are
employed (cluster analysis, Bayesian method), decision trees,
neural networks (NN), neural-fuzzy networks, and others [1].

Among the most promising methods are NN, specifically deep
NN - the layered, non-linear architectures that make it pos-
sible to process input at high speed and to obtain the resul-
ting compact models. A deep NN can be trained to solve more
difficult problems, however, an increase in the depth of a net-
work leads to the complication of its learning process [2].

There are many varieties of deep NN [3], among which
the simplest ones in terms of structure are the convolutional
NN (CNN). An advantage of CNN is that they are capable
to separate the high-level features in data while sifting out
nonessential details. However, the drawback of CNN is the
large number of network parameters (which are typically
selected empirically) [4]. The task on classification is also re-
solved by deep belief networks (DBN) [5, 6], although their
learning methods are very slow since they come down to the
greedy sequential training of all layers in a network. There-
fore, in order to solve the diagnosing problems, it is advisable
to choose the architecture of CNN.

When solving the tasks on diagnosing, the available
values for the diagnostic features in a general case can be
assigned as an array of real values. In doing so, to process
them in CNN, input data must be represented in the form
of images — the two-dimensional arrays of discrete values.
Therefore, in order to apply CNN in diagnosing problems,
they must be modified. This approach was considered in




papers [7-9], although they employed more complex net-
works than CNN in terms of structure.

Therefore, it is a pressing task to construct new, and im-
prove existing, methods for building diagnostic models based
on CNN in order to enable the automated construction of
model based on observations and to ensure high accuracy of
diagnosing while reducing computational costs.

The above suggests that the development of such a CNN
training method is expedient that would combine advantages
of the considered methods in order to better train a network
to solve a classification problem. Specifically, the method
must be simple, must encode input data into images for utili-
zing the learning advantages of CNN and to supplement an in-
put sample with data for stabilization of the training process.

2. Review of known methods of data conversion
and NN learning

The basic principles of CNN operation are described in
papers [3, 10]. Studies [7-9] considered methods for en-
coding numerical data using images and solving a classifica-
tion problem.

Paper [7] reports results of research into the ensemble
NN (known as <associative memory») and shows that their
advantage is simplicity and clarity of the operation of the
network. However, since the ensemble networks are based on
the Hebb hypothesis, methods for training these networks are
difficult to implement in the error backpropagation networks.

Study [8] addressed the conversion of sensor data into
images with the subsequent transfer training of a deep NN.
It is shown that NN, which were trained in advance to solve
tasks in one field, can be effectively trained to resolve a target
problem from another field. Paper [8] failed to tackle the is-
sues related to the application of data encoding when solving
problems with sensory data, especially those that lack the
obvious method for converting data into the graphical form.

Paper [9] examined a method to normalize text data for
their subsequent conversion into graphical data. It is shown
that the application of the min-max normalization makes it
possible to retain the scale of data and generates the entire
data set in the same range that is critical for certain tasks.
Study [9] left unresolved the issue on converting data into
color images rather than the gray ones, however the appli-
cation of color images could increase the overall complexity
of the training process. In addition, one should consider
encoding the images not only into shades of grey, but into
the binary (two-color) images as a simpler encoding method.

So far, the easiest and most popular method of supervised
CNN training is an error backpropagation method, showing
good results in solving classification problems [10]. This
method is easy for parallel computation, which is why it is
effective for calculations using the graphical adapters and
distributed systems.

To obtain better results, there are methods proposed in
papers [11, 12], which come down to adding a resistance to
the network against distortions — adding motion blur and
defocusing, and adding the Gaussian noise. The application
of these approaches for CNN training can improve the net-
work’s accuracy of image classification. However, methods
reported in[11, 12] contain the unresolved issue: given
a small training sample volume, a deep network is capable of
overfitting.

A possible variant to overcome the issues related to
overfitting is the augmentation — adding additional images,
based on the distorted starting ones, to the training dataset.
In this case, the distorted images are shuffled in the sample
with the starting ones, thereby improving the overall accura-
cy of the network. Application of augmentation also allows
a better network training using small training datasets. This
approach was employed in paper [13].

3. The aim and objectives of the study

The aim of this work is to construct a method for training
the deep neural networks, designed to work with two-dimen-
sional graphical data, using data in the arbitrary format to
train a network.

To accomplish the aim, the following tasks have been set:

— to compare the effectiveness of float and thermometric
methods when encoding data for training NN;

—to test experimentally the method proposed for sol-
ving the problems on classification — technical and medical
diagnosing;

— based on the results of experiments, to determine the
efficiency, advantages, and disadvantages of the proposed
method.

