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Posznsdaemvca 3adaua paxmopusauii, na
akii 6asyromovca b6azamo KrACUMHUX acuMe-
mpuunux cucmem (RSA, Pabina, inwi) ma xpun-
moepadiuno cunbHUX 2eHepamopie ncee0osu-
naokosux nocaidosnocmeii (BBS). Kopomio
onucamni memoou, AKi nocayzysanu npooopa-
3amu memooy Jlencmpa, ma 3anpononosamno
Memoo paxmopusauii uucen, aAKuill € anano-
2om memooy Jlencmpa na xpusux Eoeapdca.

cmi MemoOy po3pobreno 6i0nosionutl mame-
Mamuunuii anapam. Jlani, 3 6UKOPUCMAHHAM
Ub020 anapamy, no6y008ano amanoz memo-
oy Jlencmpa na xpueux Edeapoca ma pospo-
Oneno 6i0nosionuil anzopumm Gaxmopusauii
yucen. Mamemamuuno o6TpyHMOBAHO KoOpek-
muicmv Memoody, Kopexmuicmos pobomu anzo-
PUMMY; OMPUMAHO MA CMPO20 008€0eHO BePX-
Hi aHaimuuHi OuiHKU 05 1020 WeuoKooii ma
HudicHi ouinku imogiprnocmi ycnixy. Haeedeno
ma cmpozo 06Tpynmosano nepesazu po3pode-
H020 Memo0y Y NOPIBHAHHI 3 KIACUMHUM MEMO-
dom Jlencmpa, sxuii 3acmocosye eninmuu-
Hi kpuei y opmi Beticpumpaca. IIposedero
NOPIGHANLHUI aHAT3 H0B020 MA KAACUMHOZO
anzopumamis.

3a pesyavmamamu 00CAIOHCEHD OMPUMAHO
cmpozi 008e0eHHs M020, W0 HOBULL ATZOPUMM HA
nosnux xpusux Edeapdca, y nopisnanni 3 xna-
CUMHUM, MAE Nepesazu Y WeUOKO00i npubIusHo Y
1.5 pasu. Haeedeno excnepumenmasnvii pesyiv-
mamu, sKi nOKa3yomo, w0 WeUoKodis 3pocmae
ime Ginvwe (do 30 eidcomxie), axuo 3amicmo
nosnux xpueux Eodeapoca euxopucmosysamu
ckpyueni ma xeaopamuuni kpuei. Iloxazano, wo
OUIHKA IMOBIPHOCI YCRIXY HO6020 MeNMOOY 3PO-
cme 3a paxyHoK Nosi6U HOBUX YMO8, SIKi NPUBo-
Odsimv 00 Ycnixy aneopummy ma sAKi He iCHYIOMb
ons kaacuunozo aneopummy Jlencmpa na xpu-
eux Beiiepwmpaca.

Ompumani pezyromamu 003601110 3IMEH-
wumu uac, neobxionuil 0na pose’asxy sadaui
Qdaxmopusauii, npubausno y 1.5 pasu, a, omoice,
daromsv 3M02y wWeUudue 31aMY6aAmMU KPUNMoCuc-
memu, wio 6a3yromoca Ha uii 3aoaui

Knrouosi cnosa: xpunmocucmema RSA,
3adaua axmopusauii, memoou paxmopusa-
uii, memoo Jlencmpa, kpuei Edeapoca

o o

1. Introduction

The problems of information security that exist at present
are solved by the methods and algorithms, the cryptographic
resistance of which is based, particularly, on the complexity
of solution to the factorization problem — the search for a
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nontrivial divisor for a large number. In 2009, the number
RSA-768 was factorized in 2009 within the RSA-competi-
tion that was already closed. Specified 768-bit number (232
decimal digits) is currently the largest number, known from
public sources, which was factorized. To factorize it, the re-
searchers from 6 countries united; more than 100 operations




were performed, which is equivalent to almost 2,000 years of
computations on a single-core processor of 2.2 GHz and the
technical potential of more than 5 grid systems, specifically,
Grid’5000, was used. Factorization of 1024-bit RSA number
according to the estimation of authors in [1] is 1,000 times as
complex as RSA-768. That is why modern requirements for
the length of the RSA number (1,024 and 2,048 bits) ensure,
at a guarantee and with a significant margin, the security of
a cryptosystem against a significant increase of computing
capabilities or new algorithms emergence. Based on the
Moore’s law, it can be argued that with the increasing power
of computers, it becomes possible to increase proportionally
the efficiency of the factorization algorithms. However, in
addition to the time of computations another important
resource for this problem is the amount of memory used. For
example, a significant memory capacity is needed for algo-
rithms of sifting — a numerical sieve and a quadratic sieve.

A more detailed review of the modern factorization
methods, including the Lenstra method, the relevance and
modern progress in factorization problem solving can be
found in papers [2, 3].

