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nontrivial divisor for a large number. In 2009, the number 
RSA-768 was factorized in 2009 within the RSA-competi-
tion that was already closed. Specified 768-bit number (232 
decimal digits) is currently the largest number, known from 
public sources, which was factorized. To factorize it, the re-
searchers from 6 countries united; more than 1020 operations 
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1. Introduction

The problems of information security that exist at present 
are solved by the methods and algorithms, the cryptographic 
resistance of which is based, particularly, on the complexity 
of solution to the factorization problem – the search for a 
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Розглядається задача факторизацiї, на 
якiй базуються багато класичних асиме-
тричних систем (RSA, Рабiна, iншi) та крип-
тографiчно сильних генераторiв псевдови-
падкових послiдовностей (BBS). Коротко 
описанi методи, якi послугували прообра-
зами методу Лєнстра, та запропоновано 
метод факторизацiї чисел, який є анало-
гом методу Лєнстра на кривих Едвардса. 
Спочатку для обґрунтування коректно-
стi методу розроблено вiдповiдний мате-
матичний апарат. Далi, з використанням 
цього апарату, побудовано аналог мето-
ду Лєнстра на кривих Едвардса та розро-
блено вiдповiдний алгоритм факторизацiї 
чисел. Математично обґрунтовано корек-
тнiсть методу, коректнiсть роботи алго-
ритму; отримано та строго доведено верх-
нi аналiтичнi оцiнки для його швидкодiї та 
нижнi оцiнки iмовiрностi успiху. Наведено 
та строго обґрунтовано переваги розробле-
ного методу у порiвняннi з класичним мето-
дом Лєнстра, який застосовує елiптич-
нi кривi у формi Вейєрштраса. Проведено 
порiвняльний аналiз нового та класичного 
алгоритмiв. 

За результатами дослiджень отримано 
строгi доведення того, що новий алгоритм на 
повних кривих Едвардса, у порiвняннi з кла-
сичним, має переваги у швидкодiї приблизно у 
1.5 рази. Наведено експериментальнi резуль-
тати, якi показують, що швидкодiя зростає 
iще бiльше (до 30 вiдсоткiв), якщо замiсть 
повних кривих Едвардса використовувати 
скрученi та квадратичнi кривi. Показано, що 
оцiнка iмовiрностi успiху нового методу зро-
сте за рахунок появи нових умов, якi приво-
дять до успiху алгоритму та якi не iснують 
для класичного алгоритму Лєнстра на кри-
вих Вейєрштраса. 

Отриманi результати дозволяють змен-
шити час, необхiдний для розв’язку задачi 
факторизацiї, приблизно у 1.5 рази, а, отже, 
дають змогу швидше зламувати криптосис-
теми, що базуються на цiй задачi

Ключовi слова: криптосистема RSA, 
задача факторизацiї, методи факториза-
цiї, метод Лєнстра, кривi Едвардса
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were performed, which is equivalent to almost 2,000 years of 
computations on a single-core processor of 2.2 GHz and the 
technical potential of more than 5 grid systems, specifically, 
Grid’5000, was used. Factorization of 1024-bit RSA number 
according to the estimation of authors in [1] is 1,000 times as 
complex as RSA-768. That is why modern requirements for 
the length of the RSA number (1,024 and 2,048 bits) ensure, 
at a guarantee and with a significant margin, the security of 
a cryptosystem against a significant increase of computing 
capabilities or new algorithms emergence. Based on the 
Moore’s law, it can be argued that with the increasing power 
of computers, it becomes possible to increase proportionally 
the efficiency of the factorization algorithms. However, in 
addition to the time of computations another important 
resource for this problem is the amount of memory used. For 
example, a significant memory capacity is needed for algo-
rithms of sifting – a numerical sieve and a quadratic sieve.

A more detailed review of the modern factorization 
methods, including the Lenstra method, the relevance and 
modern progress in factorization problem solving can be 
found in papers [2, 3].

The Lenstra method [4–8] is one of the fastest general 
methods of integer number factorization. It can be used both 
as a separate factorization method, and as one of the stages 
of the “sifting” methods, which are the fastest factorization 
methods [9–11]. This algorithm uses the elliptic curve over 
the rational numbers field and some its reduction by the 
integer modulo, and requires about 2log2k additions of the 
points of this curve, where k is the algorithm parameter, 
the choice of which defones the probability of success of 
the algorithm. Therefore, the operation time of the Lenstra 
algorithm is proportional to the time of points addition. This 
fact naturally suggests using such elliptic curves, on which 
the operation of points addition runs fastest, particularly, 
Edwards curves, to implement this method.

However, it should be noted that the classic Lenstra 
algorithm is based on some property of elliptic curves in 
the Weierstrass form, which is absent for Edwards curve. 
This property is the existence of a point on infinity, which 
has no coordinates and, therefore, is not a solution of the 
corresponding curve equation. That is why it is not possible 
to transfer directly the Lenstra method on Edwards curves.

The existence of fast number factorization algorithms is a 
sufficient condition for breaking the RSA cryptosystem and 
other similar cryptosystems. That is why the problem of con-
struction and substantiation of such algorithms will be rele-
vant as long as the RSA-like cryptosystems are widely used.

