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1. Introduction

Ship repair is a complex and low mechanized industrial 
sector. Ship repair yards (plants) perform a dock repair, as 
well as repair of bottom-overboard fittings, pipelines, pro-
peller-rudder system, they replace hull’s steel structures, 
they manufacture fuel equipment for ICE, spare parts for 
ship equipment and devices, etc. If the repair involves a 
significant amount of work, an industrial method is applied, 
based on specialization and cooperation of the repair base, 
zero stage, aggregate method of repair, automation and inte-
grated mechanization.

Management team at SRY must be able to effectively 
manage under critical conditions, to adapt to changing 
market conditions [1], and strive to minimize possible risks. 
This requires the application of scientific methods for mak-
ing decisions on inventory management under conditions 
of uncertainty and risk, accounting for competition, as 
well as advances information technologies. That gives rise 
to many new, non-standard scientific tasks because classic 
models, constructed to study operations, do not take into 
consideration at all, or to a less degree, the specificity of SRY 
functioning as a specialized enterprise, as well as its behav-
ior under market conditions. The above necessitates further 
research in this field.

2. Literature review and problem statement

In paper [2], authors performed an analysis of ship repair 
market and concluded that small ship-repairing companies 
increasingly win bids for the repair of ships in Ukraine. The 
reason for this relates to the fact that large SRY have higher 
overhead costs, while the lowest price on repair, without 
compromising its quality, is typically a key requirement from 
the commissioner. Study [3] suggested an approach to im-
prove effectiveness of managing a SRY, based on the project 
management methods. Work [4] proposed an entropic model 
of risk management during implementation of ships repair 
projects, while paper [5] devised principles for building a 
risk-oriented strategy to maintain and repair ships. Study 
[6] suggested a procedure to construct probability trees and 
to calculate the ratios of probability derivation in order to 
analyze various organizational and technical tasks in ship 
repair under conditions of uncertainty and risk. However, 
the approaches, applied in [3–6], do not take into consider-
ation the dynamics of change in the production situation at 
SRY, the stochastic character of arrival of ships at SRY, and 
fluctuations in the volumes of their repair.

Papers [7–11] propose a series of simulation schemes for 
production processes at SRY, whose implementation could 
improve the organization of repair operations. Thus, work 
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нюється безперервно з постiйними iнтенсивностями, але в залеж-
ностi вiд наявностi матерiалiв на складi. В результатi дослiдження 
сформульована задача стохастичної оптимiзацiї iнтенсивностей 
поповнення запасiв матерiалiв за критерiєм мiнiмум сумарних 
середнiх поточних витрат СРЗ, якi враховують також витрати, 
що стосуються додаткового простою суден внаслiдок вiдсутностi 
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[7] suggests a simulation model in terms of discrete events 
in order to plan and manage the utilization of technological 
equipment at SRY and supplies of materials to it. In this 
case, the model takes into consideration the possibility to 
perform a sensitivity analysis of plans if the initial data 
changes in the process of implementing plans, which makes it 
possible to improve equipment utilization. At the same time, 
the issue related to the supply of materials for repairs was not 
considered in [7]. In [8], authors propose a decision-making 
system for operational planning in order to maximize the 
throughput capacity of SRY and to minimize complete 
production costs, which helps to avoid internal competition 
between cost centers at a plant and to improve hardware 
utilization. Underlying this system is the construction of a 
common information base to be accessed by all departments 
at a plant. Paper [9] designed a multiagent information sys-
tems (Multi-Agent System) in order to model technological 
processes in ship repair, which makes it possible to integrate 
data flows, business processes, and financial flows. However, 
the issues related to predicting the repairs at SRY based on 
a given information base have not been addressed in [8, 9], 
which limits the scope of application of the specified infor-
mation system.

Production activity of SRY, similarly to that at any in-
dustrial enterprise, requires, in order to perform ship repairs, 
different types of materials and components. Demand for 
these materials occurs when repairs are performed on the 
ships in docks at SRY, that is, generally speaking, at random 
time. Therefore, in order to effectively handle inventories 
of these materials, it is expedient to employ methods from 
the theory of inventory control under conditions of random 
demand. This area of inventory control theory has inten-
sively developed over recent decades. For example, paper 
[10] examines the model of inventory control in which the 
time required to execute an order for replenishment is set, 
while the demand for products is subject to the log-normal 
distribution. It is unclear, however, how to manage inventory 
by applying this model if demand is described by any other 
probability distribution. Work [11] analyses the problem 
on defining an optimal replenishment policy for perishable 
products with a backlogged  demand and adjusted for infla-
tion. In this case, a change in the discount factor is described 
using a Markovian process. However, this approach is not 
applicable in a situation when the demand itself fluctuates 
randomly. Study [12] provides a series of classic models for 
the optimal inventory control at random demand; they, how-
ever, do not take into consideration the dynamics of change 
in the fluctuations of stocks over time, thereby reducing 
their practical significance.

Formally, any SRY could be represented in the form of a 
multi-channel queueing system (QS), in which the requests 
for service are the ships themselves with a certain set of 
repair operations of several types, while the servers are the 
wharves and docks together with the required equipment.