The Lenstra method [4—8] is one of the fastest general
methods of integer number factorization. It can be used both
as a separate factorization method, and as one of the stages
of the “sifting” methods, which are the fastest factorization
methods [9—11]. This algorithm uses the elliptic curve over
the rational numbers field and some its reduction by the
integer modulo, and requires about 2log,k additions of the
points of this curve, where & is the algorithm parameter,
the choice of which defones the probability of success of
the algorithm. Therefore, the operation time of the Lenstra
algorithm is proportional to the time of points addition. This
fact naturally suggests using such elliptic curves, on which
the operation of points addition runs fastest, particularly,
Edwards curves, to implement this method.

However, it should be noted that the classic Lenstra
algorithm is based on some property of elliptic curves in
the Weierstrass form, which is absent for Edwards curve.
This property is the existence of a point on infinity, which
has no coordinates and, therefore, is not a solution of the
corresponding curve equation. That is why it is not possible
to transfer directly the Lenstra method on Edwards curves.

The existence of fast number factorization algorithms is a
sufficient condition for breaking the RSA cryptosystem and
other similar cryptosystems. That is why the problem of con-
struction and substantiation of such algorithms will be rele-
vant as long as the RSA-like cryptosystems are widely used.

2. Literature review and problem statement

The Lenstra number factorization method was proposed
in [4]. For factorization of integer n=pq, which is the product
of two integers p and g, Lenstra suggested using an analogue
of an elliptic curve in the Weierstrass form over ring Z,. The
powerful mathematical apparatus that is best described in
[7] was developed to substantiate the correctness of oper-
ation, estimation of time and probability of success of the
method. Although the Lenstra method is not the fastest fac-
torization method, it can perform factorization in those cases
where the fastest “sifting” methods appear to be powerless.

Later, the Lenstra method started to be used on the
Montgomery curves, which made it possible to increase its
speed. With the emergence of a new form of elliptic curves,

the so-called Edwards form, the interest in the Lenstra
method significantly increased. The first work on this topic
is the research of Bernstein [9], which presented the condi-
tions of such Edwards curves existence, which would surely
contain the points of small orders, for example, orders of 2, 4,
6, 8. It was also experimentally shown that the probability
of success of the algorithm on Edwards curve that contains
the points of such orders is increasing within one percent.

Bernstein’s ideas received further development in papers
[2, 10, 11]. In 2013, using the Lenstra method, it became
possible to find 274-bit divisor for 787-bit number (7337+1).

In paper [11], the proposed ideas were improved, due to
which, according to the experimental data, the probability of
success is growing by another 1-2 %. In article [2], it is pro-
posed to combine the use of curves in the Montgomery form
and in the Edwards form to achieve the best results when
using in some algorithms of factoring integer and computing
of discrete logarithm.

However, it should be noted that the following problems
were considered in none of these works:

— construction of a clear description of the Lenstra fac-
torization algorithm that takes into consideration the speci-
ficity of Edwards curves;

— mathematical proves of correctness of this algorithm
on Edwards curves;

— analytical estimations of its speed and a gain in perfor-
mance speed,;

— analytical estimations of the probability of success and
its increase relative to the probability of success of the Lens-
tra method on the Weierstrass curves.

The main findings regarding the effectiveness of the
method were made based on the experimental data, and
the mathematical statements, obtained in them, mostly
concerned certain technical details of the algorithm imple-
mentation (selection of the parameters of a curve, selection
of coordinates, etc.).

That is why many theoretical problems remain un-
resolved. First of all, it is due to the necessity to develop
such a mathematical apparatus that will make it possible to
obtain for Edwards curves the similar results to previously
obtained for Weierstrass curves. Consequently it appears
appropriate to conduct studies in this direction to answer at
least a part of the listed issues.

3. The aim and objectives of the investigations

The aim of this investigation is the development and
strict mathematical substantiation of the Lenstra method
on Edwards curves, as well as substantiation of its basic
properties, advantages and offering the recommendations
regarding the application.

That is why the objectives of this research can be stated
as follows:

— to develop the mathematical apparatus, necessary for
adaptation of the Lenstra method for Edwards curves;

— using the specified mathematical apparatus, to design
the modification of the Lenstra method, adapted to Edwards
curves, and to substantiate correctness of this method;

—to provide a detailed algorithm that implements the
Lenstra method on Edwards curves;

— to construct the analytical estimates of the algorithm
characteristics (speed, probability of success), to explore
possible changes in the algorithm performance, using differ-



ent types of Edwards curves, make an additional analysis of
the algorithm operation.