2. Literature review and problem statement

The Lenstra number factorization method was proposed 
in [4]. For factorization of integer n=pq, which is the product 
of two integers p and q, Lenstra suggested using an analogue 
of an elliptic curve in the Weierstrass form over ring Zn. The 
powerful mathematical apparatus that is best described in 
[7] was developed to substantiate the correctness of oper-
ation, estimation of time and probability of success of the 
method. Although the Lenstra method is not the fastest fac-
torization method, it can perform factorization in those cases 
where the fastest “sifting” methods appear to be powerless.

Later, the Lenstra method started to be used on the 
Montgomery curves, which made it possible to increase its 
speed. With the emergence of a new form of elliptic curves, 

the so-called Edwards form, the interest in the Lenstra 
method significantly increased. The first work on this topic 
is the research of Bernstein [9], which presented the condi-
tions of such Edwards curves existence, which would surely 
contain the points of small orders, for example, orders of 2, 4, 
6, 8. It was also experimentally shown that the probability 
of success of the algorithm on Edwards curve that contains 
the points of such orders is increasing within one percent.

Bernstein’s ideas received further development in papers 
[2, 10, 11]. In 2013, using the Lenstra method, it became 
possible to find 274-bit divisor for 787-bit number (7337+1). 

In paper [11], the proposed ideas were improved, due to 
which, according to the experimental data, the probability of 
success is growing by another 1–2 %. In article [2], it is pro-
posed to combine the use of curves in the Montgomery form 
and in the Edwards form to achieve the best results when 
using in some algorithms of factoring integer and computing 
of discrete logarithm.

However, it should be noted that the following problems 
were considered in none of these works:

– construction of a clear description of the Lenstra fac-
torization algorithm that takes into consideration the speci-
ficity of Edwards curves; 

– mathematical proves of correctness of this algorithm 
on Edwards curves;

– analytical estimations of its speed and a gain in perfor-
mance speed;

– analytical estimations of the probability of success and 
its increase relative to the probability of success of the Lens-
tra method on the Weierstrass curves.

The main findings regarding the effectiveness of the 
method were made based on the experimental data, and 
the mathematical statements, obtained in them, mostly 
concerned certain technical details of the algorithm imple-
mentation (selection of the parameters of a curve, selection 
of coordinates, etc.).

That is why many theoretical problems remain un-
resolved. First of all, it is due to the necessity to develop 
such a mathematical apparatus that will make it possible to 
obtain for Edwards curves the similar results to previously 
obtained for  Weierstrass curves. Consequently it appears 
appropriate to conduct studies in this direction to answer at 
least a part of the listed issues.

3. The aim and objectives of the investigations

The aim of this investigation is the development and 
strict mathematical substantiation of the Lenstra method 
on Edwards curves, as well as substantiation of its basic 
properties, advantages and offering the recommendations 
regarding the application.

That is why the objectives of this research can be stated 
as follows:

– to develop the mathematical apparatus, necessary for 
adaptation of the Lenstra method for Edwards curves;

– using the specified mathematical apparatus, to design 
the modification of the Lenstra method, adapted to Edwards 
curves, and to substantiate correctness of this method; 

– to provide a detailed algorithm that implements the 
Lenstra method on Edwards curves; 

– to construct the analytical estimates of the algorithm 
characteristics (speed, probability of success), to explore 
possible changes in the algorithm performance, using differ-
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ent types of Edwards curves, make an additional analysis of 
the algorithm operation.

4. The Lenstra method on an elliptic curve in the 
Weierstrass form: connection with other methods of 

factorization and its merits

4. 1. Basic factorization methods. Features and bene-
fits of the Lenstra method

Among modern factorization methods, we will separate 
the following exponential by complexity algorithms: the Pol-
lard’s p−1 algorithm, probabilistic Pollard’s rho algorithm, 
the Shanks methods. The sub-exponential algorithms in-
clude the quadratic sieve algorithm, other sifting algorithms, 
the Dixon method, the Lenstra elliptic-curve factorization 
algorithm. We will note that the complexity of some algo-
rithms depends on number of digits of the factorized num-
ber, while for the others, such as Pollard’s rho-method, the 
Lenstra algorithm; it depends on the value of the sought-for 
divisor. We will separately emphasize that the selection of 
algorithm depends on the information about the factorized 
number, for example, about its special form or the special 
properties of its divisors. In addition, it is worth taking into 
consideration the amount of memory available for storing 
intermediate computations results, for example, for sifting 
algorithms.

In terms of security against cryptanalysis algorithms, it 
is possible to select prime numbers when constructing cryp-
tosystems so that the use of number factorization algorithms 
would be ineffective. However, this approach will not work 
for the Lenstra method. This is its essential advantage. It is 
not possible to sort out all elliptic curves over the specified 
prime field to check the properties. That is, we can in ad-
vance select such prime numbers that their product surely 
cannot be factorized within the time acceptable for all the 
other methods, but this statement is not true regarding the 
Lenstra method. That is why one never knows beforehand 
how vulnerable to this method such product will be.