Even though the queueing theory – QT – includes at 
present a large number of models for different QS [13], the 
specificity of individual types of industries still necessitates 
the construction and investigation of specialized new models. 
Such systems could certainly include SRY, at which the above 
specificity manifests itself in a simultaneous description of the 
production process (arrival of ships and their repair) and the 
process of materials supplies for conducting repair operations.

At the same time, there is an obvious lack of studies that 
would address the interaction between a process of a ship ar-

rival and the repair process, on the one hand, and the process 
of replenishment and consumption of materials, required to 
execute repair operations, on the other hand. Such a research 
is necessary to improve operational effectiveness of SRY and 
to reduce the risk of vessel idling during repairs due to a 
shortage of materials needed for repairs.

It is known [13] that the construction of mathemat-
ical models for QS has commonly employed the appara-
tus of Markov random processes with a discrete set of 
states. However, in certain cases, an equally convenient 
type of the Markovian random processes are the so-called 
Markovian drift processes. Markovian drift processes are 
now widely applied in order to model and analyze various 
logistics systems [14–16], as well as transportation systems 
[17]. The phase space of such processes represents a direct 
product of discrete and continuous sets. From an applied 
point of view, a discrete set describes the dynamics of QS 
states, defined by discrete variables (the number of ships at 
docks and in queues to them), while the continuum set can 
describe, for example, a fluctuation of inventory levels at a 
warehouse over time. This circumstance makes it possible 
to state and solve a variety of tasks on optimal inventory 
management under conditions of uncertainty and risk. 
This approach could be used in order to solve the problem 
related to examining an influence of the level of materials 
stocks at SRY on the dynamics of change in the number of 
vessels at the yard, and to the construction of an optimi-
zation method for the replenishment policy regarding the 
specified stocks.

3. The aim and objectives of the study

The aim of this study is to state mathematically, and 
solve, the problem on the optimal inventory control over 
materials required to repair ships, under conditions of uncer-
tainty about the time of ships arrival at SRY and the volumes 
of repair operations.

To accomplish the aim, the following tasks have been set:
– to provide a formalized description of SRY in terms 

of QT and a stock theory, taking into consideration the 
non-uniformity in ships arrival for repairs and different 
volumes of repair operations, as well as the consumption of 
materials, based on the application of an appropriate Marko-
vian drift process (or with “speeds”);

– to derive a system of integral-differential equations for 
the described probabilistic model of SRY in order to find the 
joint distribution of the number of ships at docks of SRY un-
der repair and in queue side by side the quantity of materials, 
components, which are at a SRY warehouse;

– to find, based on the obtained solution: 
a) analytical expressions for calculating key performance 

indicators of SRY as a QS and to estimate average operating 
costs of SRY for the repair of ships, as well as the costs in-
curred because of the exhaustion of supplies in warehouse; 

b) to construct a model for the stochastic optimization of 
intensities in the replenishment of materials stocks.

4. Formalized description of SRY in terms of  
the queueing theory and the theory of stocks

We shall consider SRY that is simplistically described by 
the following constituent elements:
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a) a warehouse for storing M types of materials required 
for the execution of repair operations; 

b) a stock of material of the m-th type, replenished con-
tinuously, at intensity Um; 

c) the market of materials suppliers is unlimited; 
d) the cost of materials delivery per unit time is propor-

tional to the intensity of the replenishment of a material;
e) each ship, arriving at SRY, requires for her repair 

a random quantity γm of a material of the m-th type, that 
is, repair of each ship, regardless of other ships, requires a 
random vector of materials (γ1, γ2,…, γM). For simplicity, we 
shall assume that all these random variables are mutually 
independent, and

{ } ( );m mx G xγ ≤ ≡P   (1)

f) in the process of carrying out repair operations in line 
with the assigned technology, the intensity of utilization of a 
material of the m-th type is equal to Wm >Um; 

g) each arriving ship takes one of n unoccupied identical 
and interchangeable docks at SRY, if any; otherwise, it fol-
lows the queue to docks; in this case, vessel queue length is 
limited by the value R.

As regards the above assumptions, the following note 
should be made. 

The modern theory of inventory management considers 
models with different replenishment policies [12]: contin-
uous replenishment, replenishment by fixed-size batches 
based on orders, on the current level of existing stock at 
a warehouse, on the level of demand, etc. Here, only one 
policy is considered, namely continuous replenishment. This 
assumption means that restocking is very common, but in 
relatively small batches; therefore, it could be assumed that 
the replenishment is performed approximately continuously 
over time.

Inventory control theory often employs a feedback be-
tween a replenishment strategy and the current inventory 
level. The described modeling scheme allows a situation 
when, during ship repair, an inventory level of any material 
(for example, the m-th) is exhausted. In this situation, we 
shall assume that the repair of the ship continues, but the 
intensity of stock replenishment (and applying this type 
of a material to perform repair operations) becomes equal 
to U0m ≥Um. Specifically, it could be equal to the intensity 
of utilization of a material of the m-th type Wm, or remain 
equal to Um. In the second case, it is obvious that the repair 
time increases, which could lead to penalties claimed by the 
shipowner against SRY.