4. The Lenstra method on an elliptic curve in the
Weierstrass form: connection with other methods of
factorization and its merits

4. 1. Basic factorization methods. Features and bene-
fits of the Lenstra method

Among modern factorization methods, we will separate
the following exponential by complexity algorithms: the Pol-
lard’s p—1 algorithm, probabilistic Pollard’s rho algorithm,
the Shanks methods. The sub-exponential algorithms in-
clude the quadratic sieve algorithm, other sifting algorithms,
the Dixon method, the Lenstra elliptic-curve factorization
algorithm. We will note that the complexity of some algo-
rithms depends on number of digits of the factorized num-
ber, while for the others, such as Pollard’s rho-method, the
Lenstra algorithm; it depends on the value of the sought-for
divisor. We will separately emphasize that the selection of
algorithm depends on the information about the factorized
number, for example, about its special form or the special
properties of its divisors. In addition, it is worth taking into
consideration the amount of memory available for storing
intermediate computations results, for example, for sifting
algorithms.

In terms of security against cryptanalysis algorithms, it
is possible to select prime numbers when constructing cryp-
tosystems so that the use of number factorization algorithms
would be ineffective. However, this approach will not work
for the Lenstra method. This is its essential advantage. It is
not possible to sort out all elliptic curves over the specified
prime field to check the properties. That is, we can in ad-
vance select such prime numbers that their product surely
cannot be factorized within the time acceptable for all the
other methods, but this statement is not true regarding the
Lenstra method. That is why one never knows beforehand
how vulnerable to this method such product will be.

4. 2. The prototype of the classic Lenstra method —
the Pollard’s p—1 method

Let us start with the description of the Pollard’s p—1
method [7, 8, 14], which can be considered as the Lenstra
method prototype. The successful application of the Pollard
method is possible only for the numbers of a certain kind. It is
quite effective in such cases. The main purpose of this method
consists in searching prime divisors of composite number 7.
Suppose that one of the prime divisors p of this number has
the following property: all prime divisors of p—1 are “small”,
for example, they are not exceeding a certain number B.

Let us assume that a is such natural number that
(a,p)=1. Then, according to the Fermat’s little theorem
a”'=1(mod p), that is p|a”-’-1, therefore, (n, aP—1)=p.

But number p is unknown, so we do the following. Let
S1, $2,..., S, be first » of prime numbers, ey, e,,..., e, are small
prime numbers. We will compute

k= ﬂsie’ . )
i=1
The algorithm operation will be successful if

p—1lk. ®))

Indeed, with respect to condition (2), equality a*=
=1(mod p) is satisfied, that is why

(n.a”-1)=p. (3)

It should be noted that equality (2) is not a necessary
condition fulfillment of equality (3). Actually, let us (a, p)=1,
then ord(a mod p)=I|p—1. Then to fulfill condition (3), it is
enough

ord(amod p)| k. )

That is, if number a is such that its multiplicative order is
small enough in Z,", it is sufficient to find divisor p of n from
condition (3). In this case, condition (4) is much weaker than
condition (2), and probability of its satisfaction for random
Y, o(d)

(k.p-1)
p-1

If condition (4) is satisfied, the time of algorithm oper-
ation is equal 2log(2kn) operations. The Pollard algorithm
can be written down step-by-step as follows:

. d
number a is equal to !

Algorithm 1

p—1 — the Pollard method

Input: n — composite.

1. Select k that has the form (1) (or we select in any other
way so that & should have many small prime divisors, for
example, k=HCK(2,..., M) for natural number M).

2. Randomly select a so that 1<a<n.

3. Compute D=(a*—1, n). If 1<D<n, then p=D. The algo-
rithm derives value p and completes the work.

If D=1, come back to step 1 and select larger value of k.

If D=n, come back to step 2 and select a new value of a.

Algorithm 1 successfully completes the work only in
case, if one is lucky to find such «, for which condition (4) at
some £ is satisfied. The higher the value of &, the greater the
probability of success. That is why it is necessary to select
this number as high as computational capabilities allow. If
for all divisors p of n, the following condition is satisfied: p—1
have only large prime divisors, the time algorithm operation
is not essentially different from the operation time of the
complete sorting algorithm.

4. 3. The classic Lenstra algorithm

The prototype of the classic Lenstra algorithm — the Pol-
lard method — is based on the fact that under certain condi-
tions, it is possible to pick up such natural number a that for
some pln, its order in group Z," is small enough. However, the
main shortcoming of this method is impossibility of using it
under condition that all divisors p of number n are the ones
that p—1 have large prime divisors. That is, number 7 can be
constructed in advance so that the Pollard algorithm could
be impossible to apply.

The method, proposed by Lenstra [4—6], does not have
this drawback. The reason for this is that the group, in which
the Lenstra method operate, for the same number p can be
constructed in many different ways. That is why the exis-
tence of small orders elements in group does not depend on
factorization of number p—1. This is what differs the Lenstra
method from the Pollard methods and the others, which can
operate only in group Z,".

The basic idea of the Lenstra method is to use group E, of
the points at an elliptic curve above field F, instead of group



Z,, and a certain point P of this curve instead of number a.
By the Hasse’s theorem, the number N(E,) of the curve
points is evenly distributed within

p+1-2p<N(E,)<p+1+2p.