4. A method of data conversion and training a deep NN

We propose a method consisting of several methods —
normalization, conversion of input data, and preliminary
training of NN. Within it, each line of the input data in the
format of an array of numbers undergoes the normalization
first, and then it is converted into an image. Thus, by having
a table with input data, we obtain a resulting set of images
(one line of data is a single image), which can then be used in
order to train deep neural networks.

The proposed method consists of four phases — norma-
lization, data conversion, noise generation, and preliminary
training of a network.

At the normalization stage, we determine for each co-
lumn with feature values the minimum and maximum values
by using equations (1) and (2) that will be applied for the
normalization.
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where v, is the starting value of the feature, y is the ordinal
number of the feature, m is the number of features, n is the
number of instances. Next, the feature values are normalized
by a min-max method so that they are within [0; 1]. The
normalized value for the feature is assigned by equation (3):
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where vy, is the normalized value for feature y, v, is the start-

ing value for the feature, Min, and Max, are the limit values

for each feature calculated in advance.

At the conversion stage, we create N binary (two-color)
bitmap images, where N is the number of instances. The fol-
lowing approaches are employed in order to convert nume-
rical data into images.



The first approach is to generate an image the size of
KxM pixels, whose features’ values are encoded using a ther-
mometric coding [7], where K is the width of the image, M is
the number of features. The value of K defines the number of
pixels that are sufficient to encode any feature of the input data.
Each row of the image is filled with horizontal lines from the
left edge. The length of the line relative to the image width is
equal to the normalized value for the feature — expression (3).
In the mathematical notation, a probability to fill the pixel with
coordinates {x; y} in the image is assigned using equation (4):

0,x<vjw
Pry= , s y=1...m, (4)

where p,,, is the value for a pixel in the image, x and y are
the coordinates of this pixel, v} is the normalized value for
feature y, w is the width of the image, m is the number of
features.

Another approach is the generation of an image the size
of KxM pixels, whose features’ values are encoded using
a float coding [7]. The image is formed by a method similar
to the thermometric encoding. The difference is that, instead
of a horizontal line, a value for each feature is represented by
a group of pixels separating the line to a ratio assigned by the
normalized input value for feature ¢j. In the mathematical
notation, a condition for constructing an image is assigned
by the following equation (5):
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where p,,, is the value for a pixel in the image, x and y are
the coordinates of this pixel, v}, is the normalized value for
feature y, w is the width of the image, m is the number of
features, & is the size of a float.

At the noise generation stage, additional images are gen-
erated based on the normalized values for features. An image
generation is performed applying the methods described
earlier, only the value for each feature v}, is shifted at some
random value.

At the stage of pre-training, the learning rate is given
by a value that is twice the learning rate, used in the sub-
sequent adjustment of the network using the starting data.
This provides for a significant gain in an initial increase in
the probability that a network makes a correct decision. The
subsequent training (fine-tuning) of the network employs
the error backpropagation.

Given the proposed method, it is possible to create its
simplified versions: without generating distorted images or
without pre-training (only the data conversion into an image
is performed and a network is trained applying an error back-
propagation method).

In order to investigate the properties of the considered
methods, we conducted experiments aimed to solve practical
classification problems. Computational experiments were per-
formed in the Matlab R2017b programming environment uti-
lizing its capabilities to create CNN with an arbitrary structure.

The source data were composed of several datasets ob-
tained from public repositories. The first set is the data on
engines diagnosing [14], consisting of 58,509 instances, each
instance contains 48 features. Elements must be related to
one of 11 classes, depending on the malfunction. The second

set is for diagnosing breast cancer [15]. This set consists
of 32 features and 569 instances. The result of solving the
problem is a diagnosis — the presence or absence of cancer.
The third set is to diagnose ultrasonic meters for liquids [16],
consisting of 173 features and 540 instances in total. In the
paper [17] that employed this set of data did not consider
two meters (marked «C» and «D» in the original problem),
so they will be considered in the further experiments. In this
case, the number of resulting classes was reduced to two —
the presence or absence of a defect.

During experiments, the following CNN architecture was
used for all problems: an input layer of the network, a convo-
lution layer with 8 filters the size of 8x8, a layer of nodes of
linear rectification, a subsampling layer with blocks the size
of 2x2, a fully connected layer, a SoftMax layer and layer of
classification. For each task, this architecture differed by the
size of the input and the fully connected layers. For the first
problem, the input layer size is 48x30, fully-connected — 11,
for the second — the input layer size is 30x30 and 2 neurons
in the fully-connected one, for the third — input layer size is
43x30 and the fully-connected one — 2 neurons.