Note that since a repair ends when all M types of oper-
ation have been executed, then, provided that all work is 
performed in parallel, repair time t of an arbitrary ship is 
equal to

1

1

max ,..., .M

MW W

 γ γ
t =  

  
 

Hence, from (1), it follows that a repair time of arbitrary 
ship is a random variable with the distribution function

1 1{ } ( )... ( ) ( ).M Mt G W t G W t B tt ≤ = ≡P  

These dependences will hold if, during repair of a ship, 
not such a situation occurs when a warehouse runs out of 

stock of at least one type of a material used to repair the ship. 
We shall address a situation below when the exhaustion of 
materials stocks is possible; we shall examine in detail the 
two kinds of stock replenishment strategies when a ware-
house is empty, namely:

a) U0m=Um,

b) U0m=Wm.  (2)

For the case a), there is a risk for an additional downtime 
of the ship under repair due to a decrease in the intensity 
of stock replenishment; for case b), there will not be ship 
additional idling. 

The ultimate purpose of constructing the described 
SRY model is to state and solve the problem on finding the 
optimal values U1, U2,…, UM, characterizing the process of 
materials stocks replenishment at a warehouse, in line with 
some economic criterion for optimization.

5. Derivation and analysis of the system of differential 
equations and boundary conditions for finding  

a stationary joint distribution of the number of ships at 
SRY and the quantity of materials in stock

We assume that ships arrive at SRY at random points in 
time, with their flow described by a model of the homoge-
neous Poisson process with parameter λ. We accept that the 
random variables γm, m=1, 2,…, M are distributed according 
to exponential laws with average values gm, m=1, 2,.., M. We 
introduce the following conditional designations: ν(t) − the 
number of  ships at SRY at time t; Zm(t) – inventory level of a 
material of the m-th type in warehouse at time t.

For simplicity, we shall assume that the storing capacity 
of a warehouse is large enough, that is, we disregard a possi-
bility to fill the warehouse to capacity. 

Given the above assumptions, the random process (ν(t); 
Z1(t),…, ZM(t)) is a Markovian vector drift process. To find the 
limit probability distribution of this process, it is possible, in 
principle, to derive an appropriate system of differential equa-
tions in partial derivatives, as well as the boundary conditions.

For arbitrary M, however, the mentioned system of equa-
tions is too cumbersome and difficult to solve. Below, we give 
it for particular cases М=1 and М=2, and n=1, that is, for a 
single dock. 

Case M=1. Denote

( ) lim { ( ) } / ,k tq x x Z t x dx dx→∞= < < +P  

{0,1,..., 1},k F R∈ = +

lim { ( ) 0, ( ) },k tp Z t t k−
→∞= = ν =P  \ {0}.k F∈

In order to determine these functions and constants 
using the method given in paper [18], it is possible to derive 
the following system of ordinary differential equations and 
boundary conditions:

( ) ( ) ( )0 0 1ˆ ˆ ˆ ,Uq x q x q x= −λ + µ′  

( ) ( ) ( ) ( ) ( )1 1ˆ ˆ ˆ ˆ ,i i i iVq x q x q x q x− +− = − λ + µ + λ + µ′  

1,2, , ,i R= 
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( ) ( ) ( )1 1ˆ ˆ ˆ ,R R RVq x q x q x+ +− = −µ + λ′ 0,x >   (3)

( )1 1 0ˆ ˆ 0 0,p Uq−−µ + =  

( ) ( )1 1 1 2 1ˆ ˆ ˆ 0 0,p p Vq− −− λ + µ + µ + =

( ) ( )1 1 1 1ˆ ˆ ˆ ˆ 0 0,i i i ip p p Vq− − −
+ −− λ + µ + µ + λ + =  2,3,..., ,i R=

( )1 1 1ˆ ˆ ˆ 0 0,  R R Rp p Vq− −
+ +−µ + λ + =  (4)

where / ,W gµ =  1 0 / ,U gµ =  ;V W U= −  U0 equals U or W 
(see (2)).

The normalization condition for the system of equations 
(3) and (4) takes the following form:

1 1

1 0 0
( ) 1.

R R

i i
i i

p q x dx
∞+ +

−

= =
+ =∑ ∑ ∫   (5)

Solving a boundary problem (3)–(5) implies certain 
computational challenges. The standard method to solve it 
is based on the application of the Laplace transform to the 
system of equations (3)–(5) and subsequent determining 
the constants

,ip−  1, 2,..., 1.i R= +

As a result of solving it, one could find the basic perfor-
mance indicators for the described inventory control system, 
namely: 

a) the average quantity of a material in stock at any mo-
ment of time:

1

00
( )d ;

R

i
i

Z x q x x
∞ +

=
= ∑∫M   (6)

b) the probability of additional stay of a ship under repair 
due to the lack of a material in stock (for case U0=U):

( )
1

1
.