That is why among all the curves, it is possible to find
the one, the order of which has many “small” divisors. Then,
accordingly, the probability to select point PeE,, that has
“small” order, specifically, the order that is a divisor of number
k, determined in (1), is quite high. Specifically, if E, is cyclic
(like the group of the points on Edwards curve), the proba-

S old)
)
N(E,

Particularly, if N(E,)|k, the probability of success will be

equal to 1. Actually, in this case (k, N(E,))=N(E,), then

o(d) Y o(d)

bility of selecting a “suitable” point is equal to

)y
d(kN(E,)) _ d(E) _ N(Ep) -1
vE) T N(E) M)

Correctness of the Lenstra algorithm operation is pro-
vided by the following theorem.

Theorem 1 (The Lenstra theorem, [7])

Let E: y?=x’+bx+c, b,ce Z is a certain elliptic curve, for
which condition (46°+27c2, n)=1 is satisfied. Let us assume
that Py and P are such points on this curve that Pi#P, and
denominators of coordinates are co-prime with 7. Then point
P+P, has such coordinates, in which denominators are co-
prime with 7, then and only then when for any space p, which
is a divisor of number 7, the sum of points Pymodp+Psmodp
on curve Emodp is not equal to a point on infinity.

The Lenstra algorithm can be written down step-by-step
as follows:

Algorithm 2

Classic Lenstra method

Input: n — composite.

1. Select randomly b, x¢, yo from 2 to n.

2. Compute ¢=(yo*—xo>—bxg)modn.

Then consider the elliptic curve in the Weierstrass form

E: y?=xP+bx+c, b, c€EZ

and the point on it P(x, yo).

3. Compute D= (4b3 +2762,n).

If 1<D<n, then p=D. The algorithm derives value p and
completes the work.

If D=n, return to step 1 and select a new value b.

4. Select k, that has the form (1) (or select in any other
way so that & should have many small prime divisors: for
example, k=HCK(2,..., M) for a certain natural number M).

5. Using the Horner’s scheme, sequentially compute kP
from the formulas of points addition on the curve [7]. In
this case, if in the process of computation, there occurred a
situation when at points addition Pi(xy, 1) and Py(x9, y2),
denominators in coordinates of point P3(x3, y3)=Pi+P; are
not co-prime with n, that is, 1<D<n, where

Do (x,—x,n), if P #P;
(yon), if PB=P,

then p=D, the algorithm derives the value of p and completes
the work.

If D=1 for all the time of computations, or at a certain
step D=n, it is necessary to return to step 4 and increase the
value of & (as long as computational capabilities allow), or
return to step 1 and select a new elliptic curve.

According to approximated estimates, presented in [5,
6], if number % has the form (1), the probability of success is

log 2o logp
logs, " logs,

not less than 2 , where s, is the largest prime divi-

sor of kin (1). Specifically, if logs, =log p, the probability of
success is close to 1; if s, =4/p, the probability of success is
approximately 0.25.

Repeating the algorithm several times for different pa-
rameters of the curve and different points, we increase the
success probability.

The time complexity of algorithm, according to the esti-
mations from the same work is

O(2h(logn)%(loglognﬁj (5)

for some A>0, where parameter A depends on the time of
performance of addition of points on the curve. As we can
see, the time complexity of algorithm is the same as the best
factorization algorithms.

5. Development of the mathematical apparatus necessary
for the construction and substantiation of the Lenstra
method on Edwards curves

The equation of the elliptic curve in the form, which
later took the name “Edwards form”, was suggested in
paper [12]. The isomorphism (under certain conditions)
between the curves in the Weierstrass form and in the
Edwards form was proved. However, the curves, proposed
in [12], were weak from the cryptographic point of view.
But paper [12] was quickly followed by paper [13], where
the Edwards curves were modified by the introduction
of a certain parameter. The equations of the curves, pro-
posed in [13], over a finite field of characteristics p>2 take
the form:

E:x*+y* =ez(1+dx2y2),

where parameter d is the quadratic non-residue by modulo p.
Hereafter, for simplification, we will consider e=1 and
explore curve E,, assigned over prime field F, by equation

4yt =1+dr’y?, (i):—L (6)

The main differences (almost all of which are advantag-
es) of the Edwards curve compared with the Weierstrass
curve are the following.

1) Universality of the addition law. Indeed, the opera-
tions of different points addition and doubling a point are
assigned by the same formulas:

XYy T XY Yy — XXy
X,y )+ Xy, = ’ ' !
( 1]/1) ( 2 _7/2) (1+dx1x2y1y2 1—61961352%%) ( )

2) The absence of “the point on infinity”. Thus, the neu-
tral element is a usual point of the Edwards curve with coor-
dinates (0.1), which obviously fulfill equation (7).



3) Group E,, is always cyclic.

4) The order of group E, is always divided by 4. The
property of the Edwards curve can be considered an insig-
nificant disadvantage due to the fact that its subgroup of the
large prime order, on the basis of which cryptosystems are
constructed, will have at least 4 times as few points as the
whole group, that is, at least three-quarters of the points of
the group are “extra”.