4. 2. The prototype of the classic Lenstra method – 
the Pollard’s p−1 method 

Let us start with the description of the Pollard’s p–1 
method [7, 8, 14], which can be considered as the Lenstra 
method prototype. The successful application of the Pollard 
method is possible only for the numbers of a certain kind. It is 
quite effective in such cases. The main purpose of this method 
consists in searching prime divisors of composite number n. 
Suppose that one of the prime divisors p of this number has 
the following property: all prime divisors of p–1 are “small”, 
for example, they are not exceeding a certain number B. 

Let us assume that a is such natural number that 
(a, p)=1. Then, according to the Fermat’s little theorem 
ap-1=1(mod p), that is p|ap-1–1, therefore, (n, ap–1)=p.

But number p is unknown, so we do the following. Let 
s1, s2,…, sr be first r of prime numbers, e1, e2,…, er are small 
prime numbers. We will compute

1

.i

r
e

i
i

k s
=

= ∏   (1)

The algorithm operation will be successful if 

1 | .p k-   (2)

Indeed, with respect to condition (2), equality ak≡ 
≡1(mod p) is satisfied, that is why

( ), 1 .pn a p- =   (3)

It should be noted that equality (2) is not a necessary 
condition fulfillment of equality (3). Actually, let us (a, p)=1, 
then ord(a mod p)=l|p–1. Then to fulfill condition (3), it is 
enough 

( )mod | .ord a p k   (4)

That is, if number a is such that its multiplicative order is 
small enough in Zp

*, it is sufficient to find divisor p of n from 
condition (3). In this case, condition (4) is much weaker than 
condition (2), and probability of its satisfaction for random  
 

number a is equal to 

( )
( )| , 1 .

1
d k p

d

p
-

ϕ

-

∑

If condition (4) is satisfied, the time of algorithm oper-
ation is equal 2log(2kn) operations. The Pollard algorithm 
can be written down step-by-step as follows:

 
Algorithm 1
p–1 – the Pollard method 
Input: n – composite.
1. Select k that has the form (1) (or we select in any other 

way so that k should have many small prime divisors, for 
example, k=HCK(2,…, M) for natural number M).

2. Randomly select a so that 1<a<n.
3. Compute D=(ak–1, n). If 1<D<n, then p=D. The algo-

rithm derives value p and completes the work.
If D=1, come back to step 1 and select larger value of k.
If D=n, come back to step 2 and select a new value of a.
Algorithm 1 successfully completes the work only in 

case, if one is lucky to find such a, for which condition (4) at 
some k is satisfied. The higher the value of k, the greater the 
probability of success. That is why it is necessary to select 
this number as high as computational capabilities allow. If 
for all divisors p of n, the following condition is satisfied: p–1 
have only large prime divisors, the time algorithm operation 
is not essentially different from the operation time of the 
complete sorting algorithm.

4. 3. The classic Lenstra algorithm 
The prototype of the classic Lenstra algorithm – the Pol-

lard method – is based on the fact that under certain condi-
tions, it is possible to pick up such natural number a that for 
some p|n, its order in group Zp

* is small enough. However, the 
main shortcoming of this method is impossibility of using it 
under condition that all divisors p of number n are the ones 
that p–1 have large prime divisors. That is, number n can be 
constructed in advance so that the Pollard algorithm could 
be impossible to apply.

The method, proposed by Lenstra [4–6], does not have 
this drawback. The reason for this is that the group, in which 
the Lenstra method operate, for the same number p can be 
constructed in many different ways. That is why the exis-
tence of small orders elements in group does not depend on 
factorization of number p–1. This is what differs the Lenstra 
method from the Pollard methods and the others, which can 
operate only in group Zp

*.
The basic idea of the Lenstra method is to use group Ep of 

the points at an elliptic curve above field Fp instead of group 
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Zp
*, and a certain point P of this curve instead of number a.  

By the Hasse’s theorem, the number N(Ep) of the curve 
points is evenly distributed within

( )1 2 1 2 .pp p N E p p+ - £ £ + +

That is why among all the curves, it is possible to find 
the one, the order of which has many “small” divisors. Then, 
accordingly, the probability to select point ,pP E∈  that has 
“small” order, specifically, the order that is a divisor of number 
k, determined in (1), is quite high. Specifically, if Ep is cyclic 
(like the group of the points on Edwards curve), the proba-

bility of selecting a “suitable” point is equal to 

( )
( )( )
( )

| ,
.pd k N E

p

d

N E

ϕ∑

Particularly, if N(Ep)|k, the probability of success will be 
equal to 1. Actually, in this case (k, N(Ep))=N(Ep), then

 
( )

( )( )
( )

( )
( )

( )
( )
( )

| , |
1.p pd k N E d N E p

p p p

d d
N E

N E N E N E

ϕ ϕ

= = =
∑ ∑

Correctness of the Lenstra algorithm operation is pro-
vided by the following theorem.