R

i
i

d U p
+

−

=
= ∑   (7)

6. Statement of a problem on the stochastic optimization 
of intensities in material stock replenishment

By using indicators (6), (7), it is possible to state a 
problem on the parameter U optimization, characterizing a 
material replenishment policy at SRY warehouse. An opti-
mization criterion could be the minimum of average sum-
mary costs of SRY per unit time. For case U0=U, these costs 
are related to a material stock replenishment, its storage at 
a warehouse, as well as fines for additional stay of repaired 
ships due to the lack of a material in stock. The analytical 
expression for these costs takes the following form:

( )1 2( ) ,S U aU c Z c d U= + +M   (8)

where a is the cost per unit of a material; с1 is the daily cost 
of storing a unit of a material at a warehouse; с2 is the penalty 
per unit time for an idling ship due to the lack of a material 
at a warehouse. 

For case U0=W, the specified costs could be represented 
as follows:

( )
1 1

1 1
1 1

1 Z.
R R

i i
i i

S U a W p U p c
+ +

− −
+

= =

  = + − +∑ ∑   
M   (9) 

Note that the multiplier at parameter a in the right-
hand side of (9) defines the average intensity in stock 
replenishment. 

Consider in detail a special case when R=0. In this case, 
system (3) takes the following form:

( ) ( ) ( )0 0 1 ,Uq x q x q x= −λ + µ′  

( ) ( ) ( )1 1 0( ) , 0,Vq x q x q x x− = − λ + µ + λ >′

( )1 1 0 0 0,p Uq−−µ + =

( )1 1 1 0 0,p Vq−−µ + =

( )1 0 1
0

( ) ( )) d 1.p q x q x x
∞

− + + =∫  (10)

Summing the first two equations from system (10), fol-
lowing the integration, we obtain equality

( ) ( )0 1 , 0,Uq x Vq x x= ≥   (11)

thus, for example, the first equation from system (10) could 
be disregarded. 

A solution to the system of equations (10), (11) is easily 
derived via direct integration and takes the form:

( ) ( )0 0 0 ,xq x q e−δ=  

0,
U V
λ µ

δ = − >

( )
1

0

( )
(0) ,

V U
q

g V U WU U

µ λ − µ
=

 λ − µ + 
  (12)

( )1 0
1

( )
0 .

( ) ( )
1

U W U
p q

W U
− λ − λ + µ

= =
µ λ + µ − λ + µ

Formulas (12) are valid only under condition 

U W U
λ µ

>
−

 or ,
W

U
λ

<
λ + µ

which is required for the existence of the steady-state op-
eration regime of the analyzed inventory control system. 
Meeting it prevents the accumulation of too many materials 
at warehouse over time. 

By using ratios (11), (12), we obtain

2

0 1
0

( ( ) ( ))d .
[ ( ) ]

WU
Z x q x q x x

g W U

∞

= + =
λ λ − λ + µ∫M  (13)

for case U0=U and 

0 1
0

2

2

( ( ) ( ))d

.
[ ( ) ][ ( ) ]

Z x q x q x x

W UV
W U gW gU W

∞
= + =∫

=
λ − λ + µ λ − λ + µ +

M

  (14)

for case U0=W.
Thus, taking into consideration (12), (13), for the replen-

ishment strategy U0=U, an explicit expression for objective 
function (8) takes the following form:
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( ) [ ] ( )

2

1 2

( )
.

( )
WU W U

S U aU c c
g W U W U

λ − λ + µ
= + +

λ λ − λ + µ λ −
  (15)

It is easy to see that the second term in the right-hand 
side of expression (15) increases, while the third one decreas-
es with an increase in U. Thus, function (15) indeed reaches a 
minimum at some positive value for parameter U. 

For case U0=W, an explicit expression for objective func-
tion (9) takes the form:

 

( ) ( )
( ) ( )

,
1 ( )

W W U
S U

g W W gU

UW
a g c

W U

−
= ×

λ + − λ + µ

 
× λ + λ − λ + µ 

 (16)

where μ=W/g. 
Note that, instead of criterion (16), one could consider 

other optimization criteria, for example, an average current 
profit of SRY from repair operations, which could be repre-
sented as follows:

( ) ( )
( )

1 2
1

/ ,
t

n
U b t aU c Z c d U

n

ω

=

 Π = γ − − −∑  M M   (17) 

where ( )tω  – the number of ships whose repair was finished 
in a time interval (0, t); (b) is the income received by SRY 
per unit of a repair operation. One could demonstrate by 
applying the methods of queueing theory that under a steady 
(statistically equilibrium) regime

( )
( ) 1 1

1
1 1 1 0

,
t R R

i i
n i i

gt ip iq x dx
n

∞ω + +
−

= = =

 γ = µ + µ∑ ∑ ∑ ∫  M

therefore, expression (17) takes the form:

( )

( )

1 1

1 1 0

1 2

( )d

.

R R

i i
i i

U b U ip W i q x x

aU c Z c d U

∞+ +
−

= =

 Π = + −∑ ∑ ∫  

− − −M   (18) 

7. A case of several types of materials 

Let М>1 and we assume that different types of ship 
repair operations are performed separately, that is, there are 
consistently executed operations of the first type of repair, 
the second, and so on. In other words, each type of repair 
operations is not performed in parallel. We denote U0m=Um.

Here, we must introduce new designations:
( )mZ t  – stock level of materials of the m-th type, which 

are at SRY warehouse at time t; 
( )tν  – the number of  ships at TSE at time t; 
( )tα  – the number of the type of repair performed at time t. 