5) The record speed of points addition. This property
is one of the most important advantages of the Edwards
curve. Thus, approximately 1.5 as little bit operations are
required for two (different) points addition of the Edwards
curve rather than points addition of the Weierstrass curve;
at points doubling, the number of bit operations is even less.
There is an especially significant gain in performance speed
for the so-called twisted Edwards curves, the equations of
which differ from equation (7) by the existence of a certain
additional parameter [15, 16].

6) Uniformity of the addition law. The formulas for
adding points along the Edwards curve are the same for
adding different points and for doubling point. This in-
creases stability of cryptosystems on the Edwards curves
to timing and capacitive attacks, aimed at determining
the number, by which the point of a curve is multiplied.

We will remind that the major operation that is per-
formed in the Lenstra algorithm is adding points on the
elliptic curve. More precisely, its implementation requires
about & operations of points addition, where % is determined
according to (1). That is why at a significant increase in
performance speed of this operation, the algorithm time
complexity will also be greatly enhanced.

If the order of Weierstrass curve has exactly two points
of the fourth order, then it will be isomorphic to some Ed-
wards curve (6).

szvz =’ +au+b.

The necessary and sufficient conditions for the existence
of exactly two points of the fourth order, as well as formulas
that define an isomorphism, can be found in [17, 18].

The proposed Lenstra algorithm for the Edwards curve
mainly consists of the same steps as the classic algorithm,
but the substantiation of the correctness of its operation
on the Edwards curve is quite different. Correctness of the
operation of the classic algorithm is based on the Lenstra
theorem, various modifications of which can be found in
[4-7]. And correctness of the operation of the namesake al-
gorithm for the case with the Edwards curve is partly based
on theorem 1 from [19] and will be partly substantiated by
the results, proved further in this paper.

Theorem 2.
Let

de Q, (8)
and a certain curve is assigned by equation

E, 2*+y’ =1+dx’y’ C)]
over F),.

Then for any point (xy, y1)€E), such point (xy, y2)EE, can
be found that

dx,x,y,y, =1(mod p).

(10)

Similarly, for any point (x1, y1)€E,, such point (xs, y2)EE,
will be found that
dx,26,,Y, E—1(In0dp). 11
Proof
Let us take an arbitrary point (xy,y1), which satisfies
equation (9) and the one that xy#0. We will put
2 2
_(x1+y1) :(x1—y1)
dxfyf , ‘17512%2 .

Dueto (8), U,V eQ,, therefore, there are such A, Be F,
that U=A2%, V=B%. Now we put

A+B A-B
Y=o hE

Then

A+B A-B_A'-B* _
2 2 4
2 2
=(x1+y1) —(x1—y1) _ 4xy, _ 1
bdx’y* ddely?  dry,’

XolYy =

(12)

that is, (10) is satisfied.
Then,

(A+Bf+(A—Bf_2AMQBZ_
4 4 4

A%+ B? B (x1 +y1)2 +(x1 —y1)2 3
2 2dx ]’y

B 2(9512 +Z/12) A+dxly it 1
2dxy” dxy,’ dx’y,’

d s=1+d
dx1y1)

2 2 _
X, tyY, =

=1+dv 'y, (13)

1
1

7 3
Xy 'Y,

=1+

where the last but one equation is true due to (12).

It follows from (13) that (xy, y2)€EE,,.

Statement (11) is proved similarly.

The theorem is proved.

Then we will need the theorem that describes the struc-
ture of the Edwards curve over finite ring Z,.

For some composite number neN and arbitrary deZ,
we will designate

Enz{(x,y)eanZn :x2+y251+dx2y2(modn)} (14)
a subset of a set of points of Cartesian product Z,xZ,, which
satisfies the correspondent congruence.

Definition 1: a set of points (14) will be called the gener-
alized Edwards curve over the residue ring Z,,.

For arbitrary prime p, which is a divisor of n, we will des-
ignate by E,modp the curve, formed from E, by the reduction
of its coordinates by modulo p:

E, modp:{(xmodp,ymodp)eZp xXZ, :(x,y)eEn}. (15)



(15) shows that every point P=(x,y)eE, is correspon-
dent to a single point

Pmod p=(xmod p,ymod p)e E, mod p,

moreover, by the properties of congruencies (since p|n), its
coordinates fulfill the congruence

2_

(xmod p)2 +(ymod p)

=1+(dmod p)(xmod p)2 (ymod p)2 (mod p), (16)

obtained from (14) by reducing by modulo p.

We will note that so far we do not introduce the opera-
tion of points addition on this curve and do not explore its
closure under this operation.

Theorem 3: let n=pq. Then in designations (14)—(16),
representations

f:E,—(E, mod p)x(En modgq),
assigned as

VPeE,: f(P)=(Pmod p,Pmodg), 17)

or (which is the same as)

V(x,y)eE,: f((x,y))=
:((xmod p,ymodp),(XTHOdq,ymOdQ))’

is a bijection.

Proof.