Theorem 1 (The Lenstra theorem, [7])
Let E: y2=x3+bx+c, b, c Z∈  is a certain elliptic curve, for 

which condition (4b3+27c2, n)=1 is satisfied. Let us assume 
that P1 and P2 are such points on this curve that P1≠P2 and 
denominators of coordinates are co-prime with n. Then point 
P1+P2 has such coordinates, in which denominators are co-
prime with n, then and only then when for any space p, which 
is a divisor of number n, the sum of points P1modp+P2modp 
on curve Emodp is not equal to a point on infinity.

The Lenstra algorithm can be written down step-by-step 
as follows: 

Algorithm 2
Classic Lenstra method
Input: n – composite.
1. Select randomly b, x0, y0 from 2 to n.
2. Compute c=(y0

2–x0
3–bx0)modn.

Then consider the elliptic curve in the Weierstrass form 
E: y2=x3+bx+c, b, c∈Z 
and the point on it P(x0, y0).
3. Compute ( )3 24 27 , .D b c n= +
If 1<D<n, then p=D. The algorithm derives value p and 

completes the work.
If D=n, return to step 1 and select a new value b.
4. Select k, that has the form (1) (or select in any other 

way so that k should have many small prime divisors: for 
example, k=HCK(2,…, M) for a certain natural number M).

5. Using the Horner’s scheme, sequentially compute kP 
from the formulas of points addition on the curve [7]. In 
this case, if in the process of computation, there occurred a 
situation when at points addition P1(x1, y1) and P2(x2, y2), 
denominators in coordinates of point P3(x3, y3)=P1+P2 are 
not co-prime with n, that is, 1<D<n, where

 
( )
( )

2 1 1 2

1 1 2

, , if ;

, , if ,

x x n P P
D

y n P P

 - ≠= 
=

then p=D, the algorithm derives the value of p and completes 
the work.

If D=1 for all the time of computations, or at a certain 
step D=n, it is necessary to return to step 4 and increase the 
value of k (as long as computational capabilities allow), or 
return to step 1 and select a new elliptic curve. 

According to approximated estimates, presented in [5, 
6], if number k has the form (1), the probability of success is 

not less than 
log log

log
log log2 ,r r

p p
s s

- ⋅
 where sr is the largest prime divi-  

sor of k in (1). Specifically, if log log ,rs p»  the probability of 
success is close to 1; if ,rs p»  the probability of success is 
approximately 0.25.

Repeating the algorithm several times for different pa-
rameters of the curve and different points, we increase the 
success probability.

The time complexity of algorithm, according to the esti-
mations from the same work is 

( ) ( )
1 1
2 2log loglog2 n nλ Ο   

  (5)

for some λ>0, where parameter λ depends on the time of 
performance of addition of points on the curve. As we can 
see, the time complexity of algorithm is the same as the best 
factorization algorithms. 

5. Development of the mathematical apparatus necessary 
for the construction and substantiation of the Lenstra 

method on Edwards curves 

The equation of the elliptic curve in the form, which 
later took the name “Edwards form”, was suggested in 
paper [12]. The isomorphism (under certain conditions) 
between the curves in the Weierstrass form and in the 
Edwards form was proved. However, the curves, proposed 
in [12], were weak from the cryptographic point of view. 
But paper [12] was quickly followed by paper [13], where 
the Edwards curves were modified by the introduction 
of a certain parameter. The equations of the curves, pro-
posed in [13], over a finite field of characteristics p>2 take  
the form:

( )2 2 2 2 2: 1 ,E x y e dx y+ = +

where parameter d is the quadratic non-residue by modulo p.
Hereafter, for simplification, we will consider e=1 and 

explore curve Ep, assigned over prime field Fp by equation 

2 2 2 21 ,x y dx y+ = +  1.
d
p

 
= -  

  (6)

The main differences (almost all of which are advantag-
es) of the Edwards curve compared with the Weierstrass 
curve are the following. 

1) Universality  of  the  addition  law. Indeed, the opera-
tions of different points addition and doubling a point are 
assigned by the same formulas:

( ) ( ) 1 2 2 1 1 2 1 2
1 1 2 2

1 2 1 2 1 2 1 2

, , , .
1 1

x y x y y y x x
x y x y

dx x y y dx x y y

 + -
+ =  + - 

  (7)

2) The absence of “the point on infinity”. Thus, the neu-
tral element is a usual point of the Edwards curve with coor-
dinates (0.1), which obviously fulfill equation (7). 
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3) Group Ep is always cyclic. 
4) The  order  of  group  Ep  is  always  divided  by  4. The 

property of the Edwards curve can be considered an insig-
nificant disadvantage due to the fact that its subgroup of the 
large prime order, on the basis of which cryptosystems are 
constructed, will have at least 4 times as few points as the 
whole group, that is, at least three-quarters of the points of 
the group are “extra”.

5) The  record  speed  of  points  addition. This property 
is one of the most important advantages of the Edwards 
curve. Thus, approximately 1.5 as little bit operations are 
required for two (different) points addition of the Edwards 
curve rather than points addition of the Weierstrass curve; 
at points doubling, the number of bit operations is even less. 
There is an especially significant gain in performance speed 
for the so-called twisted Edwards curves, the equations of 
which differ from equation (7) by the existence of a certain 
additional parameter [15, 16].