Hereafter, we shall confine ourselves to case M=2. De-
note

0 1 2 1 2( , ; ) { ( ) 0,q x x t dx dx t= ν =P

1 1 1 1 2 2 2 2( ) , ( ) },x Z t x dx x Z t x dx< < + < < +

1 2 1 2

1 1 1 1

( , ; ) { ( )

, ( ) , ( ) ,
kmq x x t dx dx t

k t m x Z t x dx

= ν =
= α = < < +

P

2 2 2 2( ) },x Z t x dx< < +

1 2 1,2,..., 1; 1,2; , 0;k R m x x= + = ≥

1 2 2( ; ) { ( ) ,kq x t dx t k− = ν =P  ( ) 1,tα =  1( ) 0,Z t =  

2 2 2 2( ) },x Z t x dx< < +  2 0,x >

2 1 1

1 1 1 2

( ; ) { ( ) , ( )

2, ( ) , ( ) 0},
kq x t dx t k t

x Z t x Z t

− = ν = α =
= < < =

P

 1 0.x >   (19)

Of interest is the limit probability distribution (19) as  
,t → ∞  which is denoted:

0 1 2( , ),q x x  1 2( , ),kmq x x  1 2( ),kq x−  2 1( ).kq x−

To find the specified distribution using a standard 
method [9–11, 18], based on considering the probability of 
Markovian process transitions from one state to another 
one over an infinitesimal time interval, one could derive an 
appropriate system of differential equations in partial deriv-
atives and boundary conditions.

For example, for case R=0, this system of differential 
equations takes the following form:

( ) ( ) ( )1 2 0 1 2 0 1 2 2 12 1 2
1 2

, , , ,U U q x x q x x q x x
x x

 ∂ ∂
+ = −λ + µ ∂ ∂ 

( ) ( ) ( )1 2 11 1 2 1 11 1 2 0 1 2
1 2

, , , ,V U q x x q x x q x x
x x

 ∂ ∂
− + = −µ + λ ∂ ∂ 

( )

( ) ( )
1 2 12 1 2

1 2

,2 12 1 2 1 11 1 2

,

, ,

U V q x x
x x

q x x q x x

 ∂ ∂
− = ∂ ∂ 

= −µ + µ  1 2, 0.x x >  (20)

The corresponding boundary conditions take the follow-
ing form:

11 2
2 1 11 2 1 11 2

2

( )
(0, ) ( ),

dq x
U V q x q x

dx

−
−− = −µ′ 2 0,x >   (21)

12 1
1 2 12 1 2 12 1

1

( )
( ,0) ( ),

dq x
U V q x q x

dx

−
−− = −µ′  1 0,x >  (22)

12 1
1 2 0 1 2 12 1

1

( )
( ,0) ( ),

dq x
U U q x q x

dx

−
−+ = µ′  1 0,x >  (23) 

11 2
2 1 12 2 2 11 2

2

( )
 (0, )   ( ),

                                      

dq x
V U q x q x

dx

−
−− + = µ′ 2 0,x >   (24)

0 2(0, ) 0,q x =  

11 1( ,0) 0,q x =   (25)

11(0) 0.q− = ,

where 

0,m m mV W U= − >  / ;m m mW gµ =  

/ ,m m mU gµ =′  1,2.m =

The system of equations (20) to (25) shall be also supple-
mented with a normalization condition:
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11 2 2 12 1 1
0 0

0 1 2 11 1 2 12 1 2 1 2
0 0

( ) ( )

( ( , ) ( , ) ( , ))d d 1.

q x dx q x dx

q x x q x x q x x x x

∞ ∞
− −

∞ ∞

+ +

+ + + =

∫ ∫

∫ ∫  (26)

We shall explain the physical meaning of boundary con-
ditions (21) to (25). 

Constraint (21) describes a transition of the process to 
the state when a repair of the first type is performed, and the 
stock of a material of the first type is missing at a warehouse, 
with the intensity of its use during the repair became equal 
to the intensity of its replenishment, that is U1. The stock 
of a material of the 2-nd type is replenished at intensity U2.

Constraint (22) describes a transition of the process to the 
state when a repair of the 2-nd type is performed, the stock of 
a material of the 2-nd type at a warehouse has been exhausted, 
and the intensity of its use during the repair became equal to 
the intensity of its replenishment, that is U2. The stock of a 
material of the 1-st type is replenished at intensity U1. 

Constraint (23) represents a transition of the process to 
the state when:

a) a repair of the 2-nd type is finished at a zero level of 
stock of a material of the 2-nd type at a warehouse; 

b) ship repair is completed and the ship leaves SRY; re-
plenishment of the stock of a material of the 2-nd type starts 
at a warehouse at intensity U2; 

c) the stock of a material of the 1-st type at a warehouse 
is replenished at intensity U1.

Finally, constraint (24) reflects a transition of the pro-
cess to the state when a repair of the 1-st type is completed 
at a zero level of stock of a material of the 1-st type at a ware-
house; its stock is replenished at a warehouse at intensity U1 ; 
repair of the 2-nd type begins. 