To prove it, it is sufficiently to show that representation
(17) is reversible, so for any pair of points T, e E, mod p,
T, €E,modgq, thereisasingle point T e E,, the one that

f(1)=(T,.1,).

Let

]}7=(x[)v yp), Tq=(xqv yq)

Construct point T=(x,y)eE,, for which f(T)=(T,, T,),
and show that it is single.

Coordinates of point T € E, will be obtained from the

system of congruencies

x=x, (mod p);
,(mod p)

(18)

which is decomposed into two independent congruencies:

{XExp(modp); nd {yzyp(mOdp); (19)

x=x,(modg), y=q,(modgq).
Since (p, g)=1, then according to the Remainder Chi-

nese Theorem, in set {0, 1,...., n—1}x{0, 1,...., n—1} there is a
single pair (x, ), which satisfies (18) and (19). In this case,

xmodp=x,, ymodp=y,, xmodg=x,, ymodg=y,, that is why
for point T=(x, ), Tmodp=T,, Tmodg=Tj, is satisfied and, as
it was mentioned above, this is a single point.

We will show that TeE,, that is, (14) holds for its co-
ordinates (x, y).

Since T, € E, mod p, then

v, +y, =1+(dmod p)x,’y,’ (mod p),

in this case, since
dmod p=d(mod p), x,=x(modp), y,=y(modp).
Congruence will fulfill

2’ +y’ =1+dx’y’(mod p). (20)

Based on similar considerations, congruence will fulfill

x*+y* =1+dx’y*(modg). 21)
Since n=pq and (p, ¢)=1, then, by the properties of congru-
encies, fulfillment of congruencies follows from (21) and (22)

2’ +y’ =1+dx’y*(modn),

which means T € E,. The theorem is proved.

Now we will state the theorem, which will be used during
the estimation of the probability of Lenstra algorithm suc-
cess, proposed below.

Theorem 4.

Let n be composite number, which is divided by prime
number p; E, is the Edwards curve over ring Z,, assigned by
equation (9); Pis its point. Let it for some k& € N, condition holds

ord(Pmod p)| %, (22)
where by the order of point Pmodp, we imply its order as an
group element of Edwards curve points in the generalized
form (according to the classification of curves, proposed in
[15]) E,modp.

Then, the following condition holds for point £P: either
enumerators, or denominators of its coordinates have a com-
mon divisor with number 7 that is larger than one.

Proof.

Let us assume that denominators of the coordinates of
points k(Pmodp) are co-prime with number . Then, accord-
ing to Theorem 1 from [19],

Pmod peE, mod p,

and under condition of (22), point 2(Pmodp) is a neutral
element of group E,modp, i.e. k(Pmodp)=(0,1). Then for
point P=(x,y)eE,, according to Theorem 3, the following
condition holds:

{x =0(mod p);
y=1(mod p).

And this means that xip, i.e. (x,n)>p. The Theorem is
proved.



6. The algorithm that implements the Lenstra method
on Edwards curves, and its properties: construction and
substantiation

We will state the ideas that lie at the core of the Len-
stra algorithm on the Edwards curves and construct the
algorithm itself. The first of the ideas is the following. If
parameter d € Z, in equation (8) is quadratic residue, then
according to Theorem 2, there surely be found such pairs of
points on the curve (and there will be quite of lot of such
pairs), the denominator of points addition will be equal to
zero. Then, we consider n=pq, where p and g are unknown

prime numbers. If we choose such deZ,, that ﬁ =—1,
n

then by the property of multiplicativity of a Jacobi symbol,
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that is why either dmodpeQ,, or dmodgeQ,. We will
consider for certainty that dmodpeQ,. We will consider
E,, determined in the following way: first we will assign curve
E:x?+y>=1+dx?y? over the field of rational numbers, then we
will construct its reduction E,=E modn by modulo # (detailed
explanations will be found in [7]). Then such points Py and P
are sure to be found on curve E,, so, point (P;+Ps)modn will
have the denominator that is divided by p, that is, the one, for
which the common divisor with number 7z will be equal to p.

The second idea is similar to the one that is used in the
classic Lenstra algorithm. If the order of point Pmodp is
“small” enough, i.e. it is a divisor of k, the x-coordinate of
point kPmodp is congruent to zero by modulo p, because the
largest common divisor of point 2Pmodp x-coordinate will
be larger than one.

It is possible to construct the following Lenstra algo-
rithm for an Edwards curve.

Algorithm 3

Lenstra algorithm on Edwards curves

Input: n — composite.

1. Choose randomly xg, o from 2 to n—1.

2. Compute D1=(x, n) and Dy=(y,, n). If 1<D;<n, i=1, 2,
then p=D;. The algorithm derives the value of p and com-
pletes the operation.

3. Compute x,>+y,” —1.

4. Compute D, = (x02 +y,° —1,n).

If 1<D3<n, then p=D3, then the algorithm derives the
value of p and completes the operation.

If D3=n, return to step 1 and select new values of x, .