6) Uniformity  of  the  addition  law. The formulas for 
adding points along the Edwards curve are the same for 
adding different points and for doubling point. This in-
creases stability of cryptosystems on the Edwards curves 
to timing and capacitive attacks, aimed at determining 
the number, by which the point of a curve is multiplied. 

We will remind that the major operation that is per-
formed in the Lenstra algorithm is adding points on the 
elliptic curve. More precisely, its implementation requires 
about k operations of points addition, where k is determined 
according to (1). That is why at a significant increase in 
performance speed of this operation, the algorithm time 
complexity will also be greatly enhanced. 

If the order of Weierstrass curve has exactly two points 
of the fourth order, then it will be isomorphic to some Ed-
wards curve (6).

2 3: .pW v u au b= + +

The necessary and sufficient conditions for the existence 
of exactly two points of the fourth order, as well as formulas 
that define an isomorphism, can be found in [17, 18]. 

The proposed Lenstra algorithm for the Edwards curve 
mainly consists of the same steps as the classic algorithm, 
but the substantiation of the correctness of its operation 
on the Edwards curve is quite different. Correctness of the 
operation of the classic algorithm is based on the Lenstra 
theorem, various modifications of which can be found in 
[4–7]. And correctness of the operation of the namesake al-
gorithm for the case with the Edwards curve is partly based 
on theorem 1 from [19] and will be partly substantiated by 
the results, proved further in this paper.

Theorem 2. 
Let 

pd Q∈   (8)

and a certain curve is assigned by equation 



pE : 2 2 2 21x y dx y+ = +   (9)

over Fp.
Then for any point (x1, y1)∈Ep, such point (x2, y2)∈Ep can 

be found that
 

( )1 2 1 2 1 mod .dx x y y p≡   (10)
 
Similarly, for any point (x1, y1)∈Ep, such point (x2, y2)∈Ep 

will be found that

( )1 2 1 2 1 mod .dx x y y p≡ -   (11)

Proof
Let us take an arbitrary point (x1, y1), which satisfies 

equation (9) and the one that x1y1≠0. We will put
 

( )2

1 1
2 2

1 1

,
x y

U
dx y

+
=  

( )2

1 1
2 2

1 1

.
x y

V
dx y

-
=

Due to (8), , ,pU V Q∈  therefore, there are such , ,pA B F∈  
that U=A2, V=B2. Now we put 

2 ,
2

A B
x

+
=  2 .

2
A B

y
-

=

Then

( ) ( )

2 2

2 2

2 2

1 1 1 1 1 1
2 2 2 2

1 1 1 1 1 1

2 2 4

4 1
,

4 4

A B A B A B
x y

x y x y x y
dx y dx y dx y

+ - -
= ⋅ = =

+ - -
= = =   (12)

that is, (10) is satisfied.
Then,

( ) ( )

( ) ( )

( )

( )

2 2 2 2
2 2

2 2

2 22 2
1 1 1 1

2 2
1 1

2 2 2 2
1 1 1 1

2 2 2 2 2 2
1 1 1 1 1 1

2 2
2 22

1 1
2 2

2 2

2 2
4 4 4

2 2

2 1 1
1

2

1
1 1 1 ,

1

A B A B A B
x y

x y x yA B
dx y

x y dx y
dx y dx y dx y

d
d dx y

dx y
x y

+ - +
+ = + = =

+ + -+
= = =

+ +
= = = + =

= + = + = +  (13)

where the last but one equation is true due to (12).
It follows from (13) that (x2, y2)∈Ep.
Statement (11) is proved similarly.
The theorem is proved.
Then we will need the theorem that describes the struc-

ture of the Edwards curve over finite ring Zn. 
For some composite number Nn ∈  and arbitrary nd Z∈  

we will designate

( ) ( ){ }2 2 2 2, : 1 modn n nE x y Z Z x y dx y n= ∈ × + ≡ +  (14)

a subset of a set of points of Cartesian product Zn×Zn, which 
satisfies the correspondent congruence.

Definition 1: a set of points (14) will be called the gener-
alized Edwards curve over the residue ring Zn.

For arbitrary prime p, which is a divisor of n, we will des-
ignate by Enmodp the curve, formed from En by the reduction 
of its coordinates by modulo p:

( ) ( ){ }mod mod , mod : , .n p p nE p x p y p Z Z x y E= ∈ × ∈
 
(15)
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(15) shows that every point ( ), nP x y E= ∈  is correspon-
dent to a single point 

( )mod mod , mod mod ,nP p x p y p E p= ∈  
 

moreover, by the properties of congruencies (since p|n), its 
coordinates fulfill the congruence 

( ) ( )
( )( ) ( ) ( )

2 2

2 2

mod mod

1 mod mod mod mod ,

x p y p

d p x p y p p

+ ≡

≡ +   (16)

obtained from (14) by reducing by modulo p.
We will note that so far we do not introduce the opera-

tion of points addition on this curve and do not explore its 
closure under this operation. 