Conditions (23) represent the impossibility for the pro-
cess to enter the following states:

a) the lack of stock of a material of the 1-st type at a ware-
house at the time immediately after the repaired ship leaves 
SRY (that is, upon completion of a repair of the 2-nd type); 

b) the lack of stock of a material of the 2-nd type at a 
warehouse at the time immediately after another ship is due 
for repair; 

c) the lack of stock of a material of the 2-nd type at the time 
immediately after completion of the 1-st kind of repair in the 
absence of stock of a material of the 1-st type at a warehouse.

The boundary value problem (20)–(26) could be solved 
by the method of the Laplace transform. Denote

**
0 1 2 1 1 2 2 0 1 2 1 2

0 0
( , ) exp( ) ( , )d d ,q s s s x s x q x x x x

∞ ∞
= − −∫ ∫

**
1 1 2 1 1 2 2 1 1 2 1 2

0 0
( , ) exp( ) ( , )d d ,m mq s s s x s x q x x x x

∞ ∞
= − −∫ ∫  

1,2,m =

*
11 2 2 11

0
( ) exp( ) ( )d ,q s s x q x x

∞
− −= −∫

  (27)

*
12 1 1 12

0
 ( ) exp( ) ( )d ,q s s x q x x

∞
− −= −∫  1 2, 0.Res Res >

We first apply the Laplace transform to equations (15) 
considering conditions (25). Following the standard trans-

formations, we arrive at the following system of equations 
relative to representations (27):

** ** *
1 1 2 2 0 1 2 2 12 1 2 2 0 1( ) ( , ) ( , ) ( ,0),s U s U q s s q s s U q sλ + + − µ =

** ** *
0 1 2 1 1 1 2 2 11 1 2 1 11 2( , ) ( ) ( , ) (0, ),q s s s V s U q s s V q s−λ + µ − + = −

1

** **
1 11 1 2 2 1 1 2 2 12 1 2

* *
12 2 2 12 1

( , ) ( ) ( , )

(0, ) ( ,0),

q s s  s U s V q s s

U q s V q s

−µ + µ + − =

= −

0,mRes >  1,2,m =  (28)

where the following designations are used:

*
0 0

0
( ,0) ( ,0)d ,sxq s e q x x

∞
−= ∫

 

*
11 11

0
(0, ) (0, )d ,sxq s e q x x

∞
−= ∫

*
12 12

0
( ,0) ( ,0)d ,sxq s e q x x

∞
−= ∫  0.Res >

  
Let us transform by Laplace the boundary conditions 

(21) to (24) taking into account conditions (25):

* *
1 11 2 1 2 2 1 2(0, ) ( ) ( ),V q s s U q s−= µ +′

* *
2 12 1 2 1 1 2 1 1 2( ,0) ( ) ( ) (0),V q s s U q s U q− −= µ + −′  

* *
2 0 1 2 1 1 2 1 2 2( ,0) ( ) ( ) (0),U q s s U q s U q− −= µ − +′

* *
1 12 2 1 2 2 1 2(0, ) ( ) ( ).U q s s V q s−= µ +′  (29) 

The determinant of a system of three equations (29), as 
it is easy to see, equals

( ) ( )
( )( )

1 2 1 1 2 2

1 1 1 2 2 2 1 1 2 2 1 2

,

.

s s s U s U

s V s V s U s V

∆ = λ + + ×

× µ − + µ + − − λµ µ   (30)

The corresponding determinants for finding unknown 
functions ** ** **

0 1 2 12 1 2 11 1 2( , ), ( , ), ( , )   q s s q s s q s s are:

*
0 1 2 2 0 1 1 1 1 2 2

*
2 1 1 2 2 2 1 1 11 2
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s U s V V q s

s V s U U q s V q s
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11 1 2 1 11 2 1 1 2 2
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−µ + λµ

Thus, by using ratios (29) to (31), we obtain
 

**
0 1 2 0 1 2 1 2( , ) ( , ) / ( , ),q s s s s s s= ∆ ∆

2

**
12 1 2 12 1 1 2( , ) ( , ) / ( , ),q s s s s s s= ∆ ∆  
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**
11 1 2 11 1 2 1 2( , )  ( , )/ ( , ).q s s s s s s= ∆ ∆  (32)

The derived solution contains four unknown functions

*
0 1( ,0),

          
q s  *

11 1( ,0),q s  *
12 1( ,0),q s  *

12 2(0, ).q s

These functions are expressed, by using boundary condi-
tions (29), through two unknown functions *

1 2( ),q s−  *
2 1( ),q s−  

which are determined by using a condition of analyticity of 
functions (27) in region 1Re ,s  2Re 0,s ≥  that is, the con-
dition for matching zeros at denominator and numerators 
in fractions (32). The result is a certain boundary value 
problem for functions of two complex variables. This compu-
tational procedure is described in details in monograph [19]. 
The remaining unknown constant 2 (0)q−  is determined from 
the normalization condition (26).