The first experiment implied comparing two methods of
encoding numerical data — a float and a thermometric [7]
encoding methods, in order to solve the first problem — en-
gines diagnosing.

The second experiment was conducted using three dif-
ferent learning methods. The first method is the pre-training
using distorted data with subsequent tuning. Within it, the
source data were supplemented by the same amount of input
data, but with the addition of noise (that is, the training
sample increases two-fold). The pre-training proceeded at
a double learning rate, followed by the network adjustment —
training at normal rate. The second method also employed
pre-training at double rate, but excluding the data supple-
mented with noise. The third method trained the network at
normal rate throughout the entire experiment.

The choice of training parameters implied the following.
The first two methods employed pre-training at a rate of 0.02
and the adjustment at a rate of 0.01; in the third method,
the rate was constant and was equal to 0.01. The maximum
number of pre-training epochs in the first method was two
times less than that in the second (because the dataset for
pre-training with distorted images was twice larger than the
original). The maximum number of epochs for the adjustment
was the same for the first two methods, for the third it was
taken as the sum of the number of epochs of pre-training and
adjustment in the second method. Training was terminated
in advance if we did not observe any decrease in the valida-
tion error for 30 consecutive iterations in the test dataset.

The input data for all models were divided into two sam-
ples — training (60 %) and test (40 %). Data were converted
using the methods proposed in the format of black and white
images. In the process of training, we selected the best epoch
(the first epoch that showed the best validation result on the
test sample). At the end of each epoch, at the stage of training,
we measured time and computed a probability estimate of
making a correct decision for both samples (training and test).

We describe, as an example, solving the task on technical
diagnosing the ultrasonic meters. At the first stage, the input
data in a tabular format are converted, by using one of the
two considered encoding methods (float or thermometric),
into two-dimensional images, an example of which is shown
in Fig. 1. In the image, each feature consists of a horizon-
tal bar in the case of the thermometric coding (Fig. 1, a)



or a small segment, shifted horizontally, in the case of the
float method (Fig. 1, b).

Fig. 1. Examples of images acquired from the encoding of the
same instances of numerical data using different methods:
a — thermometric method of encoding, 6 — float method
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Fig. 3. Dependence chart of validation error Son training
iteration number /: 1 — float method of encoding

2 — thermometric method

At the next stage, the resulting set of Table 1
irﬁlagis is f‘uipiemﬁnte% Wilth H;W images Numerical results of experiments over the methods for data encoding
that have slightly skewed values. For images
the size of 30x30 pixels such distortions are _ Num- | Training | Number | Training | Estimate of the
almost invisible to the eye and represent the Encoding l)gr _Of time to of the time to pro_bablhty for
offset of features’ values by 1-—2 pixels alon method training the limit best the best | making a correct
the feature value axis (horizontallr;) # epochs epoch, s epoch epoch, s decision, %

The next stage is the pre-training of Float 700 | 202564 | 685 | 1.983.10 97.96
CNN over several iterations with a two-fold Thermometric 700 2,036.69 700 2,036.69 96.73

increase in the learning rate, using both the
original data and the distorted ones.

The learning rate then reverts to its original value and the
network is trained on the original data until it reaches the
limit of iterations or an estimate of the probability of making
a correct decision begins to subside.

The result of the implementation of all of the stages is the
formed neural-network model that is capable to categorize
the image sent to its input according to one of several output
classes, which is the solution to a diagnosing task.

Experiments were performed employing the following
hardware: Intel Core i5-4570K processor, 32 GB RAM
DDR3-1600, graphic adapter GeForce GTX 1060 6GB (used
in all experiments).

5. Results of training the models to solve
classification tasks

Based on the results of the experiments that we con-
ducted to compare the encoding methods for numerical
data, we have constructed the charts for a change in the
probability of making a correct decision and validation er-
rors (Fig. 2, 3). Numerical results from the experiments are
given in Table 1.
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Fig. 2. Dependence chart of estimate of the probability

for making a correct decision p on the test sample on the

training iteration number /: 1 — float method of encoding
2 — thermometric method

The result of experiments on CNN training methods
is the constructed charts of estimate of the probability of
making a correct decision on the test sample for each of the
three diagnosing tasks (Fig. 4-6).

For the first task (engine diagnosing), features’ values
were acquired by measuring the current of working and de-
fective motors [14].

In the second task, we employed data on breast cancer,
obtained by converting the results of a biopsy of breast mass
into an array of features [15].