5. 1f

x, +y," 1 -1
n y

return to step 1 and select new values of x, yo.
6. Compute d = (xo2 +y, - 1)(x02y02
7. Then consider the elliptic curve in the Edwards form

E.:x+y* =1+dx’y?,

and the point P(x, yo) on it.

8. Select &, which takes the form (1) (or select in any oth-
er way so that £ would have many small prime divisors: for
example, k=HCK(2,..., M) for some natural M).

9. Using the Horner’s scheme, compute sequentially 2P
from formulas (7). In this case, every time computing points
Pi(x1, y1) and Psy(x3, y2) addition, we compute D;, i=4, 5, 6, 7
from formulas:

D, :(1+dx1y1x2yzvn), D; =(1+dx1y1x2y2,n),

D= (’Qyz +x2y1,n), D, = (%.7/2 —xle,n). (23)

10. If in the course of computations there occurred the
situation at points addition Py(x1, y1) and Py(x, y2) for some
i=4,5,6,7, 1<D;<n, then p=D,. The algorithm derives the
values of p and completes the work.

11. If, when computing kP, one failed to find a non-trivial
divisor of number 7, return to step 1 and re-select xy, yo, or
d, or increase the value of & (as long as computational capa-
bilities allow).

7. Discussion of the characteristics and advantages of the
constructed algorithm

Let us analyze the characteristics of Algorithm 3. The num-
ber of its points additions is the same as for Algorithm 2, but
due to the fact that Algorithm 3 uses the Edwards curves,
each points addition will be performed approximately by
1.5 times faster. That is why the algorithm itself will be not
less than 1.5 times better.

Although the main purpose of the work to get a gain in
performance speed, it is important that the probability of
success of Algorithm 3 should be significantly higher than
for Algorithm 2, as a minimum due to extra checks (23),
correctness of which is based on Theorem 2.

It is possible to additionally increase the probability of
success of the algorithm by using twisted and quadratic
Edwards curves instead of full curves. Probability increase
in this case will take place at the expense of special points
existence on such curves, getting on which also leads to the
success of the algorithm. We will note that an increase in the
probability of success of the algorithm automatically leads to
an increase in computing speed, since in this case the average
number of steps to success decreases.

To research an increase in computing speed of Algo-
rithm 3 during the transition to twisted and quadratic
curves, we conducted a number of experiments with using
standard data types, which show that when using twisted
or quadratic Edwards curve, the average number of steps to
success is reduced by 20-30 %. These experimental results
clearly indicate that the existence of specific points on the
Edwards curve greatly affects the algorithm complexity
and success probability. However, the analytical expres-
sions for the construction of enhancing speed estimates and
probability when using twisted and quadratic curves have
not been obtained yet.

The merits of this research in comparison with the
analogues [2, 3, 9, 10] is that the theoretical proves of the
correctness of the Lenstra method on the Edwards curves
was presented, the appropriate step-by-step algorithm was
designed and it was proved that its characteristics are better
than those of the classic Lenstra algorithm.

A comprehensive analysis of the possibilities and advan-
tages of this algorithm when using quadratic and twisted
Edwards curves requires a more complicated mathematical
apparatus (it especially applies to the formulation and proof



of the generalizations of theorems 3 and 4) and significant
computation capacities for carrying out experiments on
large numbers.

The shortcomings of the research include the fact that the
obtained and theoretically grounded results apply only to the
full curves by Edwards. At the same time, the experimental
results indicate that time of algorithm operation and the prob-
ability of its success for quadratic and twisted curves can be
significantly better than those for the full ones.

That is why we believe that further analysis should focus
following directions:

—development of the mathematical apparatus, which
would theoretically prove the correctness of application of
the Lenstra method on the twisted and quadratic Edwards
curves;

—the development of the appropriate algorithm, con-
struction and proof of analytical estimates of its characteris-
tics (time of operation, probability of success).

We will emphasize that one of the main advantages of
this algorithm is that we can not only re-select & or P, but the
elliptic curve itself, that is, the group in which the algorithm
operates. That is why, unlike other known factorization
algorithms, it is impossible to protect from this algorithm,
picking up some prime divisors of number 7, since it is im-
possible to sort out all elliptic curves over the corresponding
fields and check the orders of all points.

8. Conclusions

1. The new mathematical apparatus was developed and
proved that allowed to construct and prove an analogue

to the Lenstra algorithm for the full Edwards curves. The
necessity of developing the new mathematical apparatus is
related to the fact that Lenstra algorithm operation correct-
ness proof on Edwards curve is based on completely different
principles than classic case with Weierstrass form elliptic
curve.

2. Using the developed mathematical apparatus, the
modification to the Lenstra method for Edwards curves
was created; the correctness of this method was proved. To
substantiate the correctness of the Lenstra method, the the-
orems about the properties of the group of points at Edwards
curves were stated and proved. These theoretical results also
make it possible to construct the algorithm that implements
the Lenstra method on Edwards curves.