Similar to the case of a single type of materials, one could 
also state the problem on 1,U  2U  parameters optimization in 
order to minimize the average intensity of costs related to 
the supply of materials and losses due to idle ships caused 
by the interruption of repair, that is, a function of the form

1 2 1 1 2 2

11 1 12 2 2 1 2

( , )

( , ),

S U U a U a U

c Z c Z c d U U

= + +
+ + +M M  (32)

where 1 2( , )d U U  is the probability of additional stay of ships 
under repair because of the lack of materials in stock, and

1 2 11 12 2
0 0

* *
11 12 2

( , ) ( ) ( ) (0)

(0) (0) (0);

d U U q x dx q x dx q

q q q

∞ ∞
− − −

− − −

= + + =∫ ∫

= + +

iZM  is the mean  quantity of a material of the i-th type at a 
warehouse, and

1 1 0 1 2 11 1 2
0 0

12 1 2 1 2 12
0

( ( , ) ( , )

( , ))d d ( )d ,

Z x q x x q x x

q x x x x xq x x

∞ ∞

∞
−

= + +∫ ∫

+ + ∫

M

2 2 0 1 2 11 1 2
0 0

12 1 2 1 2 11
0

( ( , ) ( , )

( , )) ( )d ;

Z x q x x q x x

q x x dx dx xq x x

∞ ∞

∞
−

= + +∫ ∫

+ + ∫

M

ai is the unit cost of a material of the i-th type; с1i is the 
daily cost of storing a unit of a material of the i-th type at a 
warehouse.

8. Example of solving a problem on the stochastic 
optimization of restocking intensities

We give a numerical example that illustrates the de-
scribed problem on stochastic optimization, confining our-
selves to case М=1, R=0, that is, we consider the problem of 
minimization of function (13) for different values of parame-
ter W and at the following initial data: a= 5 thousand mone-
tary units per ton, с1=0.08 thousand monetary units per ton 
per day, с2=10 thousand monetary units per day, g=0.5 tons. 

Calculations are performed applying the software pack-
age Microsoft Excel. The results of calculations are given in 
Table 1.

Table 1

Calculation results on a stochastic optimization model

No. of 
entry

Value for param-
eter W, tons per 

day

Optimal value for 
parameter U, tons 

per day

Minimal value 
for function 

(13), thousand 
monetary units 

per day

1 0.15 0. 005 0. 22438

2 0.20 0. 050 0. 32500

3 0.25 0. 070 0. 35843

4 0.30 0. 074 0. 37904

5 0.35 0. 077 0. 03962

6 0.40 0. 079 0. 41105

7 0.45 0. 081 0. 42440

8 0.50 0. 082 0. 43673

9 0.55 0. 084 0. 44839

10 0.60 0. 085 0. 45964

Data from Table 1 show that with an increase in values 
for the intensity of material utilization during repair opera-
tions (parameter W), the optimal values for the intensity of 
material replenishment at a warehouse (parameter U) grow 
slower, and this growth has a limit.

9. Discussion of results of examining the model of 
stochastic optimization of inventory control at SRY

The present study shows that the proposed approach 
to optimizing inventory control at SRY makes it possible 
to minimize the expected operating costs of SRY under 
conditions of the random arrivals of ships at SRY and the 
randomness in the volumes of repair operations at each ship. 
This is accomplished by finding the analytical dependences 
of the respective cost components on the desired control 
parameters (that is, intensities of restocking). In this case, 
there appears a possibility to account for the losses by SRY 
caused by penalties on the part of shipowners due to the 
extra downtime of ships because of the lack of materials at 
a warehouse. At the same time, for the case of several kinds 
of materials (and related types of repairs), the implementa-
tion of this approach involves certain analytical difficulties, 
which, however, could be overcome by specialized methods 
for solving boundary value problems for functions of several 
complex variables.

The described scheme of SRY operation modelling could 
form the basis for the development of an appropriate simula-
tion model. This would be justified in cases where it is neces-
sary to take into consideration the non-Markovian character 
of the random processes of ships arrivals at the yard (in par-
ticular, their arrival on a predefined schedule) and the vol-
umes of required repair of ships. It should be noted, however, 
that solving the problem on stochastic optimization in this 
case requires a significant volume of computation. In such a 
situation, it appears most effective to apply a combination of 
analytical and simulation approaches within the framework 
of the so-called directed simulation calculations [20].

From the point of view of an inventory control theory, 
applying the Markovian drift process makes it possible to 
not only take into consideration the random fluctuations 
in demand, but also to take into account the formation of 
demand related to the transportation process, that is, to the 
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operation of ships, which in some (generally speaking, ran-
dom) time would be in need of repair. 

Note that the described methodical approach could also 
be used to solve the task on choosing the SRY by a shipown-
er to repair a ship based on the criteria obtained above, for 
example, the minimum probability (5) or the average total 
current costs (6), (28).

It is of practical and theoretical interest to further gener-
alize the results obtained, for example, for a case of different 
materials replenishment strategies (delivery in individual 
fixed batches, periodic replenishment, deliveries dependent 
on the current level of stock at a warehouse, etc.).

10. Conclusions 

1. It has been proven that the formalized description 
of SRY operation in the form of QS makes it possible to 
simultaneously take into consideration the non-uniformity 
in ships arrivals for repairs, different volume of repair opera-
tions, and to plan the respective cost of materials.