The third task applied a set of diagnostic parameters ac-
quired from sensors at several ultrasonic liquid meters [16].
Constraints for experiments are given in Table 2; the results
are in Table 3.

Dependence chart of estimate of the probability for
making a correct decision on the test sample (Fig. 2) shows
that both methods for encoding numerical data into the for-
mat of images operate with approximately the same accuracy.
The chart of change in the validation error (Fig. 3) demon-
strates that for both methods an error in training decreases
approximately at the same speed.
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Fig. 4. Dependence chart of estimate for the probability
of making a correct decision p on the test sample for the
first task on the training iteration number /: 1 — pre-training
with added noise, 2 — pre-training without noise, 3 — without
pre-training
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Fig. 5. Dependence chart of estimate of the probability
for making a correct decision p on the test sample for the
second task on the training iteration number /:
1 — pre-training with added noise, 2 — pre-training without
noise, 3 — without pre-training
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Fig. 6. Dependence chart of estimate of the probability for
making a correct decision p on the test sample for the third
task on the training iteration number /: 1 — pre-training
with added noise, 2 — pre-training without noise, 3 — without
pre-training

Charts for the second experiment (Fig. 4—6) show that
the preliminary training of a network using additional noise
and at an elevated learning rate produces better results than
when training at a constant speed. In the charts for the first
two tasks, the application of pre-training contributed to the
early increase in the likelihood of making a correct decision.
While training at a constant speed, the network demonstra-
ted a certain delay in learning.

The estimation chart for the probability of making a cor-
rect decision in the first task (Fig. 4) shows that adding an
additional noise to the input data does not yield the desired
effect.

Table 3
Results of experiments on practical tasks
Training | Number | Training EstnnaFe. of
. . . probability
Training Task time to of the time to of makin
method the limit best the best 8
epoch,s | epoch epoch acorrect
’ decision, %
Pre-train- 1 2,011.52 689 1,974.12 98.03
ing with
added 2 13.22 163 9.73 96.49
noise 3 9.17 244 7.45 88.97
. 1 2,054.93 684 2,009.16 98.02
Pre-train-
ing with- | 2 2.21 20 1.1 95.61
outnoise |5 | 4561 337 10.12 88.28
Without 1 2,025.64 685 1,983.10 97.96
pre-train- 2 3.04 28 1.58 93.86
e 3 | 1033 195 587 86.21

6. Discussion of results of studying
the proposed method

Table 2
Constraints on training processes in experiments
Training Task Number of Number of
method pre-training epochs | training epochs
Pre-training ! 2 700
with added 2 5 219
fotse 3 10 291
1 4 700
Pre-training
without noise 2 20 19
3 20 500
1 - 700
Wlthgqt 9 - 54
pre-training
3 - 339

Based on the results from the first experiment, it was
found that when using a float encoding method, the network
learns a classification task slightly better, the probability
of making a correct decision on the best epoch for the float
method has proved to be higher than that for the thermomet-
ric one, as well the learning rate. The thermometric method
initially showed higher values for the estimate of probability
of making a correct decision, but it could not produce by the
end of training any better results than the float method.

Table 1 shows that when applying a float encoding the
network learns slightly faster (an increase to 2.6 % of the
total training time to the epoch with the best value) and
with a higher accuracy (1-1.5 % better). That is why in the
second experiment (when solving a classification task) we
considered only the float encoding method.

In the task on diagnosing the engines (Fig. 4), the chart
shows that the resulting accuracy of the two methods with
the pre-training turned out to be almost identical. Given this,
we can conclude that for tasks with large training samples or
with a large number of resulting classes the pre-training with
added noise is inefficient. In this case, it would suffice to train
anetwork in advance at a higher learning rate. As a result, all
three methods trained the network with approximately the
same accuracy.

Fig. 5 shows results of solving the problem from a public
repository on diagnosing breast cancer [15]. Values for the
features in a given problem describe the characteristics of
cell nuclei and are calculated based on the digitized ima-
ges acquired as a result of a biopsy of the breast mass. The
proposed network training method has also turned out to
be more efficient than the simplified methods. When using
it, the training was not terminated in advance due to an in-
crease in the validation error (which happened to the other
two methods), and, as a result, the model was able to achieve
high classification accuracy (higher by 0.9-2.6 %), but used
6-9 times more time.