Theorem  3: let n=pq. Then in designations (14)–(16), 
representations

 
( ) ( ): mod mod ,n n nf E E p E q→ ×

assigned as 

( ) ( ): mod , mod ,nP E f P P p P q∀ ∈ =   (17)

or (which is the same as)

( ) ( )( )
( ) ( )( )

, : ,

mod , mod , mod , mod ,

nx y E f x y

x p y p x q y q

∀ ∈ =

=

is a bijection.
Proof.
To prove it, it is sufficiently to show that representation 

(17) is reversible, so for any pair of points mod ,p nT E p∈  
mod ,q nT E q∈  there is a single point ,nT E∈  the one that

 
( ) ( ), .p qf T T T=

Let 

Tp=(xp, yp); Tq=(xq, yq). 

Construct point ( ), ,nT x y E= ∈  for which f(T)=(Tp, Tq), 
and show that it is single.

Coordinates of point nT E∈  will be obtained from the 
system of congruencies 

( )
( )
( )
( )

mod ;

mod ;

mod ;

mod ,

p

p

q

p

x x p

y y p

x x q

y q q

 ≡


≡


≡
 ≡

  (18)

which is decomposed into two independent congruencies:

( )
( )
mod ;

mod ,

p

q

x x p

x x q

 ≡


≡
 and 

( )
( )
mod ;

mod .

p

p

y y p

y q q

 ≡


≡
  (19)

Since (p, q)=1, then according to the Remainder Chi-
nese Theorem, in set {0, 1,…., n-1}×{0, 1,…., n-1} there is a 
single pair (x, y), which satisfies (18) and (19). In this case, 

xmodp=xp, ymodp=yp, xmodq=xq, ymodq=yq, that is why 
for point T=(x, y), Tmodp=Tp, Tmodq=Tq is satisfied and, as 
it was mentioned above, this is a single point.

We will show that ,nT E∈  that is, (14) holds for its co-
ordinates (x, y).

Since mod ,p nT E p∈  then
 

( ) ( )2 2 2 21 mod mod ,p p p px y d p x y p+ ≡ +

in this case, since

( )mod mod ,d p d p≡  ( )mod ,px x p≡  ( )mod ,py y p≡ .

Congruence will fulfill 

( )2 2 2 21 mod .x y dx y p+ ≡ +   (20)

Based on similar considerations, congruence will fulfill 

( )2 2 2 21 mod .x y dx y q+ ≡ +   (21)

Since n=pq and (p, q)=1, then, by the properties of congru-
encies, fulfillment of congruencies follows from (21) and (22) 

( )2 2 2 21 mod ,x y dx y n+ ≡ +

which means .nT E∈  The theorem is proved.
Now we will state the theorem, which will be used during 

the estimation of the probability of Lenstra algorithm suc-
cess, proposed below.

Theorem 4.
Let n be composite number, which is divided by prime 

number p; En  is the Edwards curve over ring Zn, assigned by 
equation (9); P is its point. Let it for some Nk ∈ , condition holds

( )ord mod | ,P p k   (22)

where by the order of point Pmodp, we imply its order as an 
group element of Edwards curve points in the generalized 
form (according to the classification of curves, proposed in 
[15]) Enmodp. 

Then, the following condition holds for point kP: either 
enumerators, or denominators of its coordinates have a com-
mon divisor with number n that is larger than one. 

Proof. 
Let us assume that denominators of the coordinates of 

points k(Pmodp) are co-prime with number n. Then, accord-
ing to Theorem 1 from [19], 

mod mod ,nP p E p∈  

and under condition of (22), point k(Pmodp) is a neutral 
element of group Enmodp, i.e. k(Pmodp)=(0,1). Then for 
point ( ), ,nP x y E= ∈  according to Theorem 3, the following 
condition holds:

( )
( )

0 mod ;

1 mod .

x p

y p

 ≡


≡

And this means that ,x p  i. e. (x, n)≥p. The Theorem is 
proved.
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6. The algorithm that implements the Lenstra method 
on Edwards curves, and its properties: construction and 

substantiation

We will state the ideas that lie at the core of the Len-
stra algorithm on the Edwards curves and construct the 
algorithm itself. The first of the ideas is the following. If 
parameter pd Z∈  in equation (8) is quadratic residue, then 
according to Theorem 2, there surely be found such pairs of 
points on the curve (and there will be quite of lot of such 
pairs), the denominator of points addition will be equal to 
zero. Then, we consider n=pq, where p and q are unknown 

prime numbers. If we choose such *,nd Z∈  that 1,
d
n

  = -  
  

 
then by the property of multiplicativity of a Jacobi symbol,

1 ,
d d d
n p q

    - = =          

that is why either mod ,pd p Q∈  or mod .qd q Q∈  We will 
consider for certainty that mod .pd p Q∈  We will consider 
En, determined in the following way: first we will assign curve 
E:x2+y2=1+dx2y2 over the field of rational numbers, then we 
will construct its reduction En=E modn by modulo n (detailed 
explanations will be found in [7]). Then such points P1 and P2 

are sure to be found on curve En, so, point (P1+P2)modn will 
have the denominator that is divided by p, that is, the one, for 
which the common divisor with number n will be equal to p.