2. It has been shown that when interpreting SRY oper-
ation as a queueing system in terms of the Markovian drift 
process there appears a possibility to derive an appropriate 
system of differential equations in partial derivatives with 
boundary conditions for finding a stationary joint proba-
bilistic distribution of the number of ships at SRY and the 
quantity of materials at an SRY warehouse. Solving this 
boundary value problem makes it possible to obtain analytic 
expressions for different objective functions that evaluate 
the efficiency of inventory control over materials at an SRY 
warehouse, for example, the average total cost per unit of 

time for replenishment and keeping a stock, or the average 
profit by SRY per unit of time.

3. The solution to the specified system of differential 
equations was derived using the Laplace transform and 
the theory of boundary value problems from the theory of 
functions of complex variables. An analytical solution in 
the terms of the Laplace transform makes it possible, easy 
enough, to calculate the desired performance indicators for 
the examined inventory control system as a function of the 
desired control parameters.

4. Based on the solution derived, we have obtained 
analytical expressions for calculating key performance 
indicators of SRY operation as a queueing system (the 
average level of inventories at a warehouse, the probability 
of additional idling of ships under repair due to the lack 
of materials in stock, etc.). We have stated a problem on 
determining the optimal values for the intensities of re-
stocking at a warehouse based on one of the two economic 
criteria: a minimum of average current costs and a maxi-
mum of the average current profits by SRY. Solving these 
optimization problems makes it possible to choose such a 
strategy to manage materials stocks that would minimize 
average current costs or maximize the average current 
profit by SRY.

5. It has been demonstrated that in contrast to existing 
stochastic models of inventory control, the proposed sto-
chastic model makes it possible to simultaneously describe a 
production process (that is, repair of ships) and the process 
to manage the inventory of materials required for repair 
operations, which makes it possible to consider, when build-
ing a strategy for restocking, the uncertainty related to the 
yard’s load in terms of repair operations.
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1. Introduction

The most important direction of the transport policy of 
countries in the context of the globalization of international 
relations is the search for an optimal combination of con-
ditions for functioning of the main international transport 
corridors. The development of a national network of inter-
national transport corridors, which are parts of the Crete in-

ternational transport corridors and which correspond to the 
norms and standards of the European Union, provide condi-
tions for attraction of additional volumes of transportation. 
The XXI century challenges the development of relations in 
the field of continental transport in the new Europe-Asia for-
mat. The main modern trend in the world transport system 
is the development of mixed freight transportation. Inter-
national practice suggests that two thirds of international 
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Проведеними дослiдженнями в органiзацiї взаємодiї рiзних видiв тран-
спорту на iнтермодальних термiналах встановлено, що для досягнення 
ефективного функцiонування перевантажувальних термiналiв необхiд-
ним є удосконалення технологiчного процесу роботи термiналу. Зокрема, 
за умови задоволення основних вимог–безперервнiсть, ритмiчнiсть, пара-
лельнiсть та поточнiсть усiх операцiй, максимальне сумiщення при 
високiй якостi безумовного використання. Доведено, що досягнення вiд-
повiдних умов можливе при використаннi дескриптивної моделi двохпор-
тального термiналу, функцiонування якого забезпечується процесами 
самосинхронiзацiї руху автоматизованих платформ, здiйснюючих переве-
зення контейнерiв мiж автомобiльним та залiзничним порталами. 

Встановлено, що створення досконалих комп’ютерних моделей для 
потреб органiзацiї взаємодiї рiзних видiв транспорту на iнтермодаль-
них термiналах як проектно-конструкторську задачу треба вирiшува-
ти у поєднаннi дескриптивних та аналiтичних моделей. В даних моде-
лях видiляються програмнi та апаратнi компоненти, забезпечуючi умови 
здiйснення концепцiї самосинхронiзацiї руху навантажувачiв. Зокрема 
встановлено, що самосинхронний пiдхiд управлiння забезпечує велику 
ступiнь узгодження при функцiонуваннi контейнерного термiналу та 
дозволяє збiльшити паралельнiсть процесiв, тобто одночасне здiйснення 
подiй у системi. 

Показана можливiсть формалiзацiї процесiв самосинхронiзацiї засоба-
ми мереж Петрi. Цей математичний апарат дуже зручний для моделю-
вання динамiчних дискретних систем та дозволяє дослiдити послiдовне 
виконання всiх процесiв, що вiдбуваються на iнтермодальному термiналi. 
На основi моделювання доведено, що середнiй простiй контейнера на тер-
мiналi зменшується, що дозволяє збiльшити переробну спроможнiсть та 
зменшити питомi витрати на переробку контейнера на термiналi.

Таким чином, є пiдстави стверджувати, що цiлком можливою є роз-
робка технологiчно завершених термiнальних структур "морський порт–
залiзничний портал–автомобiльний портал" у рiзних конфiгурацiях. Тип 
конфiгурацiї залежить вiд обраних логiстичних маршрутiв доставки ван-
тажiв, застосувавши для цього наведену методику органiзацiї роботи 
двохпортального термiналу

Ключовi слова: самосинхронiзацiя, мережа Петрi, iнтермодальнi пере-
везення, контейнерний термiнал
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