The chart of estimate of the probability of making a cor-
rect decision for the task on diagnosing the ultrasonic meters
for liquids (Fig. 6) shows that the proposed method could



achieve higher accuracy in solving the problem at earlier
iterations. In this case, we obtained a better result for the
accuracy of classification compared to the simplified meth-
ods. In the best epoch, the accuracy of the network, trained
with the pre-training and added distortion, was higher by
0.7-2.7 % than the simple methods. Despite the fact that
the relative accuracy and learning rate proved to be higher
than for other simplified methods, the network did not
demonstrate any outstanding results compared to the other
considered tasks.

Tables 2, 3 show that the proposed method improves
the accuracy of the resulting model when the datasets are
small (up to a thousand of elements), or if the number of
the resulting classes is small. In the case of the first task, its
application is not effective, although the approach to the con-
version of numerical data into images proved to be quite good
for this task.

Based on the results from experiments involving the
proposed and existing methods of machine learning [18-20],
using identical data sets, we compiled Tables 4-5.

Table 4

Comparison of results from existing methods
of classification and the proposed method when solving
a problem on engine diagnosing

Classification method Probability of I?“i“kmg
a correct decision

Multi-dimensional hierarchical o

networks [18] 86-96 7%
DBN with pre-training [19] 94.52 %
DBN with pre-training, self- o

training, and regularization [19] 96.52 %
Proposed method 98.03 %

Table 5

Comparison of results from existing methods of
classification and the proposed method when solving
a problem on diagnosing breast cancer

Classification method Pr;?i?ggéfgg?ﬁing 'l"trlz:;rgllg
GRU-SVM [20] 93.75 % 174
Method of support vectors [20] 96.09 % 14
Proposed method 96.49 % 9.73
Softmax-regression [20] 97.65 % 25
Multilayered perceptron [20] 99.03 % 28

Table 4 shows that the proposed method turned out to
be 1.5 % more accurate than the previously known machine
learning methods when solving classification tasks. Table 5
shows that the proposed method outperforms classical me-
thods in terms of model training time and, as a result,
demonstrates good accuracy. However, it does show worse
results for accuracy than the method of building classifying
models based on a multilayer perceptron. As a consequence,
one can conclude that the proposed method is advisable for
use to solve the tasks for which learning rate is important,

and for which it is expedient to compromise the accuracy of
the resulting model.

All this allows us to argue on the possibility of using
the proposed method to construct diagnostic classification
models based on observation applying CNN. In this case,
a classic method of NN training was supplemented with
a stage of data conversion that makes it possible to use the
convolutional networks in order to process numerical data,
while the pre-training and training to suppress noise make
anetwork resistant to distortion. The method has been useful
for training a deep NN under conditions of insufficient data
for training, without overfitting a network.

Experiments have shown a possibility to apply the pro-
posed method when constructing classifying models using
real data sets to diagnose defects in equipment and to cate-
gorize diseases, balanced for accuracy and learning rate. That
would make it possible to build more complex diagnosing
models, spending less time on their training.

Prospects for the further research in this direction imply
the application of networks’ architectures other than convo-
lutional, as well as the introduction of additional constraints
to the training process. In addition, attention should be paid
to other methods of image encoding, not covered in this
paper, and to the application of different approaches to dis-
tortion (Gaussian blur, offset of parts of an image, etc.) when
generating images with noise.

7. Conclusions

1. We have proposed a method for training CNN using
numerical data that enables the construction of neural
models in order to solve a classification problem with suf-
ficient accuracy and learning rate through encoding, added
data, and training a network to suppress noise. Data en-
coding using images has made it possible to apply CNN and
their features of visual data analysis for data that do not
have any obvious conversion method into a graphical form.
Training a network to suppress noise helped stabilize the
training process and to train the resulting model to neglect
distortions in real data. Supplementation of sample data
enables the application of the method at a small number
of training instances. By using the proposed method, we
performed experiments on methods to encode images, re-
sulting in that we selected, for the further experiments, the
float method that demonstrated better accuracy than the
thermometric one.

2. The experiments on training the convolutional neural
networks to solve three different diagnosing problems have
showed that the method is capable to train the models to
solve a classification task with an accuracy larger than 85 %
(depending on the problem, input data, and conditions to
terminate the training process).

3. Based on results from the experiments, it was estab-
lished that the conversion of numerical data into images
makes it possible to construct diagnostic model based on
deep NN, designed to work with images without making any
additional modifications to their architecture. Additional
stages in training have a positive effect on the resulting mo-
del, but a marked increase in the accuracy of classification
was observed only for models with a small number of classes
and instances. Application of data with noise helps a network
go beyond a local minimum during training, as well as train
the model to ignore random distortions in data.
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