The second idea is similar to the one that is used in the 
classic Lenstra algorithm. If the order of point Pmodp is 
“small” enough, i.e. it is a divisor of k, the x-coordinate of 
point kPmodp is congruent to zero by modulo p, because the 
largest common divisor of point kPmodp x-coordinate will 
be larger than one. 

It is possible to construct the following Lenstra algo-
rithm for an Edwards curve.

Algorithm 3
Lenstra algorithm on Edwards curves
Input: n – composite.
1. Choose randomly x0, y0 from 2 to n–1.
2. Compute D1=(x0, n) and D2=(y0, n). If 1<Di<n, i=1, 2, 

then p=Di. The algorithm derives the value of p and com-
pletes the operation.

3. Compute 2 2
0 0 1.x y+ -

4. Compute ( )2 2
3 0 0 1, .D x y n= + -

If 1<D3<n, then p=D3, then the algorithm derives the 
value of p and completes the operation.

If D3=n, return to step 1 and select new values of x0, y0.
5. If 

2 2
0 0 1

1,
x y

n

 + -
=  

 

return to step 1 and select new values of x0, y0.
6. Compute  ( )( ) 12 2 2 2

0 0 0 01 .d x y x y
-

= + -
7. Then consider the elliptic curve in the Edwards form 



2 2 2 2: 1 ,nE x y dx y+ = +

and the point P(x0, y0) on it.
8. Select k, which takes the form (1) (or select in any oth-

er way so that k would have many small prime divisors: for 
example, k=HCK(2,…, M) for some natural M).

9. Using the Horner’s scheme, compute sequentially kP 
from formulas (7). In this case, every time computing points 
P1(x1, y1) and P2(x2, y2) addition, we compute Di, i=4, 5, 6, 7 
from formulas:

 
( )4 1 1 2 21 , ,D dx y x y n= +  ( )5 1 1 2 21 , ,D dx y x y n= +

( )6 1 2 2 1, ,D x y x y n= +  ( )7 1 2 1 2, .D y y x x n= -  (23)

10. If in the course of computations there occurred the 
situation at points addition P1(x1, y1) and P2(x2, y2) for some 
i=4, 5, 6, 7, 1<Di<n, then p=Di. The algorithm derives the 
values of p and completes the work.

11. If, when computing kP, one failed to find a non-trivial 
divisor of number n, return to step 1 and re-select x0, y0, or 
d, or increase the value of k (as long as computational capa-
bilities allow).

7. Discussion of the characteristics and advantages of the 
constructed algorithm 

Let us analyze the characteristics of Algorithm 3. The num-
ber of its points additions is the same as for Algorithm 2, but 
due to the fact that Algorithm 3 uses the Edwards curves, 
each points addition will be performed approximately by  
1.5 times faster. That is why the algorithm itself will be not 
less than 1.5 times better. 

Although the main purpose of the work to get a gain in 
performance speed, it is important that the probability of 
success of Algorithm 3 should be significantly higher than 
for Algorithm 2, as a minimum due to extra checks (23), 
correctness of which is based on Theorem 2.

It is possible to additionally increase the probability of 
success of the algorithm by using twisted and quadratic 
Edwards curves instead of full curves. Probability increase 
in this case will take place at the expense of special points 
existence on such curves, getting on which also leads to the 
success of the algorithm. We will note that an increase in the 
probability of success of the algorithm automatically leads to 
an increase in computing speed, since in this case the average 
number of steps to success decreases.

To research an increase in computing speed of Algo-
rithm 3 during the transition to twisted and quadratic 
curves, we conducted a number of experiments with using 
standard data types, which show that when using twisted 
or quadratic Edwards curve, the average number of steps to 
success is reduced by 20–30 %. These experimental results 
clearly indicate that the existence of specific points on the 
Edwards curve greatly affects the algorithm complexity 
and success probability. However, the analytical expres-
sions for the construction of enhancing speed estimates and 
probability when using twisted and quadratic curves have 
not been obtained yet.

The merits of this research in comparison with the 
analogues [2, 3, 9, 10] is that the theoretical proves of the 
correctness of the Lenstra method on the Edwards curves 
was presented, the appropriate step-by-step algorithm was 
designed and it was proved that its characteristics are better 
than those of the classic Lenstra algorithm. 

A comprehensive analysis of the possibilities and advan-
tages of this algorithm when using quadratic and twisted 
Edwards curves requires a more complicated mathematical 
apparatus (it especially applies to the formulation and proof 
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of the generalizations of theorems 3 and 4) and significant 
computation capacities for carrying out experiments on 
large numbers.

The shortcomings of the research include the fact that the 
obtained and theoretically grounded results apply only to the 
full curves by Edwards. At the same time, the experimental 
results indicate that time of algorithm operation and the prob-
ability of its success for quadratic and twisted curves can be 
significantly better than those for the full ones. 

That is why we believe that further analysis should focus 
following directions:

- development of the mathematical apparatus, which 
would theoretically prove the correctness of application of 
the Lenstra method on the twisted and quadratic Edwards 
curves; 

- the development of the appropriate algorithm, con-
struction and proof of analytical estimates of its characteris-
tics (time of operation, probability of success).