3. A detailed step-by-step algorithm that implements the
Lenstra method on Edwards curves was constructed. Theo-
rem 2 and 4 were proved, from which it directly follows that
the conditions for the success of this algorithm are wider
than those of the classic Lenstra method. That is why the
probability of success of the constructed algorithm is higher.

4. Comparative estimates of algorithm time complexity
and probabilities of its success were constructed. It was
proved that the time complexity of Lenstra algorithm mod-
ification on the Edwards curves is at least 1.5 times more
efficient in comparison with classic algorithm.

The experimental results of the algorithm application
made the basis for a reasonable assumption that using twist-
ed and quadratic Edwards curves (instead of full ones) cause
increase of success probability of the algorithm. This is due
to the existence of a large number of special points, reaching
which during the algorithm implementation leads to its suc-
cessful completion.
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u] =,

Memoo Depma ssasxcacmovcs Kpawum npu paxmopusa-
uii wucen N=p-q y éunaoky 6susvkux p i q. O6uucmosanrvia
CKAAOHICMb 0a306020 ANZOPUMMY MeMOOY GUSHAUAEMb-
ca kinvkicmio npoonux snavensv X npu eupiuenni pieHAHHS
Y?’=X?-N, a maxoxc ckaadnicmio apumemuunux onepa-
will. /Tns i 3HudCenHs 3anponoHoeano 6 aKocmi donycmu-
Mux pozensdamu mi 3 npoonux X, ona axux (X°—N)modbb
€ Keadpamnum 3aaumrom no mooyato bb, naseanoezo 6azo-
evwm. ITpu euxopucmanni 6az060i ocnosu mooyas bb wucao
npoonux X amenuyemocs 6 vucao pas, oausvke 0o Z(N,bb) =
=bb/bb*, de bb* — uucao enemenmie mnoxcunu T Kopenie
pienanns (Ymodb)2modb=((Xmodb)?—Nmodb)modb, a Z —
KoeQdiyienm npucrkopenus.

Busnaueno, wo na eeaununy Z(N,bb) enuesaromo snaue-
Hus samauxie Nmodp (npu p=2 euxopucmosyromocs 3aauu-
xu Nmod8). 3anpononoeano nocmanoexy sadaui nowyxy
bb 3 maxcumanvoin Z(N,bb) npu oomescensax na oocse
nam’smi EOM, de susnauaromoCs nOKAsHuKu cmenemis npo-
cmux vucen — mnoxcnuxie bb, ma cnocio it eupiwenns.

Jnsa smenwenns wucaa apupmemuunux onepauii 3 6eiu-
KUMU HUCTIAMU NONOHYEMBCS 3AMICHIL MAKUX BUKOHYGA-
mu onepauii 3i 3HAUEHHAMU DIZHUUL MINC HAUOIUNCHUMU
snauennamu eaemenmie mnoxcunu T. Todi apupmemuu-
Hi onepauii MHONCEHHS i 000ABAHHS 3 GEUKUMU UUCIAMU
suKonyromoca pioxo. A axuo xeaopamnuil xopine 3 X°—N
U3HAMAMU MINLKU Y BUNAOKAX, KOJIU SHAUEHHS

(X’-N)modb 6yoymv xeadpamnumu sanuuxamu 0as
b0azamvox pisnux ocnoe mooyas b, mo obuucn06aILHOIO
CKJIA0HICMIO UiEl onepauii MOINCHA 3HeXmysamu.

Bcmanosaeno, wo mooi sanpononosanuti moougirxosa-
nuti anzopumm memooy Depma ona qucen 212! zabesne-
UYE IHUNCEHHA 00MUCTIOBAILHOT CKAAOHOCME 8 NOPIGHAHHI 3
6azoeum anzopummom 6 cepeonvomy 6 107 pas

Kmiouoei carosa: paxmopusauis, memoo Pepma, o6uuc-
J106abHA CKAAOHICMb, 6A308a 0CHO8A, NPOPIOHCYBAHHS,
Keaopammi 3aaumxu

u] =,
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1. Introduction

At present, the issue of information security is one of
the most relevant. One of the ways to solve it is information
encryption. Among the ways of encryption, the asymmetric
crypto-algorithm (ACA) RSA has acquired widespread appli-
cation. Its cryptographic resistance is caused by the complex-
ity of factorization of big numbers N=p-g, where p and g are
prime numbers. In papers [1, 2], it was shown that the known
examples of compromising the RSA algorithm work only for

its specific implementations, and, as a rule, in the general case
are not most effective for solving a factorization problem.

Up to now, many factorization methods have been devel-
oped. The most frequently used methods include the methods
of the number field sieve (GNFS), the quadratic sieve method
(QS), the Pollard method and the Fermat method [3—6]. In
this case, it is believed that each of these methods is the best
(most effective in terms of computational complexity) for its
application area. Thus, the Fermat method is most effective at
sufficiently close values of prime factors p and g, The Pollard