We will emphasize that one of the main advantages of 
this algorithm is that we can not only re-select k or P, but the 
elliptic curve itself, that is, the group in which the algorithm 
operates. That is why, unlike other known factorization 
algorithms, it is impossible to protect from this algorithm, 
picking up some prime divisors of number n, since it is im-
possible to sort out all elliptic curves over the corresponding 
fields and check the orders of all points.

8. Conclusions

1. The new mathematical apparatus was developed and 
proved that allowed to construct and prove an analogue 

to the Lenstra algorithm for the full Edwards curves. The 
necessity of developing the new mathematical apparatus is 
related to the fact that Lenstra algorithm operation correct-
ness proof on Edwards curve is based on completely different 
principles than classic case with Weierstrass form elliptic 
curve.

2. Using the developed mathematical apparatus, the 
modification to the Lenstra method for Edwards curves 
was created; the correctness of this method was proved. To 
substantiate the correctness of the Lenstra method, the the-
orems about the properties of the group of points at Edwards 
curves were stated and proved. These theoretical results also 
make it possible to construct the algorithm that implements 
the Lenstra method on Edwards curves.

3. A detailed step-by-step algorithm that implements the 
Lenstra method on Edwards curves was constructed. Theo-
rem 2 and 4 were proved, from which it directly follows that 
the conditions for the success of this algorithm are wider 
than those of the classic Lenstra method. That is why the 
probability of success of the constructed algorithm is higher.

4. Comparative estimates of algorithm time complexity 
and probabilities of its success were constructed. It was 
proved that the time complexity of Lenstra algorithm mod-
ification on the Edwards curves is at least 1.5 times more 
efficient in comparison with classic algorithm.

The experimental results of the algorithm application 
made the basis for a reasonable assumption that using twist-
ed and quadratic Edwards curves (instead of full ones) cause 
increase of success probability of the algorithm. This is due 
to the existence of a large number of special points, reaching 
which during the algorithm implementation leads to its suc-
cessful completion.
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1. Introduction

At present, the issue of information security is one of 
the most relevant. One of the ways to solve it is information 
encryption. Among the ways of encryption, the asymmetric 
crypto-algorithm (ACA) RSA has acquired widespread appli-
cation. Its cryptographic resistance is caused by the complex-
ity of factorization of big numbers N= ,p q⋅  where p and q are 
prime numbers. In papers [1, 2], it was shown that the known 
examples of compromising the RSA algorithm work only for 

its specific implementations, and, as a rule, in the general case 
are not most effective for solving a factorization problem.

Up to now, many factorization methods have been devel-
oped. The most frequently used methods include the methods 
of the number field sieve (GNFS), the quadratic sieve method 
(QS), the Pollard method and the Fermat method [3–6]. In 
this case, it is believed that each of these methods is the best 
(most effective in terms of computational complexity) for its 
application area. Thus, the Fermat method is most effective at 
sufficiently close values of prime factors p and q, The Pollard 
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Метод Ферма вважається кращим при факториза-
цiї чисел N=pq у випадку близьких p i q. Обчислювальна 
складнiсть базового алгоритму методу визначаєть-
ся кiлькiстю пробних значень Х при вирiшеннi рiвняння 
Y2=X2–N, а також складнiстю арифметичних опера-
цiй. Для її зниження запропоновано в якостi допусти-
мих розглядати тi з пробних Х, для яких (X2–N)modbb 
є квадратним залишком по модулю bb, названого базо-
вым. При використаннi базової основи модуля bb число 
пробних Х зменшується в число раз, близьке до Z(N,bb)= 
=bb/bb*, де bb* – число елементiв множини Т коренiв 
рiвняння (Ymodb)2modb=((Xmodb)2–Nmodb)modb, а Z –  
коефiцiєнт прискорення. 

Визначено, що на величину Z(N,bb) впливають значе-
ния залишкiв Nmodp (при р=2 використовуються залиш-
ки Nmod8). Запропоновано постановку задачi пошуку 
bb з максимальным Z(N,bb) при обмеженях на обсяг 
пам’ятi ЕОМ, де визначаються показники степенiв про-
стих чисел – множникiв bb, та спосiб її вирiшення. 

Для зменшення числа арифметичних операцiй з вели-
кими числами попонується замiсть таких виконува-
ти операцiї зi значеннями рiзниць мiж найближчими 
значеннями елементiв множини Т. Тодi арифметич-
нi операцiї множення i додавання з великими числами 
виконуються рiдко. А якщо квадратний корiнь з X2–N 
визначати тiльки у випадках, коли значення 

(X2–N)modb будуть квадратними залишками для 
багатьох рiзних основ модуля b, то обчислювальною 
складнiстю цiєї операцiї можна знехтувати. 

Встановлено, що тодi запропонований модифiкова-
ний алгоритм методу Ферма для чисел 21024 забезпе-
чує зниження обчислювальної складностi в порiвняннi з 
базовим алгоритмом в середньому в 107 раз

Ключовi слова: факторизацiя, метод Ферма, обчис-
лювальна складнiсть, базова основа, прорiджування, 
квадратнi залишки